1
|
Endo M, Yokoi T, Hatazawa S, Kojima Y, Takahama S, Yoshihara R, Tanaka S, Hatakeyama S. The msh1 gene is responsible for short life span mutant natural death and functions to maintain mitochondrial DNA integrity. Fungal Genet Biol 2020; 144:103465. [PMID: 32949723 DOI: 10.1016/j.fgb.2020.103465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022]
Abstract
Wild-type filamentous fungus Neurospora crassa continues to grow its hyphae for a very lengthy period of time (>2 years), whereas mutations at the natural death (nd) locus shorten life span (approximately 20 days). By positional cloning based on heat augmented mutagen sensitivity of the nd strain, we identified a nonsense mutation in the msh1 gene, an eukaryotic homolog of bacterial MutS, and this mutation resulted in encoding non-functional polypeptide. By tagging with GFP, subcellular localization of the MSH1 protein in the mitochondria was observed, and knock out of the msh1 gene caused severe growth deficiency accompanying mitochondrial DNA (mtDNA) aberrations such as large-scale mtDNA deletions and rearrangements as seen in the nd strain. These results suggested that MSH1 may maintain mtDNA integrity. Thus, loss of function compromises mtDNA, leading to the acceleration of cellular aging.
Collapse
Affiliation(s)
- Mitsuyoshi Endo
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Takato Yokoi
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Suguru Hatazawa
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Yuna Kojima
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Shiena Takahama
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Ryouhei Yoshihara
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Shuuitsu Tanaka
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan
| | - Shin Hatakeyama
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, Japan.
| |
Collapse
|
2
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 51:2-13. [PMID: 28189416 DOI: 10.1016/j.dnarep.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.
Collapse
|
4
|
Samoilova EO, Krasheninnikov IA, Levitskii SA. Interaction between Saccharomyces cerevisiae Mitochondrial DNA-Binding Protein Abf2p and Cce1p Resolvase. BIOCHEMISTRY (MOSCOW) 2017; 81:1111-1117. [PMID: 27908236 DOI: 10.1134/s0006297916100096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA is susceptible to the action of reactive oxygen species generated by the reactions of oxidative phosphorylation. Homologous recombination is one of the mechanisms providing integrity of the mitochondrial genome. Some proteins that take part in this process in budding yeast mitochondria have been identified. These include Abf2p, the major protein of the mt-nucleoid that specifically binds cruciform DNA, and Cce1p - Holliday junction resolvase. Here we show that Abf2p does not significantly affect either binding of Cce1p to branched DNA or rate and specificity of Holliday junction resolution. These data suggest the existence of an alternative homologous recombination pathway in yeast mitochondria.
Collapse
Affiliation(s)
- E O Samoilova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
5
|
Stein A, Kalifa L, Sia EA. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005664. [PMID: 26540255 PMCID: PMC4634946 DOI: 10.1371/journal.pgen.1005664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.
Collapse
Affiliation(s)
- Alexis Stein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
6
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
9
|
Ling F, Hori A, Yoshitani A, Niu R, Yoshida M, Shibata T. Din7 and Mhr1 expression levels regulate double-strand-break-induced replication and recombination of mtDNA at ori5 in yeast. Nucleic Acids Res 2013; 41:5799-816. [PMID: 23598996 PMCID: PMC3675488 DOI: 10.1093/nar/gkt273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5′-exodeoxyribonuclease activity. Using a small ρ− mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ− cells and increased deletion mutagenesis at the ori5 region in ρ+ cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5.
Collapse
Affiliation(s)
- Feng Ling
- Chemical Genetics Laboratory, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 2012; 740:21-33. [PMID: 23276591 DOI: 10.1016/j.mrfmmm.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
11
|
The human MSH5 (MutS Homolog 5) protein localizes to mitochondria and protects the mitochondrial genome from oxidative damage. Mitochondrion 2012; 12:654-65. [DOI: 10.1016/j.mito.2012.07.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/14/2012] [Accepted: 07/20/2012] [Indexed: 01/07/2023]
|
12
|
Overexpression of DNA polymerase zeta reduces the mitochondrial mutability caused by pathological mutations in DNA polymerase gamma in yeast. PLoS One 2012; 7:e34322. [PMID: 22470557 PMCID: PMC3314619 DOI: 10.1371/journal.pone.0034322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/28/2012] [Indexed: 12/27/2022] Open
Abstract
In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one.
