1
|
Kato TA. Mitotic Shake-Off and Cell Cycle Synchronization. Methods Mol Biol 2025; 2933:81-85. [PMID: 40418477 DOI: 10.1007/978-1-0716-4574-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The mitotic shake-off method is a laboratory technique used to isolate cells that are actively undergoing mitosis from a population of cells in culture. During mitosis, cells undergo a series of characteristic changes. After the cells have been induced to enter mitosis, they are gently dislodged from the culture vessel using a mild mechanical agitation technique, such as shaking or tapping. Since cells in mitosis typically round up and detach from the substrate as they prepare to divide, they are more easily released from the culture surface compared to cells in other phases of the cell cycle. Those isolated mitotic cells can be transferred to other cell culture vessels to release cell cycle progression. Mitotic cells go through next cell cycle phases with time. Using this method, cell cycle-dependent cellular activity such as cell cycle-specific protein expression and activation, and cell cycle-specific sensitivity to agents, can be carried out. Since this method is completely drug free, it has series of benefits including no drug cost and no potential toxicity from drug exposure. This chapter introduces cellular synchronization technique by mitotic shake-off method.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Awad MM, Chailapakul P, Brown MA, Kato TA. Mechanisms of piperonyl butoxide cytotoxicity and its enhancement with imidacloprid and metals in Chinese hamster ovary cells. Mutat Res 2024; 828:111853. [PMID: 38401335 DOI: 10.1016/j.mrfmmm.2024.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
The widespread use of chemicals and the presence of chemical and metal residues in various foods, beverages, and other consumables have raised concerns about the potential for enhanced toxicity. This study assessed the cytotoxic effects of Piperonyl butoxide (PBO) and its enhancement by combination with major contamination chemicals including Imidacloprid and metals, using different cytotoxic and genotoxic assays in Chinese hamster ovary (CHO) cells. PBO exhibited elevated cytotoxic effects in poly (ADP-ribose) polymerase (PARP) deficient CHO mutants but not in Glutathione S-transferase deficient CHO mutants. PBO cytotoxicity was enhanced by PARP inhibitor, Olaparib. PBO cytotoxicity was also enhanced with co-exposure to Imidacloprid, Lead Chloride, or Sodium Selenite. PBO induces γH2AX foci formation and apoptosis. The induction of DNA damage markers was elevated with PARP deficiency and co-exposure to Imidacloprid, Lead Chloride, or Sodium Selenite. Moreover, PBO triggers to form etch pits on plastic surfaces. These results revealed novel mechanisms of PBO cytotoxicity associated with PARP and synergistic effects with other environmental pollutants. The toxicological mechanisms underlying exposure to various combinations at different concentrations, including concentrations below the permitted limit of intake or the level of concern, require further study.
Collapse
Affiliation(s)
- Mai M Awad
- Department of Ecosystem Science and Sustainability, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1052, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1052, USA
| | - Piyawan Chailapakul
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1052, USA
| | - Mark A Brown
- Department of Clinical Sciences, Graduate Degree Program in Ecology, and Epidemiology Section, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1052, USA
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1052, USA.
| |
Collapse
|
3
|
Buglewicz DJ, Buglewicz JKF, Hirakawa H, Kato TA, Liu C, Fang Y, Kusumoto T, Fujimori A, Sai S. The impact of DNA double-strand break repair pathways throughout the carbon ion spread-out Bragg peak beam. Cancer Sci 2023; 114:4548-4557. [PMID: 37786999 PMCID: PMC10727999 DOI: 10.1111/cas.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
Following carbon ion beam irradiation in mammalian cells, such as used in carbon ion radiotherapy (CIRT), it has been suggested that the balance between whether nonhomologous end joining (NHEJ) or homologous recombination (HR) is utilized depends on the DNA double-strand break (DSB) complexity. Here, we quantified DSB distribution and identified the importance of each DSB repair pathway at increasing depths within the carbon ion spread-out Bragg peak (SOBP) beam range. Chinese hamster ovary (CHO) cell lines were irradiated in a single biological system capable of incorporating the full carbon ion SOBP beam range. Cytotoxicity and DSB distribution/repair kinetics were examined at increasing beam depths using cell survival as an endpoint and γ-H2AX as a surrogate marker for DSBs. We observed that proximal SOBP had the highest number of total foci/cell and lowest survival, while distal SOBP had the most dense tracks. Both NHEJ- and HR-deficient CHO cells portrayed an increase in radiosensitivity throughout the full carbon beam range, although NHEJ-deficient cells were the most radiosensitive cell line from beam entrance up to proximal SOBP and demonstrated a dose-dependent decrease in ability to repair DSBs. In contrast, HR-deficient cells had the greatest ratio of survival fraction at entrance depth to the lowest survival fraction within the SOBP and demonstrated a linear energy transfer (LET)-dependent decrease in ability to repair DSBs. Collectively, our results provide insight into treatment planning and potential targets to inhibit, as HR was a more beneficial pathway to inhibit than NHEJ to enhance the cell killing effect of CIRT in targeted tumor cells within the SOBP while maintaining limited unwanted damage to surrounding healthy cells.
