1
|
De Rubis G, Paudel KR, Kokkinis S, El-Sherkawi T, Datsyuk JK, Salunke P, Gerlach J, Dua K. Potent phytoceuticals cocktail exhibits anti-inflammatory and antioxidant activity on LPS-triggered RAW264.7 macrophages in vitro. Pathol Res Pract 2025; 266:155770. [PMID: 39673889 DOI: 10.1016/j.prp.2024.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Chronic inflammatory conditions, which include respiratory diseases and other ailments, are characterized by persistent inflammation and oxidative stress, and represent a significant health burden, often inadequately managed by current therapies which include conventional inhaled bronchodilators and oral or inhaled corticosteroids in the case of respiratory disorders. The present study explores the potential of Vedicinals®9 Advanced, a polyherbal formulation, to mitigate LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. The cells were pre-treated with Vedicinals®9 Advanced, followed by exposure to LPS to induce an inflammatory response. Key experimental outcomes were assessed, including nitric oxide (NO) and reactive oxygen species (ROS) production, as well as the expression of inflammatory and oxidative stress-related genes and proteins. Vedicinals®9 Advanced significantly reduced LPS-induced NO and ROS production, indicating strong anti-inflammatory and antioxidant properties. Additionally, the formulation downregulated the LPS-upregulated mRNA expression of pro-inflammatory cytokines, such as TNF-α and CXCL1, and oxidative stress markers, including GSTP1 and NQO1. Furthermore, Vedicinals®9 Advanced downregulated the LPS-induced protein expression of the chemokines CCL2 and CCL6, the LPS co-receptor, CD14, and the pro-inflammatory cytokines G-CSF and IL-1β. These findings highlight the potential of Vedicinals®9 Advanced as a therapeutic option for managing CRDs and other inflammatory conditions. The formulation's ability to simultaneously target inflammation and oxidative stress suggests it may offer advantages over existing treatments, with potential for broader application in inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Tammam El-Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | | | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Waldrop SW, Perng W, Konigsberg IR, Borengasser SJ. The potential utility of cord blood DNA methylation in pediatric clinical practice. Epigenomics 2024; 16:1365-1372. [PMID: 39530586 PMCID: PMC11622741 DOI: 10.1080/17501911.2024.2408217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Our understanding of the origins of noncommunicable diseases has evolved over the years with greater consideration given to the lasting influence exposures and experiences during the preconceptional and prenatal periods can have. Research highlights the associations of parental exposures (e.g., diet, obesity, gestational diabetes, lipid profile, toxic exposures and microbiome) with the infant/fetal methylome and suggest associations with infant, child and/or adolescent chronic health outcomes. Thus, epigenetics and specifically cord blood DNA methylation may have utility as biomarkers for disease risk identification and stratification in pediatrics. However, for cord blood DNA methylation analyses to be leveraged as biomarkers of disease risk in pediatric clinical practice, the results must be replicable, validated and clinically meaningful. Challenges and opportunities to this prospect are herein discussed.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO80045, USA
- Division of Clinical Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA70808, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Sarah J Borengasser
- Department of Pediatrics, TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| |
Collapse
|
3
|
Bagheri-Hosseinabadi Z, Eshkevari SMS, Khalighfard S, Alizadeh AM, Khori V, Amiriani T, Poorkhani A, Sadani S, Esmati E, Lashgari M, Mahmoodi M, Hajizadeh MR. A systematic approach introduced some immune system targets in rectal cancer by considering cell-free DNA methylation in response to radiochemotherapy. Cytokine 2024; 181:156666. [PMID: 38906038 DOI: 10.1016/j.cyto.2024.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND This study aims to investigate cell-free DNA (cfDNA) methylation of genes involved in some immune system targets as biomarkers of radioresistance in patients with non-metastatic rectal cancer. METHODS Gene expression (GSE68204, GPL6480, and GSE15781) and DNA methylation profiles (GSE75548 and GSE139404) of rectal cancer patients were obtained from the Gene Expression Omnibus (GEO) database. GEO2R and FunRich software were first used to identify genes with significant expression differences. Enricher softwer was then used to analyze Gene Ontology and detect pathway enrichment of hub genes. Blood samples were then taken from 43 rectal cancer patients. After cfDNA extraction from samples, it was treated with bisulfite and analyzed by methylation-specific PCR. RESULTS 1088 genes with high and 629 with low expression were identified by GEO2R and FunRich software. A total of five high-expression hub genes, including CDH24, FGF18, CCND1, IFITM1, UBE2V1, and three low-expression hub genes, including CBLN2, VIPR2, and IRF4, were identified from UALCAN and DNMIVD databases. Methylation-specific PCR indicated a significant difference in hub gene methylation between cancerous and non-cancerous individuals. Radiochemotherapy significantly affected hub gene methylation. There was a considerable difference in the methylation rate of hub genes between patients who responded to radiochemotherapy and those who did not. CONCLUSIONS Evaluating gene methylation patterns might be an appropriate diagnostic tool to predict radiochemotherapy response and develop targeted therapeutic agents.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Ali Mohammad Alizadeh
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Esmati
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzih Lashgari
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
6
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
7
|
Coppedè F. Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers (Basel) 2023; 15:cancers15041019. [PMID: 36831363 PMCID: PMC9953779 DOI: 10.3390/cancers15041019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cancer has traditionally been viewed as a genetic disorder resulting from the accumulation of gene mutations, chromosomal rearrangements, and aneuploidies in somatic cells [...].
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; ; Tel.: +39-050-2218544
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
9
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
10
|
Yung MMH, Siu MKY, Ngan HYS, Chan DW, Chan KKL. Orchestrated Action of AMPK Activation and Combined VEGF/PD-1 Blockade with Lipid Metabolic Tunning as Multi-Target Therapeutics against Ovarian Cancers. Int J Mol Sci 2022; 23:ijms23126857. [PMID: 35743298 PMCID: PMC9224484 DOI: 10.3390/ijms23126857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies worldwide, and chemoresistance is a critical obstacle in the clinical management of the disease. Recent studies have suggested that exploiting cancer cell metabolism by applying AMP-activated protein kinase (AMPK)-activating agents and distinctive adjuvant targeted therapies can be a plausible alternative approach in cancer treatment. Therefore, the perspectives about the combination of AMPK activators together with VEGF/PD-1 blockade as a dual-targeted therapy against ovarian cancer were discussed herein. Additionally, ferroptosis, a non-apoptotic regulated cell death triggered by the availability of redox-active iron, have been proposed to be governed by multiple layers of metabolic signalings and can be synergized with immunotherapies. To this end, ferroptosis initiating therapies (FITs) and metabolic rewiring and immunotherapeutic approaches may have substantial clinical potential in combating ovarian cancer development and progression. It is hoped that the viewpoints deliberated in this review would accelerate the translation of remedial concepts into clinical trials and improve the effectiveness of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
| | - Michelle K. Y. Siu
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Correspondence: or (D.W.C.); (K.K.L.C.); Tel.: +852-3917-9367 or +852-3943-6053 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2816-1947 or +852-2603-5123 (D.W.C.); +852-2255-0947 (K.K.L.C.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
- Correspondence: or (D.W.C.); (K.K.L.C.); Tel.: +852-3917-9367 or +852-3943-6053 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2816-1947 or +852-2603-5123 (D.W.C.); +852-2255-0947 (K.K.L.C.)
