1
|
Tamizh Selvan G, Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J Genet Eng Biotechnol 2024; 22:100409. [PMID: 39674629 PMCID: PMC11381789 DOI: 10.1016/j.jgeb.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The measurement of micronucleus (MN) in the cytokinesis-block arrested binucleated cells has been extensively used as a biomarker in many radiation biology applications in specific biodosimetry. Following radiation casualties, medical management of exposed individuals begins with triage and biological dosimetry. The cytokinesis blocked micronucleus (CBMN) assay is the alternate for the gold standard dicentric chromosome assay in radiation dose assessment. In recent years, the CBMN assay has become well-validated and emerged as a method of choice for evaluating occupational and accidental exposures scenario. It is feasible due to its cost-effective, simple, and rapid dose assessment rather than a conventional chromosome aberration assay. PubMed search tool was used with keywords of MN, biodosimetry, radiotherapy and restricted to human samples. Since Fenech and Morely developed the assay, it has undergone many technical and technological reforms as a biomarker of various applications. In this review, we have abridged recent developments of the CBMN assay in radiation triage and biodosimetry, focusing on (a) the influence of variables on dose estimation, (b) the importance of baseline frequency and reported dose-response coefficient values among different laboratories, (c) inter-laboratory comparison and (d) its limitations and means to overcome them.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
2
|
The role of ALDH2 in tumorigenesis and tumor progression: Targeting ALDH2 as a potential cancer treatment. Acta Pharm Sin B 2021; 11:1400-1411. [PMID: 34221859 PMCID: PMC8245805 DOI: 10.1016/j.apsb.2021.02.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
A major mitochondrial enzyme for protecting cells from acetaldehyde toxicity is aldehyde dehydrogenase 2 (ALDH2). The correlation between ALDH2 dysfunction and tumorigenesis/growth/metastasis has been widely reported. Either low or high ALDH2 expression contributes to tumor progression and varies among different tumor types. Furthermore, the ALDH2∗2 polymorphism (rs671) is the most common single nucleotide polymorphism (SNP) in Asia. Epidemiological studies associate ALDH2∗2 with tumorigenesis and progression. This study summarizes the essential functions and potential ALDH2 mechanisms in the occurrence, progression, and treatment of tumors in various types of cancer. Our study indicates that ALDH2 is a potential therapeutic target for cancer therapy.
Collapse
Key Words
- 4-HNE, 4-hydroxy-2-nonenal
- ALD, alcoholic liver disease
- ALDH2
- ALDH2, aldehyde dehydrogenase 2
- AMPK, AMP-activated protein kinase
- Acetaldehyde
- BCa, bladder cancer
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CRC, colorectal cancer
- CSCs, cancer stem cells
- Cancer
- Cancer therapy
- DFS, disease-free survival
- EC, esophageal cancer
- FA, Fanconi anemia
- FANCD2, Fanconi anemia protein
- GCA, gastric cancer
- HCC, hepatocellular carcinoma
- HDACs, histone deacetylases
- HNC, head and neck cancer
- HNF-4, hepatocyte nuclear factor 4
- HR, homologous recombination
- LCSCs, liver cancer stem cells
- MDA, malondialdehyde
- MDR, multi-drug resistance
- MN, micronuclei
- Metastasis
- NAD, nicotinamide adenine dinucleotide
- NCEs, normochromic erythrocytes
- NER, nucleotide excision repair pathway
- NF-κB, nuclear factor-κB
- NHEJ, non-homologous end-joining
- NRF2, nuclear factor erythroid 2 (NF-E2)-related factor 2
- NRRE, nuclear receptor response element
- NSCLC, non-small-cell lung
- NeG, 1,N2-etheno-dGuo
- OPC, oropharyngeal cancer
- OS, overall survival
- OvCa, ovarian cancer
- PBMC, peripheral blood mononuclear cell
- PC, pancreatic cancer
- PdG, N2-propano-2′-deoxyguanosine
- Polymorphism
- Progression
- REV1, Y-family DNA polymerase
- SCC, squamous cell carcinoma
- TGF-β, transforming growth factor β
- Tumorigenesis
- VHL, von Hippel-Lindau
- ccRCC, clear-cell renal cell carcinomas
- εPKC, epsilon protein kinase C
Collapse
|
3
|
Matsumoto A, Thompson DC, Chen Y, Kitagawa K, Vasiliou V. Roles of defective ALDH2 polymorphism on liver protection and cancer development. Environ Health Prev Med 2016; 21:395-402. [PMID: 27714678 DOI: 10.1007/s12199-016-0579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022] Open
Abstract
Because serum transaminases elevate alcohol dose dependently as a consequence of liver injury, they serve as useful biological markers of excessive drinking. However, these markers are inadequate in individuals with a defective allele of the aldehyde dehydrogenase 2 gene, ALDH2*2, because they show a different correlation with the amount of ethanol. For example, the serum alanine aminotransferase (ALT) level could become even lower than the baseline after alcohol intake in ALDH2*2 carriers. In fact, multiple studies suggest that ALDH2*2 is a hepato-protective factor in healthy individuals. Importantly, excessive drinking is particularly dangerous in carriers of ALDH2*2 because the risk of alcohol-related cancer is much higher than that for ALDH2*1/*1 carriers. Without recognizing the genotype interaction on serum transaminase, the opportunity to warn people about potential cancer risks is missed owing to incorrect interpretation. This is particularly important in East Asian countries where approximately half of the population carries the ALDH2*2 allele. To date, the mechanism of liver protection from ethanol load in individuals with ALDH2*2 has not been fully elucidated. However, some reasonable mechanisms have been suggested by experimental studies, including remodelling of detoxifying systems. Further studies to uncover the whole mechanism are anticipated.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga, 849-8501, Japan.
