1
|
Tsai MS, Liou GG, Liao JW, Lai PY, Yang DJ, Wu SH, Wang SH. N-acetyl Cysteine Overdose Induced Acute Toxicity and Hepatic Microvesicular Steatosis by Disrupting GSH and Interfering Lipid Metabolisms in Normal Mice. Antioxidants (Basel) 2024; 13:832. [PMID: 39061900 PMCID: PMC11273582 DOI: 10.3390/antiox13070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, β-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred β-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.
Collapse
Affiliation(s)
- Ming-Shiun Tsai
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua 515006, Taiwan;
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Pin-Yen Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Di-Jie Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Szu-Hua Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402201, Taiwan
| |
Collapse
|
2
|
Zepeta-Flores N, Valverde M, Lopez-Saavedra A, Rojas E. Glutathione depletion triggers actin cytoskeleton changes via actin-binding proteins. Genet Mol Biol 2018; 41:475-487. [PMID: 29870570 PMCID: PMC6082235 DOI: 10.1590/1678-4685-gmb-2017-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/18/2017] [Indexed: 11/30/2022] Open
Abstract
The importance of glutathione (GSH) in alternative cellular roles to the
canonically proposed, were analyzed in a model unable to synthesize GSH. Gene
expression analysis shows that the regulation of the actin cytoskeleton pathway
is strongly impacted by the absence of GSH. To test this hypothesis, we evaluate
the effect of GSH depletion via buthionine sulfoximine (5 and 12.5 mM) in human
neuroblastoma MSN cells. In the present study, 70% of GSH reduction did not
induce reactive oxygen species, lipoperoxidation, or cytotoxicity, which enabled
us to evaluate the effect of glutathione in the absence of oxidative stress. The
cells with decreasing GSH levels acquired morphology changes that depended on
the actin cytoskeleton and not on tubulin. We evaluated the expression of three
actin-binding proteins: thymosin β4, profilin and gelsolin, showing a reduced
expression, both at gene and protein levels at 24 hours of treatment; however,
this suppression disappears after 48 hours of treatment. These changes were
sufficient to trigger the co-localization of the three proteins towards
cytoplasmic projections. Our data confirm that a decrease in GSH in the absence
of oxidative stress can transiently inhibit the actin binding proteins and that
this stimulus is sufficient to induce changes in cellular morphology via the
actin cytoskeleton.
Collapse
Affiliation(s)
- Nahum Zepeta-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Alejandro Lopez-Saavedra
- Unidad Biomédica de Investigación en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México. D.F., Mexico
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
3
|
Liu M, Zhao Y, Zhang X. Knockdown of glutamate cysteine ligase catalytic subunit by siRNA causes the gold nanoparticles-induced cytotoxicity in lung cancer cells. PLoS One 2015; 10:e0118870. [PMID: 25789740 PMCID: PMC4366198 DOI: 10.1371/journal.pone.0118870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/11/2015] [Indexed: 01/01/2023] Open
Abstract
Gold nanoparticles (GNPs) have shown promising medical applications in cancer treatment involved in the regulation of intracellular redox balance. Previously, we have reported that GNPs can trigger apoptosis and necrosis in human lung cancer cells (A549) when L-buthionine-sulfoximine (BSO) was used to decrease the expression of intracellular glutathione (GSH). Herein, we investigated the cytotoxicity of GNPs toward lung cancer cells under the glutamate cysteine ligase catalytic subunit (GCLC) was silenced by siRNA. Our results showed that GNPs cause apoptosis and necrosis in cells transfected with GCLC siRNA by elevating intracellular reactive oxygen species (ROS). These findings demonstrated that the regulation of glutathione synthesis by GCLC siRNA in A549 cells can initiate the gold nanoparticles-induced cytotoxicity.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yunxue Zhao
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, PR China
- * E-mail:
| |
Collapse
|
4
|
Shah D, Sah S, Nath SK. Interaction between glutathione and apoptosis in systemic lupus erythematosus. Autoimmun Rev 2012; 12:741-51. [PMID: 23279845 DOI: 10.1016/j.autrev.2012.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by imbalance redox state and increased apoptosis. The activation, proliferation and cell death of lymphocytes are dependent on intracellular levels of glutathione and controlled production of reactive oxygen species (ROS). Changes in the intracellular redox environment of cells, through oxygen-derived free radical production known as oxidative stress, have been reported to be critical for cellular immune dysfunction, activation of apoptotic enzymes and apoptosis. The shift in the cellular GSH-to-GSSG redox balance in favor of the oxidized species, GSSG, constitutes an important signal that can decide the fate of the abnormal apoptosis in the disease. The current review will focus on four main areas: (1) general description of oxidative stress markers in SLE, (2) alteration of redox state and complication of disease, (3) role of redox mechanisms in the initiation and execution phases of apoptosis, and (4) intracellular glutathione and its checkpoints with lymphocyte apoptosis which represent novel targets for pharmacological intervention in SLE.
