1
|
Luong NC, Kawamura H, Ikeda H, Roppongi RT, Shibata A, Hu J, Jiang JG, Yu DS, Held KD. ATR signaling controls the bystander responses of human chondrosarcoma cells by promoting RAD51-dependent DNA repair. Int J Radiat Biol 2024; 100:724-735. [PMID: 38442236 PMCID: PMC11060906 DOI: 10.1080/09553002.2024.2324479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Radiation-induced bystander effect (RIBE) frequently is seen as DNA damage in unirradiated bystander cells, but the repair processes initiated in response to that DNA damage are not well understood. RIBE-mediated formation of micronuclei (MN), a biomarker of persistent DNA damage, was previously observed in bystander normal fibroblast (AG01522) cells, but not in bystander human chondrosarcoma (HTB94) cells. The molecular mechanisms causing this disparity are not clear. Herein, we investigate the role of DNA repair in the bystander responses of the two cell lines. METHODS Cells were irradiated with X-rays and immediately co-cultured with un-irradiated cells using a trans-well insert system in which they share the same medium. The activation of DNA damage response (DDR) proteins was detected by immunofluorescence staining or Western blotting. MN formation was examined by the cytokinesis-block MN assay, which is a robust method to detect persistent DNA damage. RESULTS Immunofluorescent foci of γH2AX and 53BP1, biomarkers of DNA damage and repair, revealed a greater capacity for DNA repair in HTB94 cells than in AG01522 cells in both irradiated and bystander populations. Autophosphorylation of ATR at the threonine 1989 site was expressed at a greater level in HTB94 cells compared to AG01522 cells at the baseline and in response to hydroxyurea treatment or exposure to 1 Gy of X-rays. An inhibitor of ATR, but not of ATM, promoted MN formation in bystander HTB94 cells. In contrast, no effect of either inhibitor was observed in bystander AG01522 cells, indicating that ATR signaling might be a pivotal pathway to preventing the MN formation in bystander HTB94 cells. Supporting this idea, we found an ATR-dependent increase in the fractions of bystander HTB94 cells with pRPA2 S33 and RAD51 foci. A blocker of RAD51 facilitated MN formation in bystander HTB94 cells. CONCLUSION Our results indicate that HTB94 cells were likely more efficient in DNA repair than AG01522 cells, specifically via ATR signaling, which inhibited the bystander signal-induced MN formation. This study highlights the significance of DNA repair efficiency in bystander cell responses.
Collapse
Affiliation(s)
- Nho Cong Luong
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma University, Gunma, Japan
| | - Hiroko Ikeda
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Department of Life Sciences, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Reiko T Roppongi
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Jiaxuan Hu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn D Held
- Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
3
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
4
|
Parisi S, Napoli I, Lillo S, Cacciola A, Ferini G, Iatì G, Pontoriero A, Tamburella C, Davì V, Pergolizzi S. Spine eburnation in a metastatic lung cancer patient treated with immunotherapy and radiotherapy. The first case report of bystander effect on bone. J Oncol Pharm Pract 2021; 28:237-241. [PMID: 34233544 DOI: 10.1177/10781552211027348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Metastatic non-small cell lung cancer (NSCLC) is nowadays treated with a multimodal therapeutic approach including immunotherapy, targeted therapy and radiotherapy. Radiation therapy, in addition to immune checkpoint inhibitors, gives rise to a particular radiobiological effect known as "bystander effect" consisting of the radiation-induced damage in nearby unirradiated cells. CASE REPORT We report a case of a 79-year-old female patient with stage IV NSCLC treated with concomitant immuno-radiotherapy who showed a bystander effect on bone.Management and outcome: Primary tumour biopsy revealed an adenocarcinoma with a PDL1 expression >50%, while staging exams showed a right pulmonary lesion with a partial involvement of the contiguous rib and a single brain metastasis. The patient refused chemotherapy, so that Pembrolizumab 2 mg/Kg was administered every 3 weeks. After two administrations, the single brain metastasis was treated using stereotactic radiosurgery while the site of primitive lung cancer received an 8 Gy-single fraction 3 D-conformal radiotherapy. Three months after irradiation a chest CT showed a radiological remission of about 10% of the GTV and a partial eburnation of the vertebra located nearby the target volume. The CT images of a PET/CT at six months showed a complete vertebral eburnation. At the last follow-up, the patient was free of disease (brain MRI, spinal MRI and PET/CT). DISCUSSION The present case alerts for unusual side effects provoked by bystander phenomenon in patients treated with a combination of immunotherapy and irradiation. Immune activation exacerbates the bystander effect causing normal tissues toxicities beyond what immunotherapies are causing by themselves.