Collapse
Affiliation(s)
- Dylan J. Buglewicz
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | | | - Hirokazu Hirakawa
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Cuihua Liu
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - YaQun Fang
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Tamon Kusumoto
- Department of Radiation Measurement and Dose Assessment, Institute of Radiological SciencesNational Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Akira Fujimori
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| | - Sei Sai
- Department of Charged Particle Therapy ResearchInstitute of Quantum Medical Science, National Institutes of Quantum Science and Technology (QST)ChibaJapan
| |
Collapse
|
4
|
Yang H, Huebner K, Hampel C, Erlenbach-Wuensch K, Selvamani SB, Shukla V, Geppert CI, Hartmann A, Mahadevan V, Schneider-Stock R. ATF2 loss promotes 5-FU resistance in colon cancer cells via activation of the ATR-Chk1 damage response pathway. BMC Cancer 2023; 23:480. [PMID: 37237279 DOI: 10.1186/s12885-023-10940-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. METHODS/RESULTS For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53-/- cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. CONCLUSIONS We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2.
Collapse
Affiliation(s)
- Hao Yang
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Kerstin Huebner
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Chuanpit Hampel
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Selva Babu Selvamani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Vikas Shukla
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany
| | | | - Regine Schneider-Stock
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany.
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany.
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany.
| |
Collapse
|
5
|
Sitmukhambetov S, Dinh B, Lai Y, Banigan EJ, Pan Z, Jia X, Chi Y. Development and implementation of a metaphase DNA model for ionizing radiation induced DNA damage calculation. Phys Med Biol 2022; 68:10.1088/1361-6560/aca5ea. [PMID: 36533598 PMCID: PMC9969557 DOI: 10.1088/1361-6560/aca5ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Objective. To develop a metaphase chromosome model representing the complete genome of a human lymphocyte cell to support microscopic Monte Carlo (MMC) simulation-based radiation-induced DNA damage studies.Approach. We first employed coarse-grained polymer physics simulation to obtain a rod-shaped chromatid segment of 730 nm in diameter and 460 nm in height to match Hi-C data. We then voxelized the segment with a voxel size of 11 nm per side and connected the chromatid with 30 types of pre-constructed nucleosomes and 6 types of linker DNAs in base pair (bp) resolutions. Afterward, we piled different numbers of voxelized chromatid segments to create 23 pairs of chromosomes of 1-5μm long. Finally, we arranged the chromosomes at the cell metaphase plate of 5.5μm in radius to create the complete set of metaphase chromosomes. We implemented the model in gMicroMC simulation by denoting the DNA structure in a four-level hierarchical tree: nucleotide pairs, nucleosomes and linker DNAs, chromatid segments, and chromosomes. We applied the model to compute DNA damage under different radiation conditions and compared the results to those obtained with G0/G1 model and experimental measurements. We also performed uncertainty analysis for relevant simulation parameters.Main results. The chromatid segment was successfully voxelized and connected in bps resolution, containing 26.8 mega bps (Mbps) of DNA. With 466 segments, we obtained the metaphase chromosome containing 12.5 Gbps of DNA. Applying it to compute the radiation-induced DNA damage, the obtained results were self-consistent and agreed with experimental measurements. Through the parameter uncertainty study, we found that the DNA damage ratio between metaphase and G0/G1 phase models was not sensitive to the chemical simulation time. The damage was also not sensitive to the specific parameter settings in the polymer physics simulation, as long as the produced metaphase model followed a similar contact map distribution.Significance. Experimental data reveal that ionizing radiation induced DNA damage is cell cycle dependent. Yet, DNA chromosome models, except for the G0/G1 phase, are not available in the state-of-the-art MMC simulation. For the first time, we successfully built a metaphase chromosome model and implemented it into MMC simulation for radiation-induced DNA damage computation.
Collapse
Affiliation(s)
| | - Bryan Dinh
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Youfang Lai
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Edward J. Banigan
- Institute for Medical Engineering & Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zui Pan
- Graduate Nursing, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, MD 21231, USA
| | - Yujie Chi
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
6
|
Vasilyev SA, Savchenko RR, Belenko AA, Skryabin NA, Sleptsov AA, Fishman VS, Murashkina AA, Gribova OV, Startseva ZA, Sukhikh ES, Vertinskiy AV, Sukhikh LG, Serov OL, Lebedev IN. ADAMTS1 Is Differentially Expressed in Human Lymphocytes with Various Frequencies of Endogenous γH2AX Foci and Radiation-Induced Micronuclei. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542210012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Buglewicz DJ, Walsh KD, Hirakawa H, Kitamura H, Fujimori A, Kato TA. Biological Effects of Monoenergetic Carbon Ions and Their Associated Secondary Particles. Front Oncol 2022; 12:788293. [PMID: 35251969 PMCID: PMC8892238 DOI: 10.3389/fonc.2022.788293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the main factor behind carbon-ion radiation therapy (CIRT)-induced cell death. Nuclear interactions along the beam path between the primary carbon ions and targets result in nuclear fragmentation of carbon ions and recoiled particles. These secondary particles travel further distances past the Bragg peak to the tail region, leading to unwanted biological effects that may result in cytotoxicity in critical organs and secondary induced tumors following CIRT. Here, we confirmed that the density of the DSB distributions increases as the cell survival decreases at the Bragg peak and demonstrated that by visualizing DSBs, the various LET fragmentation ions and recoiled particles produced differences in their biological effects in the post-Bragg peak tail regions. This suggests that the density of the DSBs within the high-LET track structures, rather than only their presence, is important for inducing cell death. These results are essential for CIRT treatment planning to limit the amount of healthy cell damage and reducing both the late effect and the secondary tumor-associated risk.