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado School of Pharmacy, 12850 E. Aurora, Denver, CO, 80045, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520-8034, USA
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, 431-3125, Japan
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520-8034, USA
| |
Collapse
|
4
|
Chua A, Thomas P, Clifton P, Fenech M. Chromosomal DNA damage in APOE ɛ4 carriers and noncarriers does not appear to be different. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:694-708. [PMID: 25820038 DOI: 10.1002/em.21949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
DNA damage may play a key role in promoting disease-onset and accelerated disease progression in Alzheimer's disease (AD) by increasing the rates of neuronal cell death. The ɛ4 allele of the APOE gene is the best characterised genetic risk factor for AD, however, it is unknown if APOE ɛ4 carriers exhibit increased levels of DNA damage which may contribute to increased AD risk. 175 healthy participants (aged 34-67 years old) from South Australia were recruited into the study and provided a single blood sample for the isolation of peripheral blood lymphocytes, APOE genotyping and lymphocyte chromosomal DNA damage analysis using the Cytokinesis-Block micronucleus cytome (CBMN-Cyt) assay with the micronucleus index being the primary outcome measure. When compared to non-APOE ɛ4 carriers, APOE ɛ4 carriers did not exhibit altered rates of i) cell division, represented by the nuclear division index (NDI, P = 0.372), ii) cell death as represented by apoptotic (P = 0.457) and necrotic (P = 0.393) frequencies and iii) chromosomal DNA damage as indicated by the number of micronuclei (MNi, P = 0.795), nucleoplasmic bridges (NPBs, P = 0.221) or nuclear buds (NBUDs, P = 0.293) scored in binucleated cells. In conclusion, although we and others have previously shown that rates of chromosomal DNA damage measured using the CBMN-Cyt assay are elevated in individuals with cognitive impairment, in this South Australian cohort the frequency of genome instability is not substantially influenced by the presence of the APOE ɛ4 allele.
Collapse
Affiliation(s)
- Ann Chua
- Department of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
- Nutrigenomics and Neurodegenerative Disease Prevention, Nutrigenomics Laboratory, CSIRO, Food and Nutrition Flagship, Adelaide, Australia
| | - Philip Thomas
- Nutrigenomics and Neurodegenerative Disease Prevention, Nutrigenomics Laboratory, CSIRO, Food and Nutrition Flagship, Adelaide, Australia
| | - Peter Clifton
- Department of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Michael Fenech
- Nutrigenomics and Neurodegenerative Disease Prevention, Nutrigenomics Laboratory, CSIRO, Food and Nutrition Flagship, Adelaide, Australia
| |
Collapse
|
5
|
Mørck TA, Loock KV, Poulsen MB, Siersma VD, Nielsen JKS, Hertel O, Kirsch-Volders M, Knudsen LE. Micronucleus frequency in Danish schoolchildren and their mothers from the DEMOCOPHES population. Mutagenesis 2015; 31:1-8. [PMID: 26188196 DOI: 10.1093/mutage/gev054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Micronucleus (MN) frequency is a biomarker for early genetic effects which is often used in human biomonitoring studies. Increased frequency of micronuclei has been associated with high levels of traffic exposure. Further high MN frequency was found predictive for cancer development in several studies of adults. In the present study, the MN frequency in blood samples from the Danish participants of the European pilot project DEMOCOPHES was analysed and related to the area of residence, self-reported and calculated exposure to road traffic as well as to mercury in hair and blood concentrations of persistent organic pollutants and dioxin-like activity measured in the same participants. The MN frequency analysis was performed with the cytokinesis-block micronucleus (CBMN) assay and included 100 children and 119 mothers. We found a significant correlation between mothers and children in the levels of micronuclei in 1000 binucleated T lymphocytes (‰MNBN) and in the proliferation index. Further the levels of ‰MNBN were significantly higher in mothers compared with their children. No significant associations were found for ‰MNBN for traffic related exposure in neither children nor their mothers. In children, a 2.5 times higher micronuclei in mononuclear T lymphocytes were found in children living within 50 m of a busy road, however, this was not found in mothers or in MNBN and the effect of exposure to road traffic on MN frequency needs further investigation. No significant associations were found between MN frequencies and the other biomarkers measured in the same participants.