Collapse
|
13
|
Bilewitch JP, Degnan SM. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol Biol 2011; 11:228. [PMID: 21801381 PMCID: PMC3166940 DOI: 10.1186/1471-2148-11-228] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022] Open
Abstract
Background The mitochondrial genome of the Octocorallia has several characteristics atypical for metazoans, including a novel gene suggested to function in DNA repair. This mtMutS gene is favored for octocoral molecular systematics, due to its high information content. Several hypotheses concerning the origins of mtMutS have been proposed, and remain equivocal, although current weight of support is for a horizontal gene transfer from either an epsilonproteobacterium or a large DNA virus. Here we present new and compelling evidence on the evolutionary origin of mtMutS, and provide the very first data on its activity, functional capacity and stability within the octocoral mitochondrial genome. Results The mtMutS gene has the expected conserved amino acids, protein domains and predicted tertiary protein structure. Phylogenetic analysis indicates that mtMutS is not a member of the MSH family and therefore not of eukaryotic origin. MtMutS clusters closely with representatives of the MutS7 lineage; further support for this relationship derives from the sharing of a C-terminal endonuclease domain that confers a self-contained mismatch repair function. Gene expression analyses confirm that mtMutS is actively transcribed in octocorals. Rates of mitochondrial gene evolution in mtMutS-containing octocorals are lower than in their hexacoral sister-group, which lacks the gene, although paradoxically the mtMutS gene itself has higher rates of mutation than other octocoral mitochondrial genes. Conclusions The octocoral mtMutS gene is active and codes for a protein with all the necessary components for DNA mismatch repair. A lower rate of mitochondrial evolution, and the presence of a nicking endonuclease domain, both indirectly support a theory of self-sufficient DNA mismatch repair within the octocoral mitochondrion. The ancestral affinity of mtMutS to non-eukaryotic MutS7 provides compelling support for an origin by horizontal gene transfer. The immediate vector of transmission into octocorals can be attributed to either an epsilonproteobacterium in an endosymbiotic association or to a viral infection, although DNA viruses are not currently known to infect both bacteria and eukaryotes, nor mitochondria in particular. In consolidating the first known case of HGT into an animal mitochondrial genome, these findings suggest the need for reconsideration of the means by which metazoan mitochondrial genomes evolve.
Collapse
Affiliation(s)
- Jaret P Bilewitch
- School of Biological Sciences, University of Queensland, St, Lucia, Brisbane, Queensland, Australia
| | | |
Collapse
|
14
|
DNA repair in organelles: Pathways, organization, regulation, relevance in disease and aging. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:186-200. [DOI: 10.1016/j.bbamcr.2010.10.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/20/2022]
|
15
|
Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cell Mol Life Sci 2010; 68:219-33. [PMID: 20927567 DOI: 10.1007/s00018-010-0530-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations.
Collapse
|
16
|
Abstract
Yeast exonuclease 5 is encoded by the YBR163w (DEM1) gene, and this gene has been renamed EXO5. It is distantly related to the Escherichia coli RecB exonuclease class. Exo5 is localized to the mitochondria, and EXO5 deletions or nuclease-defective EXO5 mutants invariably yield petites, amplifying either the ori3 or ori5 region of the mitochondrial genome. These petites remain unstable and undergo continuous rearrangement. The mitochondrial phenotype of exo5Delta strains suggests an essential role for the enzyme in DNA replication and recombination. No nuclear phenotype associated with EXO5 deletions has been detected. Exo5 is a monomeric 5' exonuclease that releases dinucleotides as products. It is specific for single-stranded DNA and does not hydrolyze RNA. However, Exo5 has the capacity to slide across 5' double-stranded DNA or 5' RNA sequences and resumes cutting two nucleotides downstream of the double-stranded-to-single-stranded junction or RNA-to-DNA junction, respectively.
Collapse
|
17
|
Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1086-98. [PMID: 20056105 DOI: 10.1016/j.bbabio.2009.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | |
Collapse
|
18
|
Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA. Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 2009; 8:1242-9. [PMID: 19699691 DOI: 10.1016/j.dnarep.2009.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 02/05/2023]
Abstract
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5' flap structures generated during DNA synthesis. Furthermore, removal of 5' flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.