| |
Collapse
|
11
|
Sun D, Gan X, Liu L, Yang Y, Ding D, Li W, Jiang J, Ding W, Zhao L, Hou G, Yu J, Wang J, Yang F, Yuan S, Zhou W. DNA hypermethylation modification promotes the development of hepatocellular carcinoma by depressing the tumor suppressor gene ZNF334. Cell Death Dis 2022; 13:446. [PMID: 35534462 PMCID: PMC9085879 DOI: 10.1038/s41419-022-04895-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation plays a pivotal role in the development and progression of tumors. However, studies focused on the dynamic changes of DNA methylation in the development of hepatocellular carcinoma (HCC) are rare. To systematically illustrate the dynamic DNA methylation alternation from premalignant to early-stage liver cancer with the same genetic background, this study enrolled 5 HBV-related patients preceded with liver cirrhosis, pathologically identified as early-stage HCC with dysplastic nodules. Liver fibrosis tissues, dysplastic nodules and early HCC tissues from these patients were used to measure DNA methylation. Here, we report significant differences in the DNA methylation spectrum among the three types of tissues. In the early stage of HCC, DNA hypermethylation of tumor suppressor genes is predominant. Additionally, DNA hypermethylation in the early stage of HCC changes the binding ability of transcription factor TP53 to the promoter of tumor suppressor gene ZNF334, and inhibits the expression of ZNF334 at the transcription level. Furthermore, through a series of in vivo and in vitro experiments, we have clarified the exacerbation effect of tumor suppressor gene ZNF334 deletion in the occurrence of HCC. Combined with clinical data, we found that the overall survival and relapse-free survival of patients with high ZNF334 expression are significantly longer. Thus, we partly elucidated a sequential alternation of DNA methylation modification during the occurrence of HCC, and clarified the biological function and regulatory mechanism of the tumor suppressor gene ZNF334, which is regulated by related DNA methylation sites. Our study provides a new target and clinical evidence for the early diagnosis and sheds light on the precise treatment of liver cancer.
Collapse
Affiliation(s)
- Dapeng Sun
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Xiaojie Gan
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Lei Liu
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Yuan Yang
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Dongyang Ding
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Wen Li
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Junyao Jiang
- grid.428926.30000 0004 1798 2725Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530 China
| | - Wenbin Ding
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Linghao Zhao
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Guojun Hou
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Jian Yu
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Jie Wang
- grid.428926.30000 0004 1798 2725Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530 China
| | - Fu Yang
- grid.73113.370000 0004 0369 1660The department of Medical Genetics, Naval Medical University, Shanghai, 200438 China
| | - Shengxian Yuan
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Weiping Zhou
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| |
Collapse
|
12
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|
13
|
Zhu L, Yuhan J, Huang K, He X, Liang Z, Xu W. Multidimensional analysis of the epigenetic alterations in toxicities induced by mycotoxins. Food Chem Toxicol 2021; 153:112251. [PMID: 33961929 DOI: 10.1016/j.fct.2021.112251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Mycotoxins contaminate all types of food and feed, threatening human and animal health through food chain accumulation, producing various toxic effects. Increasing attention is being focused on the molecular mechanism of mycotoxin-induced toxicity in all kinds of in vivo and in vitro models. Epigenetic alterations, including DNA methylation, non-coding RNAs (ncRNAs), and protein post-translational modifications (PTMs), were identified as being involved in various types of mycotoxin-induced toxicity. In this review, the emphasis was on summarizing the epigenetic alterations induced by mycotoxin, including aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and deoxynivalenol (DON). This review summarized and analyzed the roles of DNA methylation, ncRNAs, and protein PTMs after mycotoxin exposure based on recently published papers. Moreover, the main research methods and their deficiencies were determined, while some remedial suggestions are proposed. In summary, this review helps to understand better the epigenetic alterations induced by the non-genotoxic effects of mycotoxin.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
14
|
Yi SV, Goodisman MAD. The impact of epigenetic information on genome evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200114. [PMID: 33866804 DOI: 10.1098/rstb.2020.0114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic information affects gene function by interacting with chromatin, while not changing the DNA sequence itself. However, it has become apparent that the interactions between epigenetic information and chromatin can, in fact, indirectly lead to DNA mutations and ultimately influence genome evolution. This review evaluates the ways in which epigenetic information affects genome sequence and evolution. We discuss how DNA methylation has strong and pervasive effects on DNA sequence evolution in eukaryotic organisms. We also review how the physical interactions arising from the connections between histone proteins and DNA affect DNA mutation and repair. We then discuss how a variety of epigenetic mechanisms exert substantial effects on genome evolution by suppressing the movement of transposable elements. Finally, we examine how genome expansion through gene duplication is also partially controlled by epigenetic information. Overall, we conclude that epigenetic information has widespread indirect effects on DNA sequences in eukaryotes and represents a potent cause and constraint of genome evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Arumugam T, Ghazi T, Chuturgoon AA. Molecular and epigenetic modes of Fumonisin B 1 mediated toxicity and carcinogenesis and detoxification strategies. Crit Rev Toxicol 2021; 51:76-94. [PMID: 33605189 DOI: 10.1080/10408444.2021.1881040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fumonisin B1 (FB1) is a natural contaminant of agricultural commodities that has displayed a myriad of toxicities in animals. Moreover, it is known to be a hepatorenal carcinogen in rodents and may be associated with oesophageal and hepatocellular carcinomas in humans. The most well elucidated mode of FB1-mediated toxicity is its disruption of sphingolipid metabolism; however, enhanced oxidative stress, endoplasmic reticulum stress, autophagy, and alterations in immune response may also play a role in its toxicity and carcinogenicity. Alterations to the host epigenome may impact on the toxic and carcinogenic response to FB1. Seeing that the contamination of FB1 in food poses a considerable risk to human and animal health, a great deal of research has focused on new methods to prevent and attenuate FB1-induced toxic consequences. The focus of the present review is on the molecular and epigenetic interactions of FB1 as well as recent research involving FB1 detoxification.