Collapse
Affiliation(s)
- Silvana Parisi
- Fondazione Istituto Oncologico del Mediterraneo, Catania, Italy
| | - Ilenia Napoli
- Radiation Oncology Unit - Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Sara Lillo
- Radiation Oncology Unit - Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Radiation Oncology Unit - Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianluca Ferini
- REM Radioterapia srl, Fondazione Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | - Giuseppe Iatì
- Radiation Oncology Unit, A.O.U. "G. Martino", Messina, Italy
| | | | - Consuelo Tamburella
- Radiation Oncology Unit - Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Valerio Davì
- Radiation Oncology Unit - Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit - Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy.,Radiation Oncology Unit, A.O.U. "G. Martino", Messina, Italy
| |
Collapse
|
5
|
Panzarini E, Vergallo C, Fanizzi FP, Mariano S, Tata AM, Dini L. The dialogue between died and viable cells: in vitro and in vivo bystander effects and 1H-NMR-based metabolic profiling of soluble factors. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The bystander effect (BE) is an important biological phenomenon that induces damages in distant and not directly affected by a chemical/physical stress cells. This effect, well known in ionizing radiation treatment, relies on reactive signals released by exposed cells and transmitted via cell–cell interaction or culture medium. In this study, cycloheximide (CHX)-induced apoptotic U937 cells and untreated THP-1 cells were chosen to investigate the chemical-induced BE. The effects of apoptotic U937 cells culture medium, Conditioned Medium (CM), on THP-1 cells were evaluated by morphological and immunohistochemical analysis performed by light microscopy; 1D 1H and 2D J-resolved (JRES) NMR metabolomic analysis has been used to characterize the molecules involved in the BE. In summary, this study indicates that: CM of CHX-treated U937 cells induces a time-dependent induction of toxicity, probably apoptotic cell death, and macrophagic differentiation in THP-1 cells; CM contains different metabolites respect fresh culture medium; CM recruits in vivo activated fibroblasts, endothelial cells, macrophages and mononuclear inflammatory cells in rat calf muscles. These data suggest that CHX exposed cells could cause BE through the release, during the apoptotic process, of soluble factors into the medium that could be exploited in anticancer protocols.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Cristian Vergallo
- Department of Pharmacy , University of Chieti-Pescara “G. D’Annunzio” , Chieti , Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
- CNR-Nanotec , Lecce , Italy
| |
Collapse
|
6
|
Ghosh S, Ghosh A, Krishna M. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:39-45. [PMID: 26653982 DOI: 10.1016/j.mrgentox.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types.
Collapse
Affiliation(s)
- Somnath Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Anu Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Malini Krishna
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
7
|
Marín A, Martín M, Liñán O, Alvarenga F, López M, Fernández L, Büchser D, Cerezo L. Bystander effects and radiotherapy. Rep Pract Oncol Radiother 2014; 20:12-21. [PMID: 25535579 DOI: 10.1016/j.rpor.2014.08.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.