Collapse
Affiliation(s)
| | - Kim Vande Loock
- Laboratory of Cell Genetics), Faculty of Science and Bio-Engineering, Free University of Brussels (VUB), Pleinlaan 2, 1050 Brussel, Belgium
| | - Maria Bech Poulsen
- Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark and
| | - Volkert D Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1410 Copenhagen K, Denmark
| | | | - Ole Hertel
- Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark and
| | - Micheline Kirsch-Volders
- Laboratory of Cell Genetics), Faculty of Science and Bio-Engineering, Free University of Brussels (VUB), Pleinlaan 2, 1050 Brussel, Belgium
| | | |
Collapse
|
6
|
Senthilkumar CS, Akhter S, Malla TM, Sah NK, Ganesh N. Increased Micronucleus Frequency in Peripheral Blood Lymphocytes Contributes to Cancer Risk in the Methyl Isocyanate-Affected Population of Bhopal. Asian Pac J Cancer Prev 2015; 16:4409-19. [DOI: 10.7314/apjcp.2015.16.10.4409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Albertini RJ. Vinyl acetate monomer (VAM) genotoxicity profile: Relevance for carcinogenicity. Crit Rev Toxicol 2013; 43:671-706. [DOI: 10.3109/10408444.2013.827151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Jones KH, York TP, Juusola J, Ferreira-Gonzalez A, Maes HH, Jackson-Cook C. Genetic and environmental influences on spontaneous micronuclei frequencies in children and adults: a twin study. Mutagenesis 2011; 26:745-52. [PMID: 21765037 DOI: 10.1093/mutage/ger042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary aim of this study was to quantify genetic and environmental influences on the frequency of spontaneously occurring micronuclei in children and adults. To meet this aim, a total of 63 male and female twin pairs and 19 singletons (145 individuals) were evaluated, ranging in age from 7 to 85 years. Micronuclei frequencies significantly increased with age for both genders (r = 0.49, P < 0.001), with the lowest and highest rates being seen in the 7- to 9 (mean = 0.56%, SD = .28) and 60- to 69-year-olds (mean = 2.12%, SD = 1.0), respectively. This age effect was significantly more pronounced in females than males (P = 0.017). In addition to the main effect of age, the completion of puberty in either gender (P = 0.036) and menopause in females (P = 0.024) was associated with a significant increase in micronuclei frequencies. Genetic model fitting indicated that influences from both additive genetic (65.2% of variance) and unique environmental (34.8% of variance) sources best explained the observed micronuclei frequencies in monozygotic and dizygotic twin pairs. Self-reported health conditions associated with an increased frequency of micronuclei included a history of allergies (P < 0.007) and migraines (P = 0.026). Multivitamin use was also associated with increased micronuclei frequencies (P = 0.004). In contrast, significantly lower micronuclei frequencies were associated with arthritis (P = 0.002), as well as consuming fruit (P = 0.014), green, leafy vegetables (P < 0.001) and/or folate-enriched bread (P = 0.035). A sex-specific effect, resulting in a significantly increased frequency of micronuclei with tobacco usage, was observed for females (but not males). Gender differences also moderated the impact of vitamin D and calcium consumption. In conclusion, the frequency of spontaneously arising micronuclei in humans is a complex trait, being influenced by both heritable genetic and environmental components. Recognition of factors contributing to baseline levels of micronuclei should provide guidance to researchers in designing studies to evaluate agents hypothesised to influence chromosomal instability.