Collapse
Affiliation(s)
- Dylan J. Buglewicz
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kade D. Walsh
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hirokazu Hirakawa
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hisashi Kitamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akira Fujimori
- Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Takamitsu A. Kato,
| |
Collapse
|
8
|
Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 2021; 40:e104509. [PMID: 33470420 PMCID: PMC8047440 DOI: 10.15252/embj.2020104509] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailong Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sanaa Jehi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, University of Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
Ovejero S, Bueno A, Sacristán MP. Working on Genomic Stability: From the S-Phase to Mitosis. Genes (Basel) 2020; 11:E225. [PMID: 32093406 PMCID: PMC7074175 DOI: 10.3390/genes11020225] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Abstract
DNA damage foci such as ionizing radiation-induced foci (IRIF) can visually distinguish the location and number of specific types of DNA damages. This method is widely used to detect DNA damage in interphase cells. These DNA damage foci can be also visualized on metaphase chromosomes. The technique has an advantage as it provides an easy method of quantifying chromosomal DNA damage. Radiation-induced DNA double strand breaks can be assessed for gamma-H2AX foci formation on metaphase chromosomes.Gamma-H2AX foci can be observed at the break point of chromosomes and can persist in newly repair chromosomes. Foci observation may be advantageous compared to classical cytogenetic analysis due to less time required for analysis. Metaphase DNA damage analysis can be also used for the estimation of DNA damage persistence in daughter cells and capacity of DNA repair. Not only DNA double strand breaks can be visualized, but also other types of DNA damage and modification such as oxidative damage, crosslinking, and methylation of DNA can be visualized with appropriate antibodies. This IRIF immunostaining technique can be combined with FISH analysis for the immunoFISH method.
Collapse
Affiliation(s)
- Chisato Omata
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
γH2AX prefers late replicating metaphase chromosome regions. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:114-121. [PMID: 30442336 DOI: 10.1016/j.mrgentox.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/20/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022]
Abstract
DNA damage response (DDR) constitutes a protein pathway to handle eukaryotic DNA lesions in the context of chromatin. DDR engages the recruitment of signaling, transducer, effector, chromatin modifiers and remodeling proteins, allowing cell cycle delay, DNA repair or induction of senescence or apoptosis. An early DDR-event includes the epigenetic phosphorylation of the histone variant H2AX on serine 139 of the C-termini, so-called gammaH2AX. GammaH2AX foci detected by immunolabeling on interphase nuclei have been largely studied; nonetheless gammaH2AX signals on mitotic chromosomes are less understood. The CHO9 cell line is a subclone of CHO (Chinese hamster ovary) cells with original and rearranged Z chromosomes originated during cell line transformation. As a result, homologous chromosome regions have been relocated in different Z-chromosomes. In a first quantitative analysis of gammaH2AX signals on immunolabeled mitotic chromosomes of cytocentrifuged metaphase spreads, we reported that gammaH2AX139 signals of both control and bleomycin-exposed cultures showed statistically equal distribution between CHO9 homologous chromosome regions, suggesting a possible dependence on the structure/function of chromatin. We have also demonstrated that bleomycin-induced gammaH2AX foci map preferentially to DNA replicating domains in CHO9 interphase nuclei. With the aim of understanding the role of gammaH2AX signals on metaphase chromosomes, the relation between 5-ethynyl-2'-deoxyuridine (EdU) labeled replicating chromosome regions and gammaH2AX signals in immunolabeled cytocentrifuged metaphase spreads from control and bleomycin-treated CHO9 cultures was analyzed in the present work. A quantitative analysis of colocalization between EdU and gammaH2AX signals based on the calculation of the Replication Related Damage Distribution Index (RDDI) on confocal metaphase images was performed. RDDI revealed a colocalization between EdU and gammaH2AX signals both in control and bleomycin-treated CHO9 metaphases, suggesting that replication may be involved in H2AX phosphorylation. The possible mechanisms implicated are discussed.
Collapse
|
12
|
Abstract
The correct duplication and transmission of genetic material to daughter cells is the primary objective of the cell division cycle. DNA replication and chromosome segregation present both challenges and opportunities for DNA repair pathways that safeguard genetic information. As a consequence, there is a profound, two-way connection between DNA repair and cell cycle control. Here, we review how DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity.