Collapse
Affiliation(s)
- Dilip Shah
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
5
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
6
|
Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP. Early onset senescence occurs when fibroblasts lack the glutamate-cysteine ligase modifier subunit. Free Radic Biol Med 2009; 47:410-8. [PMID: 19427898 PMCID: PMC2773044 DOI: 10.1016/j.freeradbiomed.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 12/23/2022]
Abstract
Cellular senescence is the irreversible entry of cells into growth arrest. Senescence of primary cells in culture has long been used as an in vitro model for aging. Glutamate-cysteine ligase (GCL) controls the synthetic rate of the important cellular antioxidant glutathione (GSH). The catalytic subunit of GCL, GCLC, is catalytically active and essential for life. By contrast the modifier subunit of GCL, GCLM, is dispensable in mice. Although it is recognized that GCLM increases the rate of GSH synthesis, its physiological role is unclear. Herein, we show that loss of Gclm leads to premature senescence of primary murine fibroblasts as characterized by: (a) diminished growth rate, (b) cell morphology consistent with senescence, (c) increases in senescence-associated beta-galactosidase activity, and (d) cell cycle arrest at the G(1)/S and G(2)/M boundaries. These changes are accompanied by increased intracellular ROS, accumulation of DNA damage, and induction of p53 and p21 proteins. We also found that N-acetylcysteine increases intracellular GSH and prevents premature senescence in Gclm(-/-) cells. These results suggest that the control of GCLM, which in turn controls aspects of the cellular redox environment via GSH, is important in determining the replicative capacity of the cell.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Habib GM. p53 regulates Hsp90beta during arsenite-induced cytotoxicity in glutathione-deficient cells. Arch Biochem Biophys 2008; 481:101-9. [PMID: 18996350 DOI: 10.1016/j.abb.2008.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/02/2008] [Accepted: 10/16/2008] [Indexed: 02/06/2023]
Abstract
p53, a tumor suppressor and transcription factor, is a critical modulator in the cellular response to stress. Exposure of glutathione-deficient GCS-2 cells to arsenite significantly phosphorylated and stabilized p53. In addition, p53 transcriptionally repressed Hsp90beta gene expression. Mutation analysis revealed a p53 binding site in the 5' flanking region responsible for the regulation of Hsp90beta gene. Electrophoretic mobility shift assay showed that p53 is bound to Hsp90beta promoter region. ATM kinase, a major determinant in the modulation of p53 specifically affected its phosphorylation at Ser-15. ATM kinase-mediated phosphorylation of p53 is regulated through phosphorylation of Chk2. Down-regulation of ATM and Chk2 by their small interfering RNAs (siRNAs) attenuated the arsenite-induced phosphorylation of p53 and restored Hsp90beta mRNA levels. Taken together, these findings suggest that arsenite acts through ATM and Chk2 to induce phosphorylation of p53. This results in the transcriptional repression of Hsp90beta, under GSH-deficient conditions which may play a role in arsenic-mediated pathogenesis.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
9
|
Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 2007; 45:1118-28. [PMID: 17464988 DOI: 10.1002/hep.21635] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Oxidative stress is considered to be a critical mediator in liver injury of various etiologies. Depletion of glutathione (GSH), the major antioxidant in liver, has been associated with numerous liver diseases. To explore the specific role of hepatic GSH in vivo, we targeted Gclc, a gene essential for GSH synthesis, so that it was flanked by loxP sites and used the albumin-cyclization recombination (Alb-Cre) transgene to disrupt the Gclc gene specifically in hepatocytes. Deletion within the Gclc gene neared completion by postnatal day (PND)14, and loss of GCLC protein was complete by PND21. Cellular GSH was progressively depleted between PND14 and PND28-although loss of mitochondrial GSH was less severe. Nevertheless, ultrastructural examination of liver revealed dramatic changes in mitochondrial morphology; these alterations were accompanied by striking decreases in mitochondrial function in vitro, cellular ATP, and a marked increase in lipid peroxidation. Plasma liver biochemistry tests from these mice were consistent with progressive severe parenchymal damage. Starting at PND21, livers from hepatocyte-specific Gclc knockout [Gclc(h/h)] mice showed histological features of hepatic steatosis; this included inflammation and hepatocyte death, which progressed in severity such that mice died at approximately 1 month of age due to complications from liver failure. CONCLUSION GSH is essential for hepatic function and loss of hepatocyte GSH synthesis leads to steatosis with mitochondrial injury and hepatic failure.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Habib GM, Shi ZZ, Lieberman MW. Glutathione protects cells against arsenite-induced toxicity. Free Radic Biol Med 2007; 42:191-201. [PMID: 17189825 PMCID: PMC1855165 DOI: 10.1016/j.freeradbiomed.2006.10.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/05/2006] [Accepted: 10/07/2006] [Indexed: 02/07/2023]
Abstract
To understand the role of glutathione (GSH) in the protection of cells from arsenite toxicity, we studied the mechanism of apoptotic cell death in cells genetically unable to synthesize GSH (GCS-2 cells). Arsenite stimulated an increase in protein ubiquitination in GCS-2 cells while the wild-type cells were unaffected. Arsenite treatment increased lipid peroxidation and induced ubiquitination of molecular chaperone Hsp90 and impaired its ability to bind cochaperone p50(Cdc-37) and client proteins Plk-1 and Cdk-4 in GCS-2 cells. Treatment with arsenite also partially inhibited proteasome activity in GCS-2 cells. In these cells stably transfected with GFP(u) (a reporter consisting of a short degron fused to the COOH-terminus of GFP), intracellular fluorescence increased, suggesting the accumulation of GFP aggregates. GCS-2 cells underwent apoptosis accompanied by release of cytochrome c into the cytoplasm. Taken together, these data suggest that a possible mechanism of arsenite-induced apoptosis is the accumulation of ubiquitinated proteins and impairment of the protein degradative pathway. Further, protection from arsenite-induced ubiquitination is mediated by GSH and to a lesser extent by available reducing equivalents in the cells.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|