Collapse
Affiliation(s)
- Kimberly H Jones
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298-0662, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kumar A, Yadav A, Giri SK, Dev K, Gautam SK, Gupta R, Aggarwal N. Influence of GSTM1 and GSTT1 genotypes and confounding factors on the frequency of sister chromatid exchange and micronucleus among road construction workers. CHEMOSPHERE 2011; 84:564-570. [PMID: 21543101 DOI: 10.1016/j.chemosphere.2011.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 03/12/2011] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
In the present study, we have investigated the influence of polymorphism of GSTM1 and GSTT1 genes and confounding factors such as age, sex, exposure duration and consumption habits on cytogenetic biomarkers. Frequency of sister chromatid exchanges (SCEs), high frequency cell (HFC) and cytokinesis blocked micronuclei (CBMN) were evaluated in peripheral blood lymphocytes of 115 occupationally exposed road construction workers and 105 unexposed individuals. The distribution of null and positive genotypes of glutathione-S transferase gene was evaluated by multiplex PCR among control and exposed subjects. An increased frequency of CBMN (7.03±2.08); SCE (6.95±1.76) and HFC (6.28±1.69) were found in exposed subjects when compared to referent (CBMN - 3.35±1.10; SCE - 4.13±1.30 and HFC - 3.98±1.56). These results were found statistically significant at p<0.05. When the effect of confounding factors on the frequency of studied biomarkers was evaluated, a strong positive interaction was found. The individuals having GSTM1 and GSTT1 null genotypes had higher frequency of CBMN, SCE and HFC. The association between GSTM1 and GSTT1 genotypes and studied biomarkers was found statistically significant at p<0.05. Our findings suggest that individuals having null type of GST are more susceptible to cytogenetic damage by occupational exposure regardless of confounding factors. There is a significant effect of polymorphism of these genes on cytogenetic biomarkers which are considered as early effects of genotoxic carcinogens.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Fenech M, Bonassi S. The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis 2011; 26:43-9. [PMID: 21164181 DOI: 10.1093/mutage/geq050] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Micronucleus (MN) frequency in cytokinesis-blocked peripheral blood lymphocytes (PBL) has become one of the best-established biomarkers for studying DNA damage occurring in vivo in humans. The application of this method in population biomonitoring studies requires a deep understanding of how lifestyle and common host variables may influence MN frequency in PBL. In this mini-review, an update is provided on results from studies reporting on the impact of age, gender, diet and lifestyle factors (e.g. exercise, alcohol, smoking and recreational drugs) on this biomarker. Evidence from these studies shows that each of these factors, either in isolation or in combination, can significantly influence MN frequency. Proper control for these factors is required to enable better measurement of the impact of other conditions, such as environmental exposure to genotoxins or a susceptible genetic background, on MN frequency in PBL.
Collapse
Affiliation(s)
- Michael Fenech
- Department of Nutritional Genomics and DNA Damage Diagnostics, Commonwealth Scientific and Industrial Research Organisation Food and Nutritional Sciences, Gate 13 Kintore Avenue, PO Box 10041, Adelaide BC, South Australia 5000, Australia.
| | | |
Collapse
|
11
|
Weng Z, Suda M, Ohtani K, Mei N, Kawamoto T, Nakajima T, Wang RS. Aldh2 knockout mice were more sensitive to DNA damage in leukocytes due to ethyl tertiary butyl ether exposure. INDUSTRIAL HEALTH 2011; 49:396-399. [PMID: 21372431 DOI: 10.2486/indhealth.ms1188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To clarify the genotoxicity of ethyl tertiary butyl ether (ETBE), a gasoline additive, male and female C57BL/6 mice of Aldh2+/+ and Aldh2-/- genotypes, aged 8 wk, were exposed to 0, 500, 1,750, or 5,000 ppm ETBE for 6 h/day, 5 d per week for 13 wk. DNA damage in leukocytes was measured by the alkaline comet assay and expressed quantitatively as Tail Intensity (TI). For male mice, TI was significantly higher in all three groups exposed to ETBE than in those without exposure within Aldh2-/- mice, whereas within Aldh2+/+ mice, TI increased only in those exposed to 5,000 ppm of ETBE as compared with mice without exposure. For female mice, a significant increase in TI values was observed in the group exposed to 5,000 ppm of ETBE as compared with those without exposure within Aldh2-/- mice; TI in Aldh2-/- mice exposed to 1,750 and 5,000 ppm was significantly higher than in Aldh2+/+ mice without exposure. TI did not significantly increase in any of the groups exposed to ETBE within female Aldh2+/+ mice. Based on the results we suggest that Aldh2-/- mice are more sensitive to DNA damage caused by ETBE than Aldh2+/+ mice and that males seem more susceptible to this effect than females.