Collapse
|
13
|
Bakhoum SF, Kabeche L, Compton DA, Powell SN, Bastians H. Mitotic DNA Damage Response: At the Crossroads of Structural and Numerical Cancer Chromosome Instabilities. Trends Cancer 2017; 3:225-234. [PMID: 28718433 DOI: 10.1016/j.trecan.2017.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
DNA double-strand breaks (DSBs) prevent cells from entering mitosis allowing cells to repair their genomic damage. Little is known about the response to DSBs once cells have already committed to mitosis. Here, we review the genome-protective role of the mitotic DNA damage response (DDR) and evidence suggesting that its untimely activation induces chromosome segregation errors and paradoxically undermines genomic integrity. In contrast to normal cells, cancer cells coopt this pathway to propagate structural and numerical chromosomal instabilities. Cells derived from genomically unstable tumors exhibit evidence for a partially activated DDR during mitosis, which leads to ongoing chromosome segregation errors. Thus, a thorough understanding of the consequences of mitotic DNA damage is key to our ability to devise novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Lilian Kabeche
- Massachusetts General Hospital Cancer Center, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Duane A Compton
- Department of Biochemistry and the Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Holger Bastians
- Institute of Molecular Oncology, Section for Cellular Oncology, Goettingen Center for Molecular Biosciences (GZMB) and University Medical Center, University of Göttingen, D-37077 Goettingen, Germany
| |
Collapse
|
14
|
Hill MA, O'Neill P, McKenna WG. Comments on potential health effects of MRI-induced DNA lesions: quality is more important to consider than quantity. Eur Heart J Cardiovasc Imaging 2016; 17:1230-1238. [PMID: 27550664 PMCID: PMC5081138 DOI: 10.1093/ehjci/jew163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging (MRI) is increasingly being used in cardiology to detect heart disease and guide therapy. It is mooted to be a safer alternative to imaging techniques, such as computed tomography (CT) or coronary angiographic imaging. However, there has recently been an increased interest in the potential long-term health risks of MRI, especially in the light of the controversy resulting from a small number of research studies reporting an increase in DNA damage following exposure, with calls to limit its use and avoid unnecessary examination, according to the precautionary principle. Overall the published data are somewhat limited and inconsistent; the ability of MRI to produce DNA lesions has yet to be robustly demonstrated and future experiments should be carefully designed to optimize sensitivity and benchmarked to validate and assess reproducibility. The majority of the current studies have focussed on the initial induction of DNA damage, and this has led to comparisons between the reported induction of γH2AX and implied double-strand break (DSB) yields produced following MRI with induction by imaging techniques using ionizing radiation. However, γH2AX is not only a marker of classical double-ended DSB, but also a marker of stalled replication forks and in certain circumstances stalled DNA transcription. Additionally, ionizing radiation is efficient at producing complex DNA damage, unique to ionizing radiation, with an associated reduction in repairability. Even if the fields associated with MRI are capable of producing DNA damage, the lesions produced will in general be simple, similar to those produced by endogenous processes. It is therefore inappropriate to try and infer cancer risk by simply comparing the yields of γH2AX foci or DNA lesions potentially produced by MRI to those produced by a given exposure of ionizing radiation, which will generally be more biologically effective and have a greater probability of leading to long-term health effects. As a result, it is important to concentrate on more relevant downstream end points (e.g. chromosome aberration production), along with potential mechanisms by which MRI may lead to DNA lesions. This could potentially involve a perturbation in homeostasis of oxidative stress, modifying the background rate of endogenous DNA damage induction. In summary, what the field needs at the moment is more research and less fear mongering.
Collapse
Affiliation(s)
- M A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - P O'Neill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - W G McKenna
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
15
|
Martín M, Terradas M, Hernández L, Genescà A. γH2AX foci on apparently intact mitotic chromosomes: not signatures of misrejoining events but signals of unresolved DNA damage. Cell Cycle 2015; 13:3026-36. [PMID: 25486563 DOI: 10.4161/15384101.2014.947786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The presence of γH2AX foci on apparently intact mitotic chromosomes is controversial because they challenge the assumed relationship between γH2AX foci and DNA double-strand breaks (DSBs). In this work, we show that after irradiation during interphase, a variety of γH2AX foci are scored in mitotic cells. Surprisingly, approximately 80% of the γH2AX foci spread over apparently undamaged chromatin at Terminal or Interstitial positions and they can display variable sizes, thus being classified as Small, Medium and Big foci. Chromosome and chromatid breaks that reach mitosis are spotted with Big (60%) and Medium (30%) Terminal γH2AX foci, but very rarely are they signaled with Small γH2AX foci. To evaluate if Interstitial γH2AX foci might be signatures of misrejoining, an mFISH analysis was performed on the same slides. The results show that Interstitial γH2AX foci lying on apparently intact chromatin do not mark sites of misrejoining, and that misrejoined events were never signaled by a γH2AX foci during mitosis. Finally, when analyzing the presence of other DNA-damage response (DDR) factors we found that all γH2AX foci-regardless their coincidence with a visible break-always colocalized with MRE11, but not with 53BP1. This pattern suggests that these γH2AX foci may be hallmarks of both microscopically visible and invisible DNA damage, in which an active, although incomplete or halted DDR is taking place.