Collapse
Affiliation(s)
- Lidza Kalifa
- Department of Biology, University of Rochester, NY 14627, United States
| | | | | | | | | |
Collapse
|
19
|
Malc E, Dzierzbicki P, Kaniak A, Skoneczna A, Ciesla Z. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae. Mutat Res 2009; 669:95-103. [PMID: 19467248 DOI: 10.1016/j.mrfmmm.2009.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 01/29/2023]
Abstract
The proteasome plays fundamental roles in the removal of oxidized proteins and in normal degradation of short-lived proteins. Increasing evidence suggests that the proteasome may be an important factor in both oxidative stress response and cellular aging. Moreover, it was recently reported that proteasome inhibition leads to mitochondrial dysfunction. In this study, we have investigated whether proteasome impairment, caused by deletion of UMP1, a gene necessary for the 20S proteasome biogenesis, may influence the stability of the yeast mitochondrial genome. Here we show that an ump1Delta mutant displays enhanced mitochondrial point mutagenesis, measured by the frequency of oligomycin-resistant (Oli(r)) and erythromycin-resistant (Ery(r)) mutants, compared to that of the isogenic wild-type strain. Deletion of UMP1 significantly increases also the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. We show that this mitochondrial mutator phenotype of the ump1Delta strain is considerably reduced in the presence of a plasmid encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS, which was shown previously to counteract oxidative lesion-induced instability of mtDNA. In search of the mechanism underlying the decreased stability of mtDNA in the ump1Delta deletion mutant, we have determined the level of reactive oxygen species (ROS) in the mutant cells and have found that they are exposed to endogenous oxidative stress. Furthermore, we show also that both cellular and intramitochondrial levels of Msh1p are significantly reduced in the mutant cells compared to the wild-type cells. We conclude, therefore, that both an increased ROS production and a markedly decreased level of Msh1p, a protein crucial for the repair of mtDNA, lead in S. cerevisiae cells with impaired proteasome activity to the increased instability of their mitochondrial genome.
Collapse
Affiliation(s)
- Ewa Malc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
20
|
Abstract
The mechanisms and rates by which genotypic and phenotypic variation is generated in opportunistic, eukaryotic pathogens during growth in hosts are not well understood. We evaluated genomewide genetic and phenotypic evolution in Candida albicans, an opportunistic fungal pathogen of humans, during passage through a mouse host (in vivo) and during propagation in liquid culture (in vitro). We found slower population growth and higher rates of chromosome-level genetic variation in populations passaged in vivo relative to those grown in vitro. Interestingly, the distribution of long-range loss of heterozygosity (LOH) and chromosome rearrangement events across the genome differed for the two growth environments, while rates of short-range LOH were comparable for in vivo and in vitro populations. Further, for the in vivo populations, there was a positive correlation of cells demonstrating genetic alterations and variation in colony growth and morphology. For in vitro populations, no variation in growth phenotypes was detected. Together, our results demonstrate that passage through a living host leads to slower growth and higher rates of genomic and phenotypic variation compared to in vitro populations. Results suggest that the dynamics of population growth and genomewide rearrangement contribute to the maintenance of a commensal and opportunistic life history of C. albicans.
Collapse
|
21
|
Abstract
Mitochondrial DNA is thought to be especially prone to oxidative damage by reactive oxygen species generated through electron transport during cellular respiration. This damage is mitigated primarily by the base excision repair (BER) pathway, one of the few DNA repair pathways with confirmed activity on mitochondrial DNA. Through genetic epistasis analysis of the yeast Saccharomyces cerevisiae, we examined the genetic interaction between each of the BER proteins previously shown to localize to the mitochondria. In addition, we describe a series of genetic interactions between BER components and the MutS homolog MSH1, a respiration-essential gene. We show that, in addition to their variable effects on mitochondrial function, mutant msh1 alleles conferring partial function interact genetically at different points in mitochondrial BER. In addition to this separation of function, we also found that the role of Msh1p in BER is unlikely to be involved in the avoidance of large-scale deletions and rearrangements.
Collapse
|
22
|
Kaniak A, Dzierzbicki P, Rogowska AT, Malc E, Fikus M, Ciesla Z. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:318-29. [DOI: 10.1016/j.dnarep.2008.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/02/2008] [Accepted: 11/05/2008] [Indexed: 01/01/2023]
|
23
|
Loss of the mitochondrial nucleoid protein, Abf2p, destabilizes repetitive DNA in the yeast mitochondrial genome. Genetics 2008; 181:331-4. [PMID: 19015543 DOI: 10.1534/genetics.108.095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss of Abf2p, an abundant mitochondrial nucleoid-associated protein, results in increased mitochondrial frameshifts and direct-repeat mediated deletions but has no effect on the rate of mitochondrial point mutations. The instability of repeated sequences in this strain may be linked to the loss of mitochondrial DNA in abf2-Delta strains.