Collapse
Affiliation(s)
- Zuquan Weng
- National Institute of Occupational Safety and Health, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhou YZ, Diao YT, Li H, Li HQ, Ma Q, Cui J. Association of genetic polymorphisms of aldehyde dehydrogenase-2 with esophageal squamous cell dysplasia. World J Gastroenterol 2010; 16:3445-9. [PMID: 20632450 PMCID: PMC2904894 DOI: 10.3748/wjg.v16.i27.3445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To demonstrate the possible associations between genetic polymorphisms of aldehyde dehydrogenase-2 (ALDH2) and esophageal squamous cell dysplasia (ESCD).
METHODS: All participants came from an area of high incidence of esophageal cancer and underwent an endoscopic staining examination; biopsies were taken from a non-staining area of the mucosa and diagnosed by histopathology. Based on the examinations, the subjects were divided into the control group with normal esophageal squamous epithelial cells and the ESCD group. ALDH2 genotypes of 396 cases were determined including 184 ESCD cases and 212 controls. The odds ratio (OR) and 95% confidence intervals (95% CI) were calculated by binary logistic regression models.
RESULTS: The distribution of ALDH2 genotypes showed significant differences between the two groups. The adjustment factors were gender and age in the logistic regression models. Compared with 2*2/2*2 genotype, 2*1/2*1 genotype was found to be a risk factor for ESCD, and the OR (95% CI) was 4.50 (2.21-9.19). There were significant correlations between ALDH2 genotypes and alcohol drinking/smoking/history of esophageal cancer.
CONCLUSION: The ALDH2 polymorphism is significantly associated with ESCD.
Collapse
|
13
|
Li Y, Zheng T, Kilfoy BA, Lan Q, Holford T, Han X, Zhao P, Dai M, Leaderer B, Rothman N, Zhang Y. Genetic polymorphisms in cytochrome P450s, GSTs, NATs, alcohol consumption and risk of non-Hodgkin lymphoma. Am J Hematol 2010; 85:213-5. [PMID: 20131310 DOI: 10.1002/ajh.21608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to investigate whether genetic polymorphisms in cytochrome P450s (CYPs), glutathione S-transferases (GSTs), and N-acetyltransferases (NATs) genes modify the relationship between alcohol consumption and risk of non-Hodgkin's lymphoma (NHL) in a population-based, case-control study including 1,115 Connecticut women. Although we did not find strong evidence that the genetic polymorphisms modify the relationship between alcohol consumption and risk of NHL, we identified significant interactions for multiple GSTs and NATs and alcohol intake among persons with DLBCL. Our results confer support investigation of the gene-environment interaction in a larger study population of DLBCL.
Collapse
|
14
|
Yokoyama K. Individual susceptibility to occupational hazard. INDUSTRIAL HEALTH 2009; 47:455-458. [PMID: 19834253 DOI: 10.2486/indhealth.47.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
15
|
Kayani MA, Parry JM. The in vitro genotoxicity of ethanol and acetaldehyde. Toxicol In Vitro 2009; 24:56-60. [PMID: 19747536 DOI: 10.1016/j.tiv.2009.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 08/19/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
Ability of ethanol to produce chromosomal changes has been controversial in past many years; nevertheless many recent studies have shown that ethanol itself produces genotoxic effects like acetaldehyde. This study was carried out to evaluate the ability of ethanol and its metabolite acetaldehyde to induce chromosomal changes using in vitro CBMN assay (Cytokinesis Blocked Micronucleus assay) in conjunction with immunofluorescent labeling of kinetochores. Kinetochore staining was used with a view to differentiate, between the genotoxic effects of both chemicals, and ascertain the mechanisms of genotoxicity induction by ethanol and acetaldehyde. Both ethanol and acetaldehyde produced statistically significant (P<0.05) dose dependent increase in MN induction as compared with the controls over the dose range tested. Kinetochore analysis proved that the MN induced in ethanol were originated by an aneugenic mechanism, whereas in the case of acetaldehyde most of the MN had originated by a clastogenic mechanism. This not only confirms the ability of ethanol to produce DNA damage in vitro but it also establishes the efficacy of CBMN assay to detect and differentiate between the genotoxic effects of different genotoxins. Here we report that ethanol is itself genotoxic, at least in vitro, and produces genotoxic effects mainly through an aneugenic mechanism whereas its metabolite acetaldehyde is a clastogen.