Collapse
Affiliation(s)
- Thilona Arumugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Lin L, Cheng X, Yin D. Aberrant DNA Methylation in Esophageal Squamous Cell Carcinoma: Biological and Clinical Implications. Front Oncol 2020; 10:549850. [PMID: 33194605 PMCID: PMC7645039 DOI: 10.3389/fonc.2020.549850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Almost all cancer cells possess multiple epigenetic abnormalities, which cooperate with genetic alterations to enable the acquisition of cancer hallmarks during tumorigenesis. As the most frequently found epigenetic change in human cancers, aberrant DNA methylation manifests at two major forms: global genomic DNA hypomethylation and locus-specific promoter region hypermethylation. It has been recognized as a critical contributor to esophageal squamous cell carcinoma (ESCC) malignant transformation. In ESCC, DNA methylation alterations affect genes involved in cell cycle regulation, DNA damage repair, and cancer-related signaling pathways. Aberrant DNA methylation patterns occur not only in ESCC tumors but also in precursor lesions. It adds another layer of complexity to the ESCC heterogeneity and may serve as early diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC could help better understand its pathogenesis and develop improved therapies. We herein summarize the current research and knowledge about DNA methylation in ESCC and its clinical significance in diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Halaburkova A, Cahais V, Novoloaca A, Araujo MGDS, Khoueiry R, Ghantous A, Herceg Z. Pan-cancer multi-omics analysis and orthogonal experimental assessment of epigenetic driver genes. Genome Res 2020; 30:1517-1532. [PMID: 32963031 PMCID: PMC7605261 DOI: 10.1101/gr.268292.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
The recent identification of recurrently mutated epigenetic regulator genes (ERGs) supports their critical role in tumorigenesis. We conducted a pan-cancer analysis integrating (epi)genome, transcriptome, and DNA methylome alterations in a curated list of 426 ERGs across 33 cancer types, comprising 10,845 tumor and 730 normal tissues. We found that, in addition to mutations, copy number alterations in ERGs were more frequent than previously anticipated and tightly linked to expression aberrations. Novel bioinformatics approaches, integrating the strengths of various driver prediction and multi-omics algorithms, and an orthogonal in vitro screen (CRISPR-Cas9) targeting all ERGs revealed genes with driver roles within and across malignancies and shared driver mechanisms operating across multiple cancer types and hallmarks. This is the largest and most comprehensive analysis thus far; it is also the first experimental effort to specifically identify ERG drivers (epidrivers) and characterize their deregulation and functional impact in oncogenic processes.
Collapse
Affiliation(s)
- Andrea Halaburkova
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Alexei Novoloaca
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | | | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| |
Collapse
|
18
|
Berrichi M, Hichami A, Addou-Klouche L, Sayed Khan A, Khan NA. CD36 and GPR120 Methylation Associates with Orosensory Detection Thresholds for Fat and Bitter in Algerian Young Obese Children. J Clin Med 2020; 9:jcm9061956. [PMID: 32585828 PMCID: PMC7356363 DOI: 10.3390/jcm9061956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The spontaneous preference for dietary fat is regulated by two lingual lipid sensors (CD36 and GPR120) in humans and rodents. Our objective was to investigate whether obesity in children is associated with methylation of lipid sensor genes, and whether this alteration was implicated in altered gustatory perception of fat and bitter and increased preference of palatable foods. Methods: School children were recruited and classified according to their body mass index (BMI) z-score into two groups: obese and lean children. The detection of orosensory perception for oleic acid and 6-n-propylthiouracil was assessed by using a 3-alternative forced-choice test. After blood DNA extraction, methylation patterns were investigated by methylation-specific PCR. The children were also subjected to a food habit questionnaire. Results: Obese children showed higher lipid and bitter detection thresholds than lean children. Besides, more obese children presented higher methylation level of the CpG sites than lean participants. Interestingly, CD36 and GPR120 gene methylation was associated with high lipid detection thresholds in obese participants. The obese participants preferred highly palatable fat-rich food items, associated with CD36 and GPR120 gene methylation. Conclusion: Epigenetic changes in CD36 and GPR120 genes might contribute to low orosensory perception of fat and bitter taste, and might be, consequently, critically involved in obesity in children
Collapse
Affiliation(s)
- Moustafa Berrichi
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/AgroSupDijon, 21000 Dijon, France; (M.B.); (A.H.); (A.S.K.)
- Laboratoire de Biologie Moléculaire Appliquée et Immunologie, Université Abou Bakr Belkaid, Tlemcen 13000, Algeria
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/AgroSupDijon, 21000 Dijon, France; (M.B.); (A.H.); (A.S.K.)
| | - Lynda Addou-Klouche
- Faculté des Science de la Vie et de la Nature, Université Djillali Liabès, Sidi Bel Abbès 22000, Algeria;
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/AgroSupDijon, 21000 Dijon, France; (M.B.); (A.H.); (A.S.K.)
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/AgroSupDijon, 21000 Dijon, France; (M.B.); (A.H.); (A.S.K.)
- Correspondence: ; Tel.: +33-3-80-39-63-30-12
| |
Collapse
|
19
|
Ni FB, Lin Z, Fan XH, Shi KQ, Ao JY, Wang XD, Chen RC. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of hepatocellular carcinoma. Clin Chim Acta 2020; 504:88-97. [PMID: 32032609 DOI: 10.1016/j.cca.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
There is a lack of precise and clinical accessible model to predict the prognosis of hepatocellular carcinoma (HCC) in clinic practice currently. Here, an inclusive nomogram was developed by integrating genomic markers and clinicopathologic factors for predicting the outcome of patients with HCC. A total of 365 samples of HCC were obtained from the Cancer Genome Atlas (TCGA) database. The LASSO analysis was carried out to identify HCC-related mRNAs, and the multivariate Cox regression analysis was used to construct a genomic-clinicopathologic nomogram. As results, 9 mRNAs were finally identified as prognostic indicators, including RGCC, CDH15, XRN2, RAB3IL1, THEM4, PIF1, MANBA, FKTN and GABARAPL1, and used to establish a 9-mRNA classifier. Additionally, an inclusive nomogram was built up by combining the 9-mRNA classifier (P < 0.001) and clinicopathologic factors including age (P = 0.006) and metastasis (P < 0.001) to predict the mortality of HCC patients. Time-dependent receiver operating characteristic, index of concordance and calibration analyses indicated favorable accuracy of the model. Decision curve analysis suggested that appropriate intervention according to the established nomogram will bring net benefit when threshold probability was above 25%. The genomic-clinicopathologic model could be a reliable tool for predicting the mortality, helping determining the individualized treatment and probably improving HCC survival.
Collapse
Affiliation(s)
- Fu-Biao Ni
- The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xu-Hui Fan
- First School of Clinical Medicine, Wenzhou Medical University, Zhejiang, China
| | - Ke-Qing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Yang Ao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Dong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Rui-Cong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
20
|
Konate M, Wilkinson MJ, Taylor J, Scott ES, Berger B, Rodriguez Lopez CM. Greenhouse Spatial Effects Detected in the Barley ( Hordeum vulgare L.) Epigenome Underlie Stochasticity of DNA Methylation. FRONTIERS IN PLANT SCIENCE 2020; 11:553907. [PMID: 33013971 PMCID: PMC7511590 DOI: 10.3389/fpls.2020.553907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/24/2020] [Indexed: 05/10/2023]
Abstract
Environmental cues are known to alter the methylation profile of genomic DNA, and thereby change the expression of some genes. A proportion of such modifications may become adaptive by adjusting expression of stress response genes but others have been shown to be highly stochastic, even under controlled conditions. The influence of environmental flux on plants adds an additional layer of complexity that has potential to confound attempts to interpret interactions between environment, methylome, and plant form. We therefore adopt a positional and longitudinal approach to study progressive changes to barley DNA methylation patterns in response to salt exposure during development under greenhouse conditions. Methylation-sensitive amplified polymorphism (MSAP) and phenotypic analyses of nine diverse barley varieties were grown in a randomized plot design, under two salt treatments (0 and 75 mM NaCl). Combining environmental, phenotypic and epigenetic data analyses, we show that at least part of the epigenetic variability, previously described as stochastic, is linked to environmental micro-variations during plant growth. Additionally, we show that differences in methylation increase with time of exposure to micro-variations in environment. We propose that subsequent epigenetic studies take into account microclimate-induced epigenetic variability.