Collapse
Affiliation(s)
- Alicia Marín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Margarita Martín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Olga Liñán
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Felipe Alvarenga
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Mario López
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Fernández
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - David Büchser
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Cerezo
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
8
|
Belchior A, Gil OM, Almeida P, Vaz P. Dose and Time Dependence of Targeted and Untargeted Effects after Very Low Doses of α-Particle Irradiation of Human Lung Cancer Cells. Dose Response 2012; 11:431-46. [PMID: 23983669 DOI: 10.2203/dose-response.12-036.belchior] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Understanding the effects to human health resulting from exposure to low doses of ionizing radiation is a persisting challenge. No one questions the deleterious consequences for humans following exposure to high radiation doses; however, in the low dose range, the complex and to some extent unknown cellular responses raise important misgivings about the resulting protective or potentially detrimental effects. Bystander effects are involved in low dose exposures, being characterized by the appearance in unirradiated cells of a cellular damage associated with direct radiation exposure. The purpose of our work was to assess, by using clonogenic and micronuclei assays, the dose and time dependence of the bystander response after cells exposure to very low doses of α-particles and to evaluate its importance in the overall induced damage. The study includes an irradiated cells culture, a medium transfer culture with non-irradiated cells and a culture with irradiated cells after centrifugation. We observed a non-negligible contribution of the bystander effects in the overall cellular damage. Low-dose hyper-sensitivity was observed for medium transfer and irradiated cells after centrifugation cultures. Delayed and earlier cellular damage were similar in almost all experiments, suggesting an effectiveness of irradiated medium to induce a bystander response soon after irradiation.
Collapse
Affiliation(s)
- A Belchior
- IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, Km 139.7, 2695-006 Bobadela LRS, Portugal, and Universidade de Lisboa, Faculdade de Ciências, Instituto de Biofísica e Engenharia Biomédica (IBEB), Campo Grande, P-1749-016 Lisboa, Portugal
| | | | | | | |
Collapse
|
9
|
Fede C, Selvestrel F, Compagnin C, Mognato M, Mancin F, Reddi E, Celotti L. The toxicity outcome of silica nanoparticles (Ludox®) is influenced by testing techniques and treatment modalities. Anal Bioanal Chem 2012; 404:1789-802. [PMID: 23053168 PMCID: PMC3462312 DOI: 10.1007/s00216-012-6246-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/26/2012] [Accepted: 07/03/2012] [Indexed: 12/21/2022]
Abstract
We analyzed the influence of the kind of cytotoxicity test and its application modality in defining the level of hazard of the in vitro exposures to nanostructures. We assessed the cytotoxicity induced by two different Ludox® silica nanoparticles (NPs), AS30 and SM30, on three human cell lines, CCD-34Lu, A549, and HT-1080. Dynamic light scattering measurements showed particle agglomeration when NPs are diluted in culture medium supplemented with fetal calf serum. We examined the impact of such particle aggregation on the cytotoxicity by exposing the cells to NPs under different treatment modalities: short incubation (2 h) in serum-free medium or long incubation (24–72 h) in serum-containing medium. Under this last modality, NP suspensions tended to form aggregates and were toxic at concentrations five- to tenfold higher than in serum-free medium. The results of cell survival varied considerably when the long-term clonogenic assay was performed to validate the data of the short-term MTS assay. Indeed, the half maximum effective concentrations (EC50) in all the three cell lines were four- to fivefold lower when calculated from the data of clonogenic assay than of MTS. Moreover, the mechanisms of NP toxicity were cell-type-specific, showing that CCD-34Lu are prone to the induction of plasma membrane damages and HT-1080 are prone to DNA double-strand break and apoptosis induction. Taken together, our results demonstrate that the choice of testing strategy and treatment conditions plays an important role in assessing the in vitro toxicity of NPs. ![]()
Collapse
Affiliation(s)
- Caterina Fede
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Vinnikov V, Lloyd D, Finnon P. Bystander apoptosis in human cells mediated by irradiated blood plasma. Mutat Res 2012; 731:107-116. [PMID: 22230196 DOI: 10.1016/j.mrfmmm.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 10/11/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24h at 37°C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2±1.8% in plasma-free cultures, 21.6±1.1% in cultures treated with plasma from unirradiated blood, 20.2±1.4% in cultures with plasma from blood given 2-4Gy and 16.7±3.2% in cultures with plasma from blood given 6-10Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.