Collapse
Affiliation(s)
- Marta Martín
- a Department of Cell Biology, Immunology, and Neuroscience ; Autonomous University of Barcelona ; Barcelona , Spain
| | | | | | | |
Collapse
|
16
|
Preferential localization of γH2AX foci in euchromatin of retina rod cells after DNA damage induction. Chromosome Res 2013; 21:789-803. [PMID: 24323064 DOI: 10.1007/s10577-013-9395-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
DNA damage may lead to cell transformation, senescence, or death. Histone H2AX phosphorylation, immunodetected as γH2AX foci, is an early response to DNA damage persisting even after DNA repair. In cycling mammalian cells with canonical nuclear architecture, i.e., central euchromatin and peripheral heterochromatin, γH2AX foci map preferentially to euchromatin. Mice retina rods are G0 cells displaying an inverted nuclear architecture 28 days after birth (P28). Rod nuclei exhibit one or two central constitutive heterochromatin chromocenters encircled by facultative heterochromatin. Euchromatin resides at the nuclear periphery, extending to the equator in cells with two chromocenters. To assess the impact of chromatin relocation in the localization of DNA damage, γH2AX and TUNEL foci induced ex vivo by radiomimetic bleomycin were mapped in H3K4me3 immunolabeled P28 rod nuclei. A preferential localization of γH2AX foci in euchromatin was detected together with foci clustering. Besides, a decay of H3K4me3 signal at γH2AX foci sites was observed. TUNEL and γH2AX foci exhibited similar localization patterns in BLM-treated rod cells thus excluding curtailed access of anti-γH2AX antibodies to heterochromatin. Lack of γH2AX foci in rod chromocenters appears to be unrelated to the occurrence of mid-range foci movements. Foci clusters may arise through DNA double-strand break proximity, local non-directional chromatin movements or chromatin relaxation. H3K4me3 signal reduction at γH2AX foci could stem from local chromatin decondensation or downregulation of histone H4 methylation. The observed topology of DNA damage in retina-differentiated rods indicates that euchromatin is damage-prone, regardless of the canonical or inverted nuclear architecture of mammalian cells.
Collapse
|
17
|
Evaluation of the gamma-H2AX assay for radiation biodosimetry in a swine model. Int J Mol Sci 2013; 14:14119-35. [PMID: 23880859 PMCID: PMC3742235 DOI: 10.3390/ijms140714119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of large animal models to study both the extent and the health risk of ionizing radiation exposure in humans. One promising candidate for such a model is the minipig. Here, we evaluate the minipig for its potential in γ-H2AX-based biodosimetry after exposure to ionizing radiation using both Cs137 and Co60 sources. γ-H2AX foci were enumerated in blood lymphocytes and normal fibroblasts of human and porcine origin after ex vivo γ-ray irradiation. DNA double-strand break repair kinetics in minipig blood lymphocytes and fibroblasts, based on the γ-H2AX assay, were similar to those observed in their human counterparts. To substantiate the similarity observed between the human and minipig we show that minipig fibroblast radiosensitivity was similar to that observed with human fibroblasts. Finally, a strong γ-H2AX induction was observed in blood lymphocytes following minipig total body irradiation. Significant responses were detected 3 days after 1.8 Gy and 1 week after 3.8 and 5 Gy with residual γ-H2AX foci proportional to the initial radiation doses. These findings show that the Gottingen minipig provides a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans.
Collapse
|
18
|
Genet SC, Fujii Y, Maeda J, Kaneko M, Genet MD, Miyagawa K, Kato TA. Hyperthermia inhibits homologous recombination repair and sensitizes cells to ionizing radiation in a time- and temperature-dependent manner. J Cell Physiol 2013; 228:1473-81. [DOI: 10.1002/jcp.24302] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 11/28/2012] [Indexed: 01/07/2023]
|
19
|
Brooks C, Sheu T, Bridges K, Mason K, Kuban D, Mathew P, Meyn R. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer. Radiat Oncol 2012; 7:154. [PMID: 22967802 PMCID: PMC3494537 DOI: 10.1186/1748-717x-7-154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/25/2012] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor (PDGFR) which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. METHODS The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib's ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. RESULTS Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. CONCLUSIONS We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro. The fact that tumor growth delay was enhanced when sunitinib was given after radiotherapy was completed suggests that sunitinib may be acting on the irradiated tumor stroma and suppressing its ability to sustain regrowth of the irradiated tumor. Based on these preclinical findings, we suggest that the combination of sunitinib and radiation for the treatment of prostate cancer deserves further development.
Collapse
Affiliation(s)
- Colin Brooks
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- National University of Galway (NUIGalway), Galway, Ireland
| | - Tommy Sheu
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kathleen Bridges
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kathy Mason
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Deborah Kuban
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Paul Mathew
- Department of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| | - Raymond Meyn
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Grabham P, Bigelow A, Geard C. DNA damage foci formation and decline in two-dimensional monolayers and in three-dimensional human vessel models: Differential effects according to radiation quality. Int J Radiat Biol 2012; 88:493-500. [DOI: 10.3109/09553002.2012.679382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
McVean A, Kent S, Bakanov A, Hobbs T, Anderson R. Development and validation of 'AutoRIF': software for the automated analysis of radiation-induced foci. Genome Integr 2012; 3:1. [PMID: 22281239 PMCID: PMC3305396 DOI: 10.1186/2041-9414-3-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/26/2012] [Indexed: 01/23/2023] Open
Abstract
Background The quantification of radiation-induced foci (RIF) to investigate the induction and subsequent repair of DNA double strands breaks is now commonplace. Over the last decade systems specific for the automatic quantification of RIF have been developed for this purpose, however to ask more mechanistic questions on the spatio-temporal aspects of RIF, an automated RIF analysis platform that also quantifies RIF size/volume and relative three-dimensional (3D) distribution of RIF within individual nuclei, is required. Results A java-based image analysis system has been developed (AutoRIF) that quantifies the number, size/volume and relative nuclear locations of RIF within 3D nuclear volumes. Our approach identifies nuclei using the dynamic Otsu threshold and RIF by enhanced Laplacian filtering and maximum entropy thresholding steps and, has an application 'batch optimisation' process to ensure reproducible quantification of RIF. AutoRIF was validated by comparing output against manual quantification of the same 2D and 3D image stacks with results showing excellent concordance over a whole range of sample time points (and therefore range of total RIF/nucleus) after low-LET radiation exposure. Conclusions This high-throughput automated RIF analysis system generates data with greater depth of information and reproducibility than that which can be achieved manually and may contribute toward the standardisation of RIF analysis. In particular, AutoRIF is a powerful tool for studying spatio-temporal relationships of RIF using a range of DNA damage response markers and can be run independently of other software, enabling most personal computers to perform image analysis. Future considerations for AutoRIF will likely include more complex algorithms that enable multiplex analysis for increasing combinations of cellular markers.