Collapse
Affiliation(s)
- Moumouni Konate
- Institut de l'Environnement et de Recherche Agricole (INERA), DRREA-Ouest, Bobo Dioulasso, Burkina Faso
| | - Michael J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth, United Kingdom
- *Correspondence: Carlos Marcelino Rodriguez Lopez, ; Michael J. Wilkinson,
| | - Julian Taylor
- Biometry Hub, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Eileen S. Scott
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Carlos Marcelino Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- *Correspondence: Carlos Marcelino Rodriguez Lopez, ; Michael J. Wilkinson,
| |
Collapse
|
21
|
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients 2019; 11:E2989. [PMID: 31817718 PMCID: PMC6950067 DOI: 10.3390/nu11122989] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several in vitro and in vivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| |
Collapse
|
22
|
Korenjak M, Zavadil J. Experimental identification of cancer driver alterations in the era of pan-cancer genomics. Cancer Sci 2019; 110:3622-3629. [PMID: 31594033 PMCID: PMC6890429 DOI: 10.1111/cas.14210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Rapidly accumulating data from large-scale cancer genomics studies have been generating important information about genes and their somatic alterations underlying cell transformation, cancer onset and tumor progression. However, these events are usually defined by using computational techniques, whereas the understanding of their actual functional roles and impact typically warrants validation by experimental means. Critical information has been obtained from targeted genetic perturbation (gene knockout) studies conducted in animals, yet these investigations are cost-prohibitive and time-consuming. In addition, the 3R principles (replacement, reduction, refinement) have been set in place to reduce animal use burden and are increasingly observed in many areas of biomedical research. Consequently, the focus has shifted to new designs of innovative cell-based experimental models of cell immortalization and transformation in which the critical cancer driver events can be introduced by mutagenic insult and studied functionally, at the level of critical phenotypic readouts. From these efforts, primary cell-based selective barrier-bypass models of cell immortalization have emerged as an attractive system that allows studies of the functional relevance of acquired mutations as well as their role as candidate cancer driver events. In this review, we provide an overview of various experimental systems linking carcinogen exposure-driven cell transformation with the study of cancer driver events. We further describe the advantages and disadvantages of the currently available cell-based models while outlining future directions for in vitro modeling and functional testing of cancer driver events.
Collapse
Affiliation(s)
- Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
23
|
Khatami F, Larijani B, Nasiri S, Tavangar SM. Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:19-29. [PMID: 32351906 PMCID: PMC7175608 DOI: 10.22088/ijmcm.bums.8.2.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
In the blood of cancer patients, some nucleic acid fragments and tumor cells can be found that make it possible to trace tumor changes through a simple blood test called “liquid biopsy”. The main components of liquid biopsy are fragments of DNA and RNA shed by tumors into the bloodstream and circulate freely (ctDNAs and ctRNAs). Tumor cells which are shed into the blood (circulating tumor cells or CTCs), and exosomes that have been investigated for non-invasive detection and monitoring several tumors including thyroid cancer. Genetic and epigenetic alterations of a thyroid tumor can be a driver for tumor genesis or essential for tumor progression and invasion. Liquid biopsy can be real-time representative of such genetic and epigenetic alterations to trace tumors. In thyroid tumors, the circulating BRAF mutation is now taken into account for both thyroid cancer diagnosis and determination of the most effective treatment strategy. Several recent studies have indicated the ctDNA methylation pattern of some iodine transporters and DNA methyltransferase as a diagnostic and prognostic biomarker in thyroid cancer as well. There has been a big hope that the recent advances of genome sequencing together with liquid biopsy can be a game changer in oncology.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
25
|
Kobets T, Iatropoulos MJ, Williams GM. Mechanisms of DNA-reactive and epigenetic chemical carcinogens: applications to carcinogenicity testing and risk assessment. Toxicol Res (Camb) 2019; 8:123-145. [PMID: 30997017 PMCID: PMC6417487 DOI: 10.1039/c8tx00250a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
Chemicals with carcinogenic activity in either animals or humans produce increases in neoplasia through diverse mechanisms. One mechanism is reaction with nuclear DNA. Other mechanisms consist of epigenetic effects involving either modifications of regulatory macromolecules or perturbation of cellular regulatory processes. The basis for distinguishing between carcinogens that have either DNA reactivity or an epigenetic activity as their primary mechanism of action is detailed in this review. In addition, important applications of information on these mechanisms of action to carcinogenicity testing and human risk assessment are discussed.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| | - Michael J Iatropoulos
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| | - Gary M Williams
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| |
Collapse
|
26
|
Guerrero-Preston R, Lawson F, Rodriguez-Torres S, Noordhuis MG, Pirini F, Manuel L, Valle BL, Hadar T, Rivera B, Folawiyo O, Baez A, Marchionni L, Koch WM, Westra WH, Kim YJ, Eshleman JR, Sidransky D. JAK3 Variant, Immune Signatures, DNA Methylation, and Social Determinants Linked to Survival Racial Disparities in Head and Neck Cancer Patients. Cancer Prev Res (Phila) 2019; 12:255-270. [PMID: 30777857 DOI: 10.1158/1940-6207.capr-17-0356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 10/30/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
To inform novel personalized medicine approaches for race and socioeconomic disparities in head and neck cancer, we examined germline and somatic mutations, immune signatures, and epigenetic alterations linked to neighborhood determinants of health in Black and non-Latino White (NLW) patients with head and neck cancer. Cox proportional hazards revealed that Black patients with squamous cell carcinoma of head and neck (HNSCC) with PAX5 (P = 0.06) and PAX1 (P = 0.017) promoter methylation had worse survival than NLW patients, after controlling for education, zipcode, and tumor-node-metastasis stage (n = 118). We also found that promoter methylation of PAX1 and PAX5 (n = 78), was correlated with neighborhood characteristics at the zip-code level (P < 0.05). Analyses also showed differences in the frequency of TP53 mutations (n = 32) and tumor-infiltrating lymphocyte (TIL) counts (n = 24), and the presence of a specific C → A germline mutation in JAK3, chr19:17954215 (protein P132T), in Black patients with HNSCC (n = 73; P < 0.05), when compared with NLW (n = 37) patients. TIL counts are associated (P = 0.035) with long-term (>5 years), when compared with short-term survival (<2 years). We show bio-social determinants of health associated with survival in Black patients with HNSCC, which together with racial differences shown in germline mutations, somatic mutations, and TIL counts, suggests that contextual factors may significantly inform precision oncology services for diverse populations.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Fahcina Lawson
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Sebastian Rodriguez-Torres
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Maartje G Noordhuis
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Manuel
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Blanca L Valle
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Tal Hadar
- Breast Health Unit, Department of General Surgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Bianca Rivera
- Department of Otolaryngology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Adriana Baez
- Department of Otolaryngology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Wayne M Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - William H Westra
- Department of Pathology, The Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Young J Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
|
28
|
Latini G, De Felice C, Barducci A, Dipaola L, Gentile M, Andreassi MG, Correale M, Bianciardi G. Clinical biomarkers for cancer recognition and prevention: A novel approach with optical measurements. Cancer Biomark 2018; 22:179-198. [PMID: 29689703 DOI: 10.3233/cbm-170050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is the most important cause of death worldwide, and early cancer detection is the most fundamental factor for efficacy of treatment, prognosis, and increasing survival rate. Over the years great effort has been devoted to discovering and testing new biomarkers that can improve its diagnosis, especially at an early stage. Here we report the potential usefulness of new, easily applicable, non-invasive and relatively low-cost clinical biomarkers, based on abnormalities of oral mucosa spectral reflectance and fractal geometry of the vascular networks in several different tissues, for identification of hereditary non-polyposis colorectal cancer carriers as well for detection of other tumors, even at an early stage. In the near future the methodology/technology of these procedures should be improved, thus making possible their applicability worldwide as screening tools for early recognition and prevention of cancer.