Collapse
Affiliation(s)
- M A Kayani
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | | |
Collapse
|
16
|
Lu Y, Morimoto K. Is habitual alcohol drinking associated with reduced electrophoretic DNA migration in peripheral blood leukocytes from ALDH2-deficient male Japanese? Mutagenesis 2009; 24:303-8. [PMID: 19286920 DOI: 10.1093/mutage/gep008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcohol drinking-derived acetaldehyde is believed to cross-link DNA and induce sister chromatid exchanges in peripheral blood lymphocytes. However, little population data are available to illustrate effects of alcohol-derived acetaldehyde on DNA migration as assayed by the comet assay in peripheral lymphocytes. In the present study, we investigated lifestyle behaviours, including alcohol consumption, in 150 Japanese males by questionnaire, determined their aldehyde dehydrogenase 2 (ALDH2) family genotypes by polymerase chain reaction and measured the DNA migration in peripheral blood leukocytes by the alkaline comet assay. The results showed that habitual alcohol drinking is significantly negatively associated with DNA migration in peripheral blood leukocytes (r = -0.321, P = 0.005) of ALDH2-deficient, but not of ALDH2-proficient genotypes (r = 0.048, P = 0.683). The amount of pure alcohol consumed per time by the subjects showed a similar phenomenon (r = -0.257, P = 0.025 for the ALDH2-deficient, but r = -0.061, P = 0.606 for the ALDH2-proficient genotype). Further stepwise multiple regression analysis showed that alcohol drinking frequency was a significant predictor of DNA migration for subjects with ALDH2-deficient genotype, but not for subjects with ALDH2-proficient genotype. In summary, the present result suggests that frequent alcohol drinking is significantly associated with a reduced electrophoretic DNA migration in peripheral blood leukocytes from ALDH2-deficient male Japanese subjects.
Collapse
Affiliation(s)
- Yuquan Lu
- Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Yamada-oka, Japan
| | | |
Collapse
|
17
|
Cerqueira EMM, Meireles JRC, Lopes MA, Junqueira VC, Gomes-Filho IS, Trindade S, Machado-Santelli GM. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography. Dentomaxillofac Radiol 2008; 37:398-403. [PMID: 18812602 DOI: 10.1259/dmfr/56848097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. METHODS 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. RESULTS The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were the frequencies of nuclear alterations indicative of apoptosis (P < 0.001). CONCLUSIONS These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.
Collapse
Affiliation(s)
- E M M Cerqueira
- Av. Princesa Isabel 114, Apto 602, Porto da Barra, Salvador, Bahia, CEP 40140-000 Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Battershill JM, Burnett K, Bull S. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: impact on design of biomonitoring studies. Mutagenesis 2008; 23:423-37. [DOI: 10.1093/mutage/gen040] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
19
|
Kosalec I, Šafranić A, Pepeljnjak S, Bačun-Družina V, Ramić S, Kopjar N. Genotoxicity of Tryptophol in a Battery of Short-Term Assays on Human White Blood Cells in vitro. Basic Clin Pharmacol Toxicol 2008; 102:443-52. [DOI: 10.1111/j.1742-7843.2007.00204.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Kunugita N, Isse T, Oyama T, Kitagawa K, Ogawa M, Yamaguchi T, Kinaga T, Kawamoto T. Increased frequencies of micronucleated reticulocytes and T-cell receptor mutation in Aldh2 knockout mice exposed to acetaldehyde. J Toxicol Sci 2008; 33:31-6. [PMID: 18303182 DOI: 10.2131/jts.33.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde produced from ethanol into acetate and plays a major role in the oxidation of acetaldehyde in vivo. About half of all Japanese people have inactive ALDH2. We generated homozygous Aldh2 null (Aldh2-/-) mice by gene targeting knockout as a model of ALDH2-deficient humans. To investigate the mutagenicity of acetaldehyde, a micronucleus assay and a T-cell receptor (TCR) gene mutation assay were performed in Aldh2-/- mice and wild-type (Aldh2 +/+) mice exposed to acetaldehyde. The mice were continuously exposed to 125 and 500 ppm of acetaldehyde vapor for 2 weeks. Another group was orally administered 100 mg/kg once a day for 2 weeks continuously. The mice were killed after 2 weeks of exposure to acetaldehyde, and the frequency of micronucleated reticulocytes was measured by flow cytometry. We also observed the incidence of TCR gene mutations in T-lymphocytes by measuring the variant CD3(-CD4+) expression by flow cytometry. The frequency of micronucleated reticulocytes induced by acetaldehyde was significantly increased in Aldh2 -/- mice, but not in Aldh2 +/+ mice. TCR mutant frequency was also associated with acetaldehyde exposure in Aldh2-/ - mice, especially after oral administration; however, it was not associated with acetaldehyde exposure in Aldh2 +/+ mice. In conclusion, Aldh2 -/- mice showed high sensitivity in the micronuclei and TCR mutation assays compared with Aldh2 +/+ mice after exposure to acetaldehyde.