Collapse
Affiliation(s)
- Andrew McVean
- Centre for Cell Chromosome Biology, Division of Biosciences, Brunel University, Uxbridge UB8 3PH, UK.
| | | | | | | | | |
Collapse
|
22
|
Komura JI, Ikehata H, Mori T, Ono T. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin. Exp Cell Res 2012; 318:623-31. [PMID: 22248875 DOI: 10.1016/j.yexcr.2012.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 12/27/2022]
Abstract
During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression.
Collapse
Affiliation(s)
- Jun-ichiro Komura
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
23
|
Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci U S A 2011; 109:443-8. [PMID: 22184222 DOI: 10.1073/pnas.1117849108] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The concept of DNA "repair centers" and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 μm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation.
Collapse
|
24
|
Okayasu R. Repair of DNA damage induced by accelerated heavy ions--a mini review. Int J Cancer 2011; 130:991-1000. [PMID: 21935920 DOI: 10.1002/ijc.26445] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022]
Abstract
Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents.
Collapse
Affiliation(s)
- Ryuichi Okayasu
- International Open Laboratory and Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| |
Collapse
|
25
|
Dronamraju R, Mason JM. MU2 and HP1a regulate the recognition of double strand breaks in Drosophila melanogaster. PLoS One 2011; 6:e25439. [PMID: 21966530 PMCID: PMC3179522 DOI: 10.1371/journal.pone.0025439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
Chromatin structure regulates the dynamics of the recognition and repair of DNA double strand breaks; open chromatin enhances the recruitment of DNA damage response factors, while compact chromatin is refractory to the assembly of radiation-induced repair foci. MU2, an orthologue of human MDC1, a scaffold for ionizing radiation-induced repair foci, is a widely distributed chromosomal protein in Drosophila melanogaster that moves to DNA repair foci after irradiation. Here we show using yeast 2 hybrid screens and co-immunoprecipitation that MU2 binds the chromoshadow domain of the heterochromatin protein HP1 in untreated cells. We asked what role HP1 plays in the formation of repair foci and cell cycle control in response to DNA damage. After irradiation repair foci form in heterochromatin but are shunted to the edge of heterochromatic regions an HP1-dependent manner, suggesting compartmentalized repair. Hydroxyurea-induced repair foci that form at collapsed replication forks, however, remain in the heterochromatic compartment. HP1a depletion in irradiated imaginal disc cells increases apoptosis and disrupts G2/M arrest. Further, cells irradiated in mitosis produced more and brighter repair foci than to cells irradiated during interphase. Thus, the interplay between MU2 and HP1a is dynamic and may be different in euchromatin and heterochromatin during DNA break recognition and repair.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - James M. Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Varès G, Wang B, Tanaka K, Kakimoto A, Eguchi-Kasai K, Nenoi M. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to low doses of heavy-ion radiation. Mutat Res 2011; 712:49-54. [PMID: 21540043 DOI: 10.1016/j.mrfmmm.2011.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/06/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
Adaptive response (AR) and bystander effect are two important phenomena involved in biological responses to low doses of ionizing radiation (IR). Furthermore, there is a strong interest in better understanding the biological effects of high-LET radiation. We previously demonstrated the ability of low doses of X-rays to induce an AR to challenging heavy-ion radiation [8]. In this study, we assessed in vitro the ability of priming low doses (0.01Gy) of heavy-ion radiation to induce a similar AR to a subsequent challenging dose (1-4Gy) of high-LET IR (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm) in TK6, AHH-1 and NH32 cells. Our results showed that low doses of high-LET radiation can induce an AR characterized by lower mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and faster DNA repair kinetics, in cells expressing p53.
Collapse
Affiliation(s)
- Guillaume Varès
- Radiation Risk Reduction Research Program, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Subtelomeric regions in mammalian cells are deficient in DNA double-strand break repair. DNA Repair (Amst) 2011; 10:536-44. [PMID: 21466975 DOI: 10.1016/j.dnarep.2011.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.