Collapse
Affiliation(s)
- Giuseppe Latini
- Neonatal Intensive Care Unit, Perrino Hospital Brindisi-Italy, Brindisi, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Policlinico "Le Scotte" viale Bracci, Siena, Italy
| | | | - Lucia Dipaola
- Research Unit of Lecce, Clinical Physiology Institute, National Research Council of Italy, Rome, Italy
| | - Mattia Gentile
- Medical Genetics Unit, IRCCS S. De Bellis, Castellana Grotte, Bari, Italy
| | - Maria Grazia Andreassi
- Genetics Research Unit, Clinical Physiology Institute, National Research Council of Italy, Rome, Italy
| | - Mario Correale
- Clinical Pathology Unit, IRCCS S. De Bellis, Castellana Grotte, Bari, Italy
| | - Giorgio Bianciardi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
29
|
Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev Camb Philos Soc 2018. [PMCID: PMC6378602 DOI: 10.1111/brv.12453] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After decades of debate about the existence of non‐genetic inheritance, the focus is now slowly shifting towards dissecting its underlying mechanisms. Here, we propose a new mechanism that, by integrating non‐genetic and genetic inheritance, may help build the long‐sought inclusive vision of evolution. After briefly reviewing the wealth of evidence documenting the existence and ubiquity of non‐genetic inheritance in a table, we review the categories of mechanisms of parent–offspring resemblance that underlie inheritance. We then review several lines of argument for the existence of interactions between non‐genetic and genetic components of inheritance, leading to a discussion of the contrasting timescales of action of non‐genetic and genetic inheritance. This raises the question of how the fidelity of the inheritance system can match the rate of environmental variation. This question is central to understanding the role of different inheritance systems in evolution. We then review and interpret evidence indicating the existence of shifts from inheritance systems with low to higher transmission fidelity. Based on results from different research fields we propose a conceptual hypothesis linking genetic and non‐genetic inheritance systems. According to this hypothesis, over the course of generations, shifts among information systems allow gradual matching between the rate of environmental change and the inheritance fidelity of the corresponding response. A striking conclusion from our review is that documented shifts between types of inherited non‐genetic information converge towards epigenetics (i.e. inclusively heritable molecular variation in gene expression without change in DNA sequence). We then interpret the well‐documented mutagenicity of epigenetic marks as potentially generating a final shift from epigenetic to genetic encoding. This sequence of shifts suggests the existence of a relay in inheritance systems from relatively labile ones to gradually more persistent modes of inheritance, a relay that could constitute a new mechanistic basis for the long‐proposed, but still poorly documented, hypothesis of genetic assimilation. A profound difference between the genocentric and the inclusive vision of heredity revealed by the genetic assimilation relay proposed here lies in the fact that a given form of inheritance can affect the rate of change of other inheritance systems. To explore the consequences of such inter‐connection among inheritance systems, we briefly review published theoretical models to build a model of genetic assimilation focusing on the shift in the engraving of environmentally induced phenotypic variation into the DNA sequence. According to this hypothesis, when environmental change remains stable over a sufficient number of generations, the relay among inheritance systems has the potential to generate a form of genetic assimilation. In this hypothesis, epigenetics appears as a hub by which non‐genetically inherited environmentally induced variation in traits can become genetically encoded over generations, in a form of epigenetically facilitated mutational assimilation. Finally, we illustrate some of the major implications of our hypothetical framework, concerning mutation randomness, the central dogma of molecular biology, concepts of inheritance and the curing of inherited disorders, as well as for the emergence of the inclusive evolutionary synthesis.
Collapse
Affiliation(s)
- Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Arnaud Pocheville
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- Department of Philosophy and Charles Perkins Centre; University of Sydney; Sydney NSW 2006 Australia
| | - Olivier Rey
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier; F-66860 Perpignan France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
| |
Collapse
|
30
|
Murphy TW, Hsieh YP, Ma S, Zhu Y, Lu C. Microfluidic Low-Input Fluidized-Bed Enabled ChIP-seq Device for Automated and Parallel Analysis of Histone Modifications. Anal Chem 2018; 90:7666-7674. [PMID: 29842781 PMCID: PMC6019315 DOI: 10.1021/acs.analchem.8b01541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide epigenetic changes, such as histone modifications, form a critical layer of gene regulations and have been implicated in a number of different disorders such as cancer and inflammation. Progress has been made to decrease the input required by gold-standard genome-wide profiling tools like chromatin immunoprecipitation followed by sequencing (i.e., ChIP-seq) to allow scarce primary tissues of a specific type from patients and lab animals to be tested. However, there has been practically no effort to rapidly increase the throughput of these low-input tools. In this report, we demonstrate LIFE-ChIP-seq (low-input fluidized-bed enabled chromatin immunoprecipitation followed by sequencing), an automated and high-throughput microfluidic platform capable of running multiple sets of ChIP assays on multiple histone marks in as little as 1 h with as few as 50 cells per assay. Our technology will enable testing of a large number of samples and replicates with low-abundance primary samples in the context of precision medicine.
Collapse
|
31
|
Xin M, Qiao Z, Li J, Liu J, Song S, Zhao X, Miao P, Tang T, Wang L, Liu W, Yang X, Dai K, Huang G. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2018; 7:44252-44265. [PMID: 27317765 PMCID: PMC5190093 DOI: 10.18632/oncotarget.10020] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that function as negative regulators of gene expression involving in the tumor biology. ATP citrate lyase (ACLY), a key enzyme initiating de novo lipid synthesis, has been found to be upregulated in cancer cells, and its inhibition causes suppressive effects in a variety of tumors. At present, although several ACLY inhibitors have been reported, the potential role of miRNAs in interfering ACLY still needs further clarification. Herein, four different types of tumor cells including osteosarcoma, prostate, cervical and lung cancers were adopted in our study, and we have demonstrated that miR-22 directly downregulated ACLY. Moreover, miR-22 was proved to attenuate cancer cell proliferation and invasion, as well as promote cell apoptosis via inhibiting ACLY. Additionally, we confirmed the higher ACLY protein levels and the lower miR-22 expressions in hundreds of clinical samples of the four primary tumors, and a negative correlation relationship between ACLY and miR-22 was clarified. Finally, in the four animal models, we found that along with the loss of the ACLY expression, the miR-22-treated mice developed rather smaller tumors, less probabilities of distant metastasis, and fairly longer survivals. De novo lipogenesis suppression triggered by miR-22-ACLY axis may contribute to the inhibition of tumor growth and metastasis. These findings provide unequivocal proofs that miR-22 is responsible for the posttranscriptional regulation of ACLY, which yields promising therapeutic effects in osteosarcoma, prostate, cervical and lung cancers.