Collapse
Affiliation(s)
- Naoki Kunugita
- Department of Health Information Science, School of Health Sciences, University of Occupational and Environmental Health, Iseigaoka, Kitakyushu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsière T. Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res 2007; 658:215-33. [PMID: 18037339 DOI: 10.1016/j.mrrev.2007.10.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/08/2007] [Accepted: 10/15/2007] [Indexed: 11/20/2022]
Abstract
The formation of micronuclei (MN) is extensively used in molecular epidemiology as a biomarker of chromosomal damage, genome instability, and eventually of cancer risk. The occurrence of MN represents an integrated response to chromosome-instability phenotypes and altered cellular viabilities caused by genetic defects and/or exogenous exposures to genotoxic agents. The present article reviews human population studies addressing the relationship between genetic polymorphisms and MN formation, and provides insight into how genetic variants could modulate the effect of environmental exposures to genotoxic agents, host factors (gender, age), lifestyle characteristics (smoking, alcohol, folate), and diseases (coronary artery disease, cancer). Seventy-two studies measuring MN frequency either in peripheral blood lymphocytes or exfoliated cells were retrieved after an extensive search of the MedLine/PubMed database. The effect of genetic polymorphisms on MN formation is complex, influenced to a different extent by several polymorphisms of proteins or enzymes involved in xenobiotic metabolism, DNA repair proteins, and folate-metabolism enzymes. This heterogeneity reflects the presence of multiple external and internal exposures, and the large number of chromosomal alterations eventually resulting in MN formation. Polymorphisms of EPHX, GSTT1, and GSTM1 are of special importance in modulating the frequency of chromosomal damage in individuals exposed to genotoxic agents and in unexposed populations. Variants of ALDH2 genes are consistently associated with MN formation induced by alcohol drinking. Carriers of BRCA1 and BRCA2 mutations (with or without breast cancer) show enhanced sensitivity to clastogens. Some evidence further suggests that DNA repair (XRCC1 and XRCC3) and folate-metabolism genes (MTHFR) also influence MN formation. As some of the findings are based on relatively small numbers of subjects, larger scale studies are required that include scoring of additional endpoints (e.g., MN in combination with fluorescent in situ hybridization, analysis of nucleoplasmic bridges and nuclear buds), and address gene-gene interactions.
Collapse
Affiliation(s)
- G Iarmarcovai
- Laboratory of Biogenotoxicology and Environmental Mutagenesis EA 1784; IFR PMSE 112, Faculty of Medecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | |
Collapse
|
22
|
Ishikawa H, Ishikawa T, Yamamoto H, Fukao A, Yokoyama K. Genotoxic effects of alcohol in human peripheral lymphocytes modulated by ADH1B and ALDH2 gene polymorphisms. Mutat Res 2007; 615:134-42. [PMID: 17207821 DOI: 10.1016/j.mrfmmm.2006.11.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/14/2006] [Accepted: 11/17/2006] [Indexed: 11/17/2022]
Abstract
Ethanol is almost totally broken down by oxidative metabolism in vivo. Ethanol per se is considered to be neither carcinogenic, mutagenic nor genotoxic. However, during the metabolic conversion of ethanol to acetaldehyde and acetate, the organism is exposed to both ethanol and acetaldehyde and therefore ethanol is suspected to be co-carcinogenic. The genetic polymorphisms of alcohol dehydrogenase-2 (ADH1B) and acetaldehyde dehydrogenase-2 (ALDH2) influence the metabolism of alcohol. The ADH1B*1/*1 genotype encodes the low-activity form of ADH1B, and ALDH2*1/*2 and ALDH2*2/*2 genotype encode inactive ALDH2. The aim of this study was to test the hypothesis that polymorphisms of the ADH1B and ALDH2 genes are significantly associated with genotoxicity induced by alcohol drinking, measured using the cytokinesis-block micronucleus (CBMN) assay, an established biomarker of genome instability, in peripheral blood lymphocytes of 286 healthy Japanese men. There was a significant trend for the mean micronuclei (MN) frequency in habitual or moderate drinkers without a smoking habit to increase as the numbers of the *1 allele in ADH1B increased (P=0.039 or P=0.029) and the *2 allele in ALDH2 increased (P=0.019 or P=0.037). A logistic regression analysis showed that the number of subjects with MN frequency levels more than median value of MN (3.0) was significantly higher in the subjects with the ADH1B*1 allele as adjusted estimates (OR 2.08, 95% C.I. 1.24-3.48), when the OR for the subjects with the ADH1B*2/*2 genotype was defined as 1.00. The number of subjects with MN frequency levels more than median value of MN was also significantly higher in the subjects with the ALDH2*2 allele as adjusted estimates (OR 1.79, 95% C.I. 1.04-3.11), when the OR for the subjects with the ALDH2*1/*1 genotype was defined as 1.00. The results of this study have identified important novel associations between ADH1B/ALDH2 polymorphisms and genotoxicity in alcohol drinkers.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan.