Collapse
|
28
|
Petrillo SK, Desmeules P, Truong TQ, Devine PJ. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol Appl Pharmacol 2011; 253:94-102. [PMID: 21439308 DOI: 10.1016/j.taap.2011.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 01/17/2023]
Abstract
Healthy oocytes are critical for producing healthy children, but little is known about whether or not oocytes have the capacity to identify and recover from injury. Using a model ovotoxic alkylating drug, cyclophosphamide (CPA), and its active metabolite, phosphoramide mustard (PM), we previously showed that PM (≥3μM) caused significant follicle loss in postnatal day 4 (PND4) mouse ovaries in vitro. We now investigate whether PM induces DNA damage in oocytes, examining histone H2AX phosphorylation (γH2AX), a marker of DNA double-strand breaks (DSBs). Exposure of cultured PND4 mouse ovaries to 3 and 0.1μM PM induced significant losses of primordial and small primary follicles, respectively. PM-induced γH2AX was observed predominantly in oocytes, in which foci of γH2AX staining increased in a concentration-dependent manner and peaked 18-24h after exposure to 3-10μMPM. Numbers of oocytes with ≥5 γH2AX foci were significantly increased both 1 and 8days after exposure to ≥1μMPM compared to controls. Inhibiting the kinases that phosphorylate H2AX significantly increased follicle loss relative to PM alone. In adult mice, CPA also induced follicle loss in vivo. PM also significantly decreased primordial follicle numbers (≥30μM) and increased γH2AX foci (≥3μM) in cultured PND4 Sprague-Dawley rat ovaries. Results suggest oocytes can detect PM-induced damage at or below concentrations which cause significant follicle loss, and there are quantitative species-specific differences in sensitivity. Surviving oocytes with DNA damage may represent an increased risk for fertility problems or unhealthy offspring.
Collapse
Affiliation(s)
- Stephanie K Petrillo
- Université du Québec, Institut national de la recherche scientifique, Institut Armand-Frappier, Laval, QC, Canada
| | | | | | | |
Collapse
|
29
|
Groesser T, Chang H, Fontenay G, Chen J, Costes SV, Helen Barcellos-Hoff M, Parvin B, Rydberg B. Persistence of γ-H2AX and 53BP1 foci in proliferating and non-proliferating human mammary epithelial cells after exposure to γ-rays or iron ions. Int J Radiat Biol 2011; 87:696-710. [PMID: 21271785 DOI: 10.3109/09553002.2010.549535] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate γ-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionising radiation under different cell culture conditions. MATERIAL AND METHODS HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. RESULTS Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced γ-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both γ-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after γ-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. CONCLUSIONS The disappearance of radiation-induced γ-H2AX and 53BP1 foci in HMEC has different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent γ-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double-strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodelling.
Collapse
Affiliation(s)
- Torsten Groesser
- Lawrence Berkeley National Laboratory, Life Sciences Division, Department of Cancer and DNA Damage Responses, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tucker JD. Chromosome translocations and assessing human exposure to adverse environmental agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:815-824. [PMID: 20213842 DOI: 10.1002/em.20561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article discusses the use of chromosome translocations for assessing adverse environmental exposure in humans. Translocations are a persistent biomarker of exposure and a biomarker of effect, making them the endpoint of choice for certain human exposure studies because they indicate a potential relationship between exposure and adverse health outcomes, particularly cancer and birth defects. Presented here are the different types of translocations, their origins and persistence, the strengths and limitations of using translocations for exposure assessments, the current state of the art for quantifying exposure including the importance of confounding effects, and the use of model organisms. This article concludes with an assessment of the future of translocation analyses.
Collapse
Affiliation(s)
- James D Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202-3917, USA.
| |
Collapse
|
31
|
Giunta S, Belotserkovskaya R, Jackson SP. DNA damage signaling in response to double-strand breaks during mitosis. ACTA ACUST UNITED AC 2010; 190:197-207. [PMID: 20660628 PMCID: PMC2930281 DOI: 10.1083/jcb.200911156] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dividing cells can sense DNA damage and initiate a primary response, but repair isn’t completed until the cells enter G1. The signaling cascade initiated in response to DNA double-strand breaks (DSBs) has been extensively investigated in interphase cells. Here, we show that mitotic cells treated with DSB-inducing agents activate a “primary” DNA damage response (DDR) comprised of early signaling events, including activation of the protein kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK), histone H2AX phosphorylation together with recruitment of mediator of DNA damage checkpoint 1 (MDC1), and the Mre11–Rad50–Nbs1 (MRN) complex to damage sites. However, mitotic cells display no detectable recruitment of the E3 ubiquitin ligases RNF8 and RNF168, or accumulation of 53BP1 and BRCA1, at DSB sites. Accordingly, we found that DNA-damage signaling is attenuated in mitotic cells, with full DDR activation only ensuing when a DSB-containing mitotic cell enters G1. Finally, we present data suggesting that induction of a primary DDR in mitosis is important because transient inactivation of ATM and DNA-PK renders mitotic cells hypersensitive to DSB-inducing agents.