Collapse
Affiliation(s)
- Mei Xin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhiguang Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Li
- Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Alpert Medical School/Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ping Miao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Weichun Liu
- Department of Gynecology and Obstetrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaodi Yang
- Department of Anesthesiology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai 200032, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.,The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| |
Collapse
|
32
|
Gao D, Herman JG, Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget 2018; 7:37331-37346. [PMID: 26967246 PMCID: PMC5095080 DOI: 10.18632/oncotarget.7949] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinogenesis. Aberrant methylation patterns in DNA damage repair genes may serve as predictive, diagnostic, prognostic and chemosensitive markers of human cancer. MGMT methylation is a marker for poor prognosis in human glioma, while, MGMT methylation is a sensitive marker of glioma cells to alkylating agents. Aberrant epigenetic changes in DNA damage repair genes may serve as therapeutic targets. Treatment of MLH1-methylated colon cancer cell lines with the demethylating agent 5′-aza-2′-deoxycytidine induces the expression of MLH1 and sensitizes cancer cells to 5-fluorouracil. Synthetic lethality is a more exciting approach in patients with DDR defects. PARP inhibitors are the most effective anticancer reagents in BRCA-deficient cancer cells.
Collapse
Affiliation(s)
- Dan Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,Medical College of NanKai University, Tianjin, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Boyle M, Mann J. WITHDRAWN: Epigenetics in Chronic Liver Disease. J Hepatol 2017:S0168-8278(17)32255-9. [PMID: 28855099 DOI: 10.1016/j.jhep.2017.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Marie Boyle
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
34
|
Ohara K, Arai E, Takahashi Y, Ito N, Shibuya A, Tsuta K, Kushima R, Tsuda H, Ojima H, Fujimoto H, Watanabe SI, Katai H, Kinoshita T, Shibata T, Kohno T, Kanai Y. Genes involved in development and differentiation are commonly methylated in cancers derived from multiple organs: a single-institutional methylome analysis using 1007 tissue specimens. Carcinogenesis 2017; 38:241-251. [PMID: 28069692 PMCID: PMC5862281 DOI: 10.1093/carcin/bgw209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to clarify the significance of DNA methylation alterations shared by cancers derived from multiple organs. We analyzed single-institutional methylome data by single-CpG-resolution Infinium assay for 1007 samples of non-cancerous tissue (N) and corresponding cancerous tissue (T) obtained from lung, stomach, kidney, breast and liver. Principal component analysis revealed that N samples of each organ showed distinct DNA methylation profiles, DNA methylation profiles of N samples of each organ being inherited by the corresponding T samples and DNA methylation profiles of T samples being more similar to those of N samples in the same organ than those of T samples in other organs. In contrast to such organ and/or carcinogenetic factor-specificity of DNA methylation profiles, when compared with the corresponding N samples, 231 genes commonly showed DNA hypermethylation in T samples in four or more organs. Gene ontology enrichment analysis showed that such commonly methylated genes were enriched among “transcriptional factors” participating in development and/or differentiation, which reportedly show bivalent histone modification in embryonic stem cells. Pyrosequencing and quantitative reverse transcription-PCR revealed an inverse correlation between DNA methylation levels and mRNA expression levels of representative commonly methylated genes, such as ALX1, ATP8A2, CR1 and EFCAB1, in tissue samples. These data suggest that disruption of the differentiated state of precancerous cells via alterations of expression, independent of differences in organs and/or carcinogenetic factors, may be a common feature of DNA methylation alterations during carcinogenesis in multiple organs.
Collapse
Affiliation(s)
- Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoriko Takahashi
- Biomedical Department, Solution Center, Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Shibuya
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ryoji Kushima
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hitoshi Tsuda
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan.,Department of Basic Pathology, National Defense Medical College, Saitama 359-0042, Japan
| | - Hidenori Ojima
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | - Takayuki Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan and
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
35
|
Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2017; 51:149-159. [PMID: 28807546 DOI: 10.1016/j.semcancer.2017.08.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.
Collapse
|
36
|
Naseem A, Bhat ZI, Kalaiarasan P, Kumar B, Gandhi G, Rizvi MMA. Genetic and epigenetic alterations affecting PARK-2 expression in cervical neoplasm among North Indian patients. Tumour Biol 2017. [DOI: 10.1177/1010428317703635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Afreen Naseem
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Zafar Iqbal Bhat
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Gauri Gandhi
- Department of Obstetrics & Gynecology, Lok Nayak Jayaprakash Hospital (LNJP), Maulana Azad Medical College (MAMC), New Delhi, India
| | - M. Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
37
|
Halaburková A, Jendželovský R, Kovaľ J, Herceg Z, Fedoročko P, Ghantous A. Histone deacetylase inhibitors potentiate photodynamic therapy in colon cancer cells marked by chromatin-mediated epigenetic regulation of CDKN1A. Clin Epigenetics 2017; 9:62. [PMID: 28603560 PMCID: PMC5465463 DOI: 10.1186/s13148-017-0359-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hypericin-mediated photodynamic therapy (HY-PDT) has recently captured increased attention as an alternative minimally invasive anticancer treatment, although cancer cells may acquire resistance. Therefore, combination treatments may be necessary to enhance HY-PDT efficacy. Histone deacetylase inhibitors (HDACis) are often used in combination treatments due to their non-genotoxic properties and epigenetic potential to sensitize cells to external stimuli. Therefore, this study attempts for the first time to investigate the therapeutic effects of HDACis in combination with visible light-mediated PDT against cancer. Specifically, the colorectal cancer cell model was used due to its known resistance to HY-PDT. RESULTS Two chemical groups of HDACis were tested in combination with HY-PDT: the hydroxamic acids Saha and Trichostatin A, and the short-chain fatty acids valproic acid and sodium phenylbutyrate (NaPB), as inhibitors of all-class versus nuclear HDACs, respectively. The selected HDACis manifest a favorable clinical toxicity profile and showed similar potencies and mechanisms in intragroup comparisons but different biological effects in intergroup analyses. HDACi combination with HY-PDT significantly attenuated cancer cell resistance to treatment and caused the two HDACi groups to become similarly potent. However, the short-chain fatty acids, in combination with HY-PDT, showed increased selectivity towards inhibition of HDACs versus other key epigenetic enzymes, and NaPB induced the strongest expression of the otherwise silenced tumor suppressor CDKN1A, a hallmark gene for HDACi-mediated chromatin modulation. Epigenetic regulation of CDKN1A by NaPB was associated with histone acetylation at enhancer and promoter elements rather than histone or DNA methylation at those or other regulatory regions of this gene. Moreover, NaPB, compared to the other HDACis, caused milder effects on global histone acetylation, suggesting a more specific effect on CDKN1A chromatin architecture relative to global chromatin structure. The mechanism of NaPB + HY-PDT was P53-dependent and likely driven by the HY-PDT rather than the NaPB constituent. CONCLUSIONS Our results show that HDACis potentiate the antitumor efficacy of HY-PDT in colorectal cancer cells, overcoming their resistance to this drug and epigenetically reactivating the expression of CDKN1A. Besides their therapeutic potential, hypericin and these HDACis are non-genotoxic constituents of dietary agents, hence, represent interesting targets for investigating mechanisms of dietary-based cancer prevention.