Collapse
|
24
|
Kalifa L, Sia EA. Analysis of Rev1p and Pol zeta in mitochondrial mutagenesis suggests an alternative pathway of damage tolerance. DNA Repair (Amst) 2007; 6:1732-9. [PMID: 17689152 PMCID: PMC2129123 DOI: 10.1016/j.dnarep.2007.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/08/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
Ultraviolet light is a potent DNA damaging agent that induces bulky lesions in DNA which block the replicative polymerases. In order to ensure continued DNA replication and cell viability, specialized translesion polymerases bypass these lesions at the expense of introducing mutations in the nascent DNA strand. A recent study has shown that the N-terminal sequences of the nuclear translesion polymerases Rev1p and Pol zeta can direct GFP to the mitochondrial compartment of Saccharomyces cerevisiae. We have investigated the role of these polymerases in mitochondrial mutagenesis. Our analysis of mitochondrial DNA point mutations, microsatellite instability, and the spectra of mitochondrial mutations indicate that these translesion polymerases function in a less mutagenic pathway in the mitochondrial compartment than they do in the nucleus. Mitochondrial phenotypes resulting from the loss of Rev1p and Pol zeta suggest that although these polymerases are responsible for the majority of mitochondrial frameshift mutations, they do not greatly contribute to mitochondrial DNA point mutations. Analysis of spontaneous mitochondrial DNA point mutations suggests that Pol zeta may play a role in general mitochondrial DNA maintenance. In addition, we observe a 20-fold increase in UV-induced mitochondrial DNA point mutations in rev deficient strains. Our data provides evidence for an alternative damage tolerance pathway that is specific to the mitochondrial compartment.
Collapse
Affiliation(s)
- Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | | |
Collapse
|
25
|
Cheng X, Dunaway S, Ivessa AS. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Mitochondrion 2006; 7:211-22. [PMID: 17257907 DOI: 10.1016/j.mito.2006.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 11/19/2022]
Abstract
Mitochondrial DNA (mtDNA) is highly susceptible to oxidative and chemically induced damage, and these insults lead to a number of diseases. In Saccharomyces cerevisiae, the DNA helicase Pif1p is localized to the nucleus and mitochondria. We show that pif1 mutant cells are sensitive to ethidium bromide-induced damage and this mtDNA is prone to fragmentation. We also show that Pif1p associates with mtDNA. In pif1 mutant cells, mtDNA breaks at specific sites that exhibit Pif1-dependent recombination. We conclude that Pif1p participates in the protection from double-stranded (ds) DNA breaks or alternatively in the repair process of dsDNA breaks in mtDNA.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
26
|
Zaegel V, Guermann B, Le Ret M, Andrés C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P. The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. THE PLANT CELL 2006; 18:3548-63. [PMID: 17189341 PMCID: PMC1785405 DOI: 10.1105/tpc.106.042028] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant mitochondrial genomes exist in a natural state of heteroplasmy, in which substoichiometric levels of alternative mitochondrial DNA (mtDNA) molecules coexist with the main genome. These subgenomes either replicate autonomously or are created by infrequent recombination events. We found that Arabidopsis thaliana OSB1 (for Organellar Single-stranded DNA Binding protein1) is required for correct stoichiometric mtDNA transmission. OSB1 is part of a family of plant-specific DNA binding proteins that are characterized by a novel motif that is required for single-stranded DNA binding. The OSB1 protein is targeted to mitochondria, and promoter-beta-glucuronidase fusion showed that the gene is expressed in budding lateral roots, mature pollen, and the embryo sac of unfertilized ovules. OSB1 T-DNA insertion mutants accumulate mtDNA homologous recombination products and develop phenotypes of leaf variegation and distortion. The mtDNA rearrangements occur in two steps: first, homozygous mutants accumulate subgenomic levels of homologous recombination products; second, in subsequent generations, one of the recombination products becomes predominant. After the second step, the process is no longer reversible by backcrossing. Thus, OSB1 participates in controlling the stoichiometry of alternative mtDNA forms generated by recombination. This regulation could take place in gametophytic tissues to ensure the transmission of a functional mitochondrial genome.
Collapse
Affiliation(s)
- Vincent Zaegel
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|