Collapse
|
11
|
Chinnadurai M, Chidambaram S, Ganesan V, Baraneedharan U, Sundaram L, Paul SFD, Venkatachalam P. Bleomycin, neocarzinostatin and ionising radiation-induced bystander effects in normal diploid human lung fibroblasts, bone marrow mesenchymal stem cells, lung adenocarcinoma cells and peripheral blood lymphocytes. Int J Radiat Biol 2011; 87:673-82. [PMID: 21599612 DOI: 10.3109/09553002.2010.549536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine whether the bystander effects induced by chemotherapeutic agents are similar to those induced by ionising radiation and to analyse the cell dependency, if any, in different human cell types such as normal lung fibroblasts (WI-38), human bone marrow mesenchymal stem cells (hBMSC), lung adenocarcinoma (A-549, NCI-H23) and peripheral blood lymphocytes (PBL). MATERIALS AND METHODS The cells mentioned above were exposed to two different concentrations of bleomycin (BLM) and neocarzinostatin (NCS) and to X-irradiation. Co-culture methodology was adopted to study the in vitro bystander effects. DNA damage was measured using a micronucleus (MN) assay as an endpoint to study the bystander response. High performance liquid chromatography (HPLC) was performed to rule out any residual activity of BLM and NCS. To further investigate if this bystander response is mediated through reactive oxygen species (ROS), the bystander cells were pretreated with dimethyl sulphoxide (DMSO), an ROS scavenger, and co-cultured with cells exposed to BLM. RESULTS Bystander response was observed in all five types of human cells (WI-38, hBMSC, NCI-H23, A-549 and PBL) co-cultured with exposed cells. While all cell types showed a bystander response, undifferentiated hBMSC and PBL showed a higher magnitude of bystander response. A reduction in the MN frequency was observed in co-cultured hBMSC and PBL pretreated with DMSO. CONCLUSION These results suggest that the chemotherapeutic agents, BLM and NCS, induce bystander response which is similar to that induced by radiation. Furthermore, it is observed that the bystander effect is independent of the cell type studied. Our results further support the involvement of ROS in mediating the bystander response induced by BLM.
Collapse
Affiliation(s)
- Mani Chinnadurai
- Department of Human Genetics, College of Biomedical Science Technology and Research, Sri Ramachandra University , Porur, Chennai , India
| | | | | | | | | | | | | |
Collapse
|
12
|
Induction of the bystander effect in Chinese hamster V79 cells by actinomycin D. Toxicol Lett 2011; 202:178-85. [DOI: 10.1016/j.toxlet.2011.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/23/2022]
|
13
|
Brehwens K, Staaf E, Haghdoost S, González AJ, Wojcik A. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiat Res 2010; 173:283-9. [PMID: 20199213 DOI: 10.1667/rr2012.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current international paradigm on the biological effects of radiation is based mainly on the effects of dose with some consideration for the dose rate. No allowance has been made for the potential influence of a changing dose rate (second derivative of dose), and the biological effects of exposing cells to changing dose rates have never been analyzed. This paper provides evidence that radiation effects in cells may depend on temporal changes in the dose rate. In these experiments, cells were moved toward or away from an X-ray source. The speed of movement, the time of irradiation, and the temperature during exposure were controlled. Here we report the results of the first experiments with TK6 cells that were exposed at a constant dose rate, at an increasing dose rate, or at a decreasing dose rate. The average dose rate and the total dose were same for all samples. Micronuclei were scored as the end point. The results show that the level of cytogenetic damage was higher in cells exposed to a decreasing dose rate compared to both an increasing and a constant dose rate. This finding may suggest that the second derivative of dose may influence radiation risk estimates, and the results should trigger further studies on this issue.