Collapse
Affiliation(s)
- Andrea Halaburková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Ján Kovaľ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| |
Collapse
|
38
|
Wahid B, Ali A, Rafique S, Idrees M. New Insights into the Epigenetics of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1609575. [PMID: 28401148 PMCID: PMC5376429 DOI: 10.1155/2017/1609575] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone modifications, DNA methylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion, metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
- Hazara University, Mansehra, Pakistan
| |
Collapse
|
39
|
Zhang B, Han S, Feng B, Chu X, Chen L, Wang R. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma. Exp Mol Med 2017; 49:e293. [PMID: 28186085 PMCID: PMC5336563 DOI: 10.1038/emm.2016.177] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has an important role in the development of human hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV-encoded X protein (HBx) can induce both genetic alterations in tumor suppressor genes and oncogenes, as well as epigenetic aberrations in HCC pathogens. Non-coding RNAs (ncRNAs) mainly include microRNAs and long non-coding RNAs (lncRNAs). Although ncRNAs cannot code proteins, growing evidence has shown that they have various important biological functions in cell proliferation, cell cycle control, anti-apoptosis, epithelial–mesenchymal transition, tumor invasion and metastasis. This review summarizes the current knowledge regarding the mechanisms and emerging roles of ncRNAs in the pathogenesis of HBV-related HCC. Accumulated data have shown that ncRNAs regulated by HBx have a crucial role in HBV-associated hepatocarcinogenesis. The findings of these studies will contribute to more clinical applications of HBV-related ncRNAs as potential diagnostic markers or as molecular therapeutic targets to prevent and treat HBV-related HCC.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Wankhade UD, Thakali KM, Shankar K. Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies. Mol Cell Endocrinol 2016; 435:7-19. [PMID: 27392497 DOI: 10.1016/j.mce.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
The consequences of excessive maternal weight and adiposity at conception for the offspring are now well recognized. Maternal obesity increases the risk of overweight and obesity even in children born with appropriate-for-gestational age (AGA) birth weights. Studies in animal models have employed both caloric excess and manipulation of macronutrients (especially high-fat) to mimic hypercaloric intake present in obesity. Findings from these studies show transmission of susceptibility to obesity, metabolic dysfunction, alterations in glucose homeostasis, hepatic steatosis, skeletal muscle metabolism and neuroendocrine changes in the offspring. This review summarizes the essential literature in this area in both experimental and clinical domains and focuses on the translatable aspects of these experimental studies. Moreover this review highlights emerging mechanisms broadly explaining maternal obesity-associated developmental programming. The roles of early developmental alterations and placental adaptations are also reviewed. Increasing evidence also points to changes in the epigenome and other emerging mechanisms such as alterations in the microbiome that may contribute to persistent changes in the offspring. Finally, we examine potential interventions that have been employed in clinical cohorts.
Collapse
Affiliation(s)
- Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Keshari M Thakali
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
41
|
Singh S, Tanneeru K, Guruprasad L. Structure and dynamics of H. pylori 98-10 C5-cytosine specific DNA methyltransferase in complex with S-adenosyl-l-methionine and DNA. MOLECULAR BIOSYSTEMS 2016; 12:3111-23. [PMID: 27470658 DOI: 10.1039/c6mb00306k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that inhabits the human gastrointestinal tract, and some strains of this bacterium cause gastric ulcers and cancer. DNA methyltransferases (MTases) are promising drug targets for the treatment of cancer and other diseases that are also caused by epigenetic alternations of the genome. The C5-cytosine specific DNA methyltransferase from H. pylori (M. Hpy C5mC) catalyzes the transfer of the methyl group from the cofactor S-adenosyl-l-methionine (AdoMet) to the flipped cytosine of the substrate DNA. Herein we report the sequence analyses, 3-D structure modeling and molecular dynamics simulations of M. Hpy C5mC, when complexed with AdoMet as well as DNA. We analyzed the protein-DNA interactions prominently established by the flipped cytosine and the interactions between the protein and cofactor in the active site. We propose that the contacts made by cytosine O2 with Arg155 and Arg157, and the water-mediated interactions with cytosine N3 may be essential for the activity of methyl transfer as well as the deprotonation at the C5 position in our C5mC model. Specific recognition of DNA was mediated mainly by residues from Ser221-Arg229 and Ser243-Gln246 of the target recognition domain (TRD) and some residues of the loop Ser75-Lys83 from the large domain. These findings are further supported by alanine scanning mutagenesis studies. The results reported here explain the sequence, structure and binding features necessary for the recognition between the cofactor and the substrate by the key epigenetic enzyme, M. Hpy C5mC.
Collapse
Affiliation(s)
- Swati Singh
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India.
| | | | | |
Collapse
|
42
|
The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:235-241. [PMID: 27989708 DOI: 10.1016/j.oooo.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
Although less than 3% of the genome encodes proteins, at least 75% of the genome is transcribed into RNAs with no protein-coding potential (noncoding RNAs [ncRNAs]). On the basis of their size and the arbitrary 200 nucleotides cutoff, ncRNAs are classified into long ncRNAs (lncRNAs) or small ncRNAs (including microRNAs). Over the last few years, the role of microRNAs in oral squamous cells carcinoma (OSCC) has been extensively addressed, but the possible role of lncRNAs in OSCC remains unclear. We aimed to explore and discuss the potential role of lncRNAs in OSCC. The detection of lncRNAs in saliva holds promise not only as a noninvasive diagnostic tool in OSCC but also in the early detection of oral cancer recurrence. lncRNAs are promising future therapeutic targets in the OSCC scenario, and research in this field may expand greatly in the next decade.
Collapse
|
43
|
New Progress of Epigenetic Biomarkers in Urological Cancer. DISEASE MARKERS 2016; 2016:9864047. [PMID: 27594736 PMCID: PMC4993951 DOI: 10.1155/2016/9864047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022]
Abstract
Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers.
Collapse
|
44
|
|
45
|
Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA Regulator in Cancer: A Review. Rev Physiol Biochem Pharmacol 2016; 171:1-38. [DOI: 10.1007/112_2016_3] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Kanda M, Sugimoto H, Kodera Y. Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma. World J Gastroenterol 2015; 21:10584-10597. [PMID: 26457018 PMCID: PMC4588080 DOI: 10.3748/wjg.v21.i37.10584] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/08/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominant in developing countries and is responsible for nearly 600000 deaths each year worldwide. Similar to many other tumors, the development of HCC must be understood as a multistep process involving the accumulation of genetic and epigenetic alterations in regulatory genes, leading to the activation of oncogenes and the inactivation or loss of tumor suppressor genes. Extensive research over the past decade has identified a number of molecular biomarkers, including aberrant expression of HCC-related genes and microRNAs. The challenge facing HCC research and clinical care at this time is to address the heterogeneity and complexity of these genetic and epigenetic alterations and to use this information to direct rational diagnosis and treatment strategies. The multikinase inhibitor sorafenib was the first molecularly targeted drug for HCC to show some extent of survival benefits in patients with advanced tumors. Although the results obtained using sorafenib support the importance of molecular therapies in the treatment of HCC, there is still room for improvement. In addition, no molecular markers for drug sensitivity, recurrence and prognosis are currently clinically available. In this review, we provide an overview of recently published articles addressing HCC-related genes and microRNAs to update what is currently known regarding genetic and epigenetic aspects of the pathogenesis of HCC and propose novel promising candidates for use as diagnostic and therapeutic targets in HCC.