| | | | | | | | | |
Collapse
|
23
|
Ishikawa H, Ishikawa T, Miyatsu Y, Kurihara K, Fukao A, Yokoyama K. A polymorphism of the methionine synthase reductase gene increases chromosomal damage in peripheral lymphocytes in smokers. Mutat Res 2006; 599:135-43. [PMID: 16580699 DOI: 10.1016/j.mrfmmm.2006.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/27/2006] [Accepted: 02/15/2006] [Indexed: 05/08/2023]
Abstract
The cytogenetic effects of cigarette smoke has been evaluated as one of many potential confounders in a large number of biomonitoring studies of occupationally or environmentally exposed populations and control subjects. Despite the well-known presence of carcinogens in the cigarette smoke, the results in the scientific literature linking smoking habits to micronuclei (MN) frequency, one of the cytogenetic markers, are rather controversial. Here, we investigated the relationships among MN frequency, smoking habits and five folate metabolic enzyme gene polymorphisms (MTHFR C677T and A1298C, MTR A2756G, MTRR A66G and TYMS 3'UTR) in 132 healthy Japanese men who were non-habitual drinkers. In never- and former-smokers, no statistically significant differences in the mean MN frequencies were observed according to the five folate metabolic enzyme gene polymorphisms. In current-smokers, however, subjects with the AA genotype for MTRR had a significantly higher mean MN frequency than the AG genotypes for MTRR (p<0.05). Furthermore, among subjects with the AA genotype for MTRR, current-smokers were found to have a significantly higher mean MN frequency than never- and former-smokers (p<0.05). To further characterize this association, we stratified the smoking status into five groups: non-smokers (never-smokers and former-smokers), 1-10 cigarettes/day, 11-20 cigarettes/day, 21-30 cigarettes/day and >or=31 cigarettes/day. There was an overall trend for the mean MN frequency in subjects with the MTRR AA genotype to increase as the number of cigarettes smoked per day increased (p<0.01, Jonckheere-Terpstra test). The results of our preliminary study suggest that the MTRR AA genotype acts to increase the MN frequency resulting from cigarette smoking. Therefore, studies on human genotoxicity based on cytogenetic markers of MN should take into account both the MTRR polymorphism and the potential confounding effect of smoking, although these preliminary findings need to be validated in larger populations because of the relatively small sample size.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Yokoyama K. Our recent experiences with sarin poisoning cases in Japan and pesticide users with references to some selected chemicals. Neurotoxicology 2006; 28:364-73. [PMID: 16730798 DOI: 10.1016/j.neuro.2006.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/24/2006] [Accepted: 04/24/2006] [Indexed: 12/22/2022]
Abstract
Attention has been paid to neurobehavioral effects of occupational and environmental exposures to chemicals such as pesticides, heavy metals and organic solvents. The area of research that includes neurobehavioral methods and effects in occupational and environmental health has been called "Occupational and Environmental Neurology and Behavioral Medicine." The methods, by which early changes in neurological, cognitive and behavioral function can be assessed, include neurobehavioral test battery, neurophysiological methods, questionnaires and structured interview, biochemical markers and imaging techniques. The author presents his observations of neurobehavioral and neurophysiological effects in Tokyo subway sarin poisoning cases as well as in pesticide users (tobacco farmers) in Malaysia in relation to Green Tobacco Sickness (GTS). In sarin cases, a variety effects were observed 6-8 months after exposure, suggesting delayed neurological effects. Studies on pesticide users revealed that organophosphorus and dithiocarbamate affected peripheral nerve conduction and postural balance; subjective symptoms related to GTS were also observed, indicating the effects of nicotine absorbed from wet tobacco leaves. In addition, non-neurological effects of pesticides and other chemicals are presented, in relation to genetic polymorphism and oxidative stress.
Collapse
Affiliation(s)
- Kazuhito Yokoyama
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
25
|
Aoyama M, Shidoji Y. Lower Intake of Vitamin B2 and Calcium by Japanese Females in Mitochondrial Haplogroup D. J Clin Biochem Nutr 2006. [DOI: 10.3164/jcbn.39.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|