Collapse
Affiliation(s)
- Karl Brehwens
- Centre for Radiation Protection Research, GMT Department, Stockholm University, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
14
|
Asur R, Balasubramaniam M, Marples B, Thomas RA, Tucker JD. Bystander effects induced by chemicals and ionizing radiation: evaluation of changes in gene expression of downstream MAPK targets. Mutagenesis 2010; 25:271-9. [PMID: 20130020 DOI: 10.1093/mutage/geq003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radiation-induced bystander effects have been evaluated extensively, including the involvement of the mitogen-activated protein kinase (MAPK) pathways. However, few studies have examined the ability of chemicals to induce bystander effects, and the molecular mechanisms involved in chemical bystander effects have not been investigated. We have previously demonstrated the ability of mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cells. Here, we demonstrate changes in the expression of MAPK target genes following bystander exposure to MMC or PHL or ionizing radiation. The expression changes of 18 genes, which code for proteins that are downstream targets of MAPK proteins, were evaluated at various time points following direct or bystander exposure to MMC, PHL and ionizing radiation. The 18 genes were analysed as groups belonging to one of the seven possible combinations of the three MAPK pathways. We observed statistically significant changes in expression of several genes following exposure to each agent. However, when the expression changes were analysed in the bystander cells alone, significant increases in expression of MAPK target genes were observed for MMC- and radiation-induced bystander effects but not for PHL. PHL is an acknowledged radiomimetic agent; however, in the present study, PHL responses did not resemble those of radiation. These results provide evidence for bystander-induced changes in MAPK proteins and downstream targets and suggest that the bystander effects are a part of a general stress response.
Collapse
Affiliation(s)
- Rajalakshmi Asur
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Suite 1370, Detroit, MI 48202-3917, USA
| | | | | | | | | |
Collapse
|
15
|
Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction. Mutat Res 2009; 669:131-8. [PMID: 19540247 DOI: 10.1016/j.mrfmmm.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2Gy, 5Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0Gy) at 24h. There was no significant difference between 2Gy and 5Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p=0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p=0.02) and mitochondrial membrane potential increased (p=0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring mitochondrial function through overexpression of MnSOD significantly rescues nuclear instability events; anaphase bridges and telomere length shortening.
Collapse
|
16
|
Asur RS, Thomas RA, Tucker JD. Chemical induction of the bystander effect in normal human lymphoblastoid cells. Mutat Res 2009; 676:11-6. [PMID: 19486859 DOI: 10.1016/j.mrgentox.2009.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
Many studies investigating the bystander effect have used ionizing radiation to evaluate this phenomenon, whereas very few have determined whether genotoxic chemicals are also capable of inducing this effect. Here, we show that two such chemicals, mitomycin C, a bifunctional alkylating agent and phleomycin, a glycopeptide antibiotic of the bleomycin family, cause normal human B lymphoblastoid cells to produce media soluble factors that induce a bystander effect in unexposed cells. Ionizing radiation was used in parallel experiments to verify the existence of the bystander effect in these cells. Micronuclei in Cytochalasin B-blocked binucleated cells were used as the endpoint. Conditioned media obtained from cells exposed to mitomycin C induced a 1.5-3 fold increase, while conditioned media from phleomycin induced a 1.5-4 fold increase, and conditioned media from irradiated cells induced a 2-8 fold increase in micronuclei. We conclude that the bystander effect is not restricted to ionizing radiation, suggesting it may be a part of a general cellular stress response.
Collapse
Affiliation(s)
- Rajalakshmi S Asur
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202-3917, USA
| | | | | |
Collapse
|
17
|
DNA-PKcs and ATM influence generation of ionizing radiation-induced bystander signals. Oncogene 2008; 27:6761-9. [DOI: 10.1038/onc.2008.276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|