Collapse
Affiliation(s)
- Simona Giunta
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, England, UK
| | | | | |
Collapse
|
32
|
McArt DG, McKerr G, Saetzler K, Howard CV, Downes CS, Wasson GR. Comet sensitivity in assessing DNA damage and repair in different cell cycle stages. Mutagenesis 2010; 25:299-303. [DOI: 10.1093/mutage/geq006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Belyaev IY. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res 2010; 704:132-41. [PMID: 20096808 DOI: 10.1016/j.mrrev.2010.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/26/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci (IRIF) or DNA repair foci. Recent studies have revealed that some residual IRIF remain in cells for a relatively long time after irradiation, and have indicated a possible correlation between radiosensitivity of cells and residual IRIF. Remarkably, residual foci are significantly larger in size than the initial foci. Increase in the size of IRIF with time upon irradiation has been found in various cell types and has partially been correlated with dynamics and fusion of initial foci. Although it is admitted that the number of IRIF reflect that of DSB, several studies report a lack of correlation between kinetics for IRIF and DSB and a lack of co-localization between DSB repair proteins. These studies suggest that some proportion of residual IRIF that depend on cell type, dose, and post-irradiation time may represent alternations in chromatin structure after DSB have been repaired or misrepaired. While precise functions of residual foci are presently unknown, their possible link to remaining chromatin alternations, nuclear matrix, apoptosis, delayed repair and misrejoining of DSB, activity of several kinases, phosphatases, and checkpoint signaling has been suggested. Another intriguing possibility is that some of DNA repair foci may mark break-points at chromosomal aberrations (CA). While this possibility has not been confirmed substantially, the residual foci seem to be useful for biological dosimetry and estimation of individual radiosensitivity in radiotherapy of cancer.
Collapse
Affiliation(s)
- I Y Belyaev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic.
| |
Collapse
|
34
|
Abstract
PURPOSE Ionising radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumourigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H(2)O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. CONCLUSIONS In the past 50 years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation.
Collapse
Affiliation(s)
- Penny Jeggo
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK.
| | | |
Collapse
|
35
|
Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res 2010; 704:78-87. [PMID: 20060491 DOI: 10.1016/j.mrrev.2009.12.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
DNA damage sensing proteins have been shown to localize to the sites of DNA double strand breaks (DSB) within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatiotemporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and chromatin territories. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and gammaH2AX (phosphorylated variant histone H2AX), with an emphasis on the later. This review discusses the importance of not equating RIF with DSB in all situations and shows how dose and time dependence of RIF frequency is inconsistent with a one to one equivalence. Instead, we propose that RIF mark regions of the chromatin that would serve as scaffolds rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery to access the damage site. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. We suggest that persistent RIF observed days following exposure to ionizing radiation are nuclear marks of permanent rearrangement of the chromatin architecture. Such chromatin alterations may not always lead to growth arrest as cells have been shown to replicate these in progeny. Thus, heritable persistent RIF spanning over tens of Mbp may reflect persistent changes in the transcriptome of a large progeny of cells. Such model opens the door to a "non-DNA-centric view" of radiation-induced phenotypes.
Collapse
Affiliation(s)
- S V Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
36
|
Cai Z, Vallis KA, Reilly RM. Computational analysis of the number, area and density of γ-H2AX foci in breast cancer cells exposed to111In-DTPA-hEGF or γ-rays using Image-J software. Int J Radiat Biol 2009; 85:262-71. [DOI: 10.1080/09553000902748757] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Kato TA, Okayasu R, Bedford JS. Signatures of DNA double strand breaks produced in irradiated G1 and G2 cells persist into mitosis. J Cell Physiol 2009; 219:760-5. [DOI: 10.1002/jcp.21726] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2009; 43:1171-1178. [PMID: 20046946 PMCID: PMC2735274 DOI: 10.1016/j.asr.2008.10.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2-5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 minutes after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectibility of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 hours and 24 hours after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans.
Collapse
|
39
|
Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 2008; 36:5678-94. [PMID: 18772227 PMCID: PMC2553572 DOI: 10.1093/nar/gkn550] [Citation(s) in RCA: 932] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology.
Collapse
Affiliation(s)
- Andrea Kinner
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
40
|
Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun 2008; 76:4405-13. [PMID: 18663006 DOI: 10.1128/iai.00575-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma pneumoniae is a frequent cause of community-acquired bacterial respiratory infections in children and adults. In the present study, using a proteomic approach, we studied the effects of M. pneumoniae infection on the protein expression profile of A549 human lung carcinoma cells. M. pneumoniae infection induced changes in the expression of cellular proteins, in particular a group of proteins involved in the oxidative stress response, such as glucose-6-phosphate 1-dehydrogenase, NADH dehydrogenase (ubiquinone) Fe-S protein 2, and ubiquinol-cytochrome c reductase complex core protein I mitochondrial precursor. The oxidative status of M. pneumoniae-infected cells was evaluated, and the results revealed that M. pneumoniae infection indeed caused generation of reactive oxygen species (ROS). It was further shown that M. pneumoniae infection also induced DNA double-strand breaks, as demonstrated by the formation of gammaH2AX foci. On the other hand, an ROS scavenger, N-acetylcysteine, could inhibit the ROS generation, as well as decrease gammaH2AX focus formation. This is the first report showing that M. pneumoniae infection can directly induce DNA damage, at least partially, through the generation of ROS, and thus this report strengthens the powerful application of proteomics in the study of the pathogenesis of M. pneumoniae.
Collapse
|