Collapse
|
47
|
Zamani M, Sadeghizadeh M, Behmanesh M, Najafi F. Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:961-967. [PMID: 26321746 DOI: 10.1016/j.phymed.2015.05.071] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/30/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is the fifth most common cancer worldwide, with poor prognosis and resistance to chemotherapy. This gives novel cancer treatment methods an overwhelming significance. Epigenetic therapy of cancer is useful in reversing some of the cancer defects because of reversibility of the epigenetic alterations. Non-protein coding transcripts are the major part of our transcriptome. MEG3 is a tumor suppressor long non-coding RNA being expressed in many normal tissues. Methylation of MEG3 promoter region elicits the decrease in its expression in hepatocellular cancer cells. Bioactive nutrients including curcumin offer great potential in altering DNA methylation status which is catalyzed via DNMT1, DNMT3A and 3B. PURPOSE Herein, we aimed to study RNA-based epigenetic effects of dendrosomal curcumin (DNC) on hepatocellular cancer (HCC). STUDY DESIGN To this end miRNA-dependent regulation of MEG3 expression under treatment with DNC was studied by evaluating the modulatory involvement of miR-29a for DNMT3A and 3B and miR-185 for DNMT1. METHODS We evaluated DNC entrance to HCC cells with the use of fluorescent characteristics of curcumin. Next we performed the MTT assay to evaluate DNC and dendrosome effects on HCC cell viability. The coding and non-coding genes expression analyses were done using quantitative-PCR. RESULTS In result we found that the DNC dependent overexpression of miR-29a and miR-185 (P < 0.01) can down-regulate the expression of DNMT1, 3A and 3B (P < 0.05) and subsequently overexpresses MEG3 (P < 0.05). CONCLUSION DNC potentially can induce DNA hypomethylation and reexpression of silenced tumor suppressor genes in HCC. These data suggest that DNC could be an effective choice for epigenetic therapy of HCC.
Collapse
Affiliation(s)
- Mina Zamani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
48
|
Madejón A, Sheldon J, Francisco-Recuero I, Perales C, Domínguez-Beato M, Lasa M, Sánchez-Perez I, Muntané J, Domingo E, García-Samaniego J, Sánchez-Pacheco A. Hepatitis C virus-mediated Aurora B kinase inhibition modulates inflammatory pathway and viral infectivity. J Hepatol 2015; 63:312-9. [PMID: 25733156 DOI: 10.1016/j.jhep.2015.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. DNA methylation and histone covalent modifications constitute crucial mechanisms of genomic instability in human disease, including liver fibrosis and hepatocellular carcinoma. The present work studies the consequences of HCV-induced histone modifications in early stages of infection. METHODS Human primary hepatocytes and HuH7.5 cells were transiently transfected with the core protein of hepatitis C virus (HCV) genotypes 1a, 1b, and 2a. Infectious genotype 2a HCV in culture was also used. RESULTS We show that HCV and core protein inhibit the phosphorylation of Serine 10 in histone 3. The inhibition is due to the direct interaction between HCV core and Aurora B kinase (AURKB) that results in a decrease of AURKB activity. HCV and core significantly downregulate NF-κB and COX-2 transcription, two proteins with anti-apoptotic and proliferative effects implicated in the control of the inflammatory response. AURKB depletion reduced HCV and core repression of NF-κB and COX-2 gene transcription and AURKB overexpression reversed the viral effect. AURKB abrogation increased HCV specific infectivity which was decreased when AURKB was overexpressed. CONCLUSIONS The core-mediated decrease of AURKB activity may play a role in the inflammatory pathway during the initial steps of viral infection, while ensuring HCV infectivity.
Collapse
Affiliation(s)
- Antonio Madejón
- Hepatology Unit Hospital Universitario La Paz/Carlos III, Instituto de Investigación Sanitaria "La Paz", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, Madrid, Spain
| | - Julie Sheldon
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Irene Francisco-Recuero
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, Madrid, Spain
| | - Mariela Domínguez-Beato
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Lasa
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Isabel Sánchez-Perez
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Jordi Muntané
- Oncology Surgery, Cell Therapy and Transplant Organs, Institute of Biomedicine of Seville (IBiS)-Virgen del Rocio Universitary Hospital (CSIC), University of Seville, Seville, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, Madrid, Spain
| | - Javier García-Samaniego
- Hepatology Unit Hospital Universitario La Paz/Carlos III, Instituto de Investigación Sanitaria "La Paz", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, Madrid, Spain
| | - Aurora Sánchez-Pacheco
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
49
|
Wang Z, Zhu L, Guo T, Wang Y, Yang J. Decreased H2B monoubiquitination and overexpression of ubiquitin-specific protease enzyme 22 in malignant colon carcinoma. Hum Pathol 2015; 46:1006-14. [DOI: 10.1016/j.humpath.2015.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
|
50
|
Oya H, Kanda M, Sugimoto H, Shimizu D, Takami H, Hibino S, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Nomoto S, Fujiwara M, Kodera Y. Dihydropyrimidinase-like 3 is a putative hepatocellular carcinoma tumor suppressor. J Gastroenterol 2015; 50:590-600. [PMID: 25173447 DOI: 10.1007/s00535-014-0993-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/17/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with hepatocellular carcinoma (HCC) may relapse after curative resection. Sensitive biomarkers for HCC are required to enhance disease management. Dihydropyrimidinase-like 3 (DPYSL3) suppresses cell proliferation and tumorigenicity of certain malignancies; however, its role in HCC is unknown. METHODS The expression levels of DPYSL3 and genes encoding potential interacting proteins vascular endothelial growth factor (VEGF), focal adhesion kinase (FAK), ezrin, and cellular src were determined using RT-PCR. Further, we determined the methylation status of the DPYSL3 promoter in HCC cells lines and the effect of inhibiting DPYSL3 expression on their phenotype. DPYSL3 expression was determined in 151 pairs of resected liver tissues. RESULTS DPYSL3 mRNA levels were down-regulated in most HCC cell lines with DPYSL3 promoter hypermethylation, and expression was restored after demethylation. DPYSL3 expression levels inversely correlated with those of VEGF and FAK. Knockdown of DPYSL3 significantly increased migration and the invasive properties of HCC cells. The mean level of DPYSL3 mRNA was significantly lower in HCC tissues compared with corresponding noncancerous tissues. The expression patterns of DPYSL3 mRNA and protein were consistent. DPYSL3 mRNA expression in HCC tissues inversely correlated with preoperative serum tumor markers and was significantly lower in patients with extrahepatic recurrences. Disease-specific and recurrence-free survival was significantly shorter in patients with down-regulated DPYSL3 expression. CONCLUSIONS Our results indicate that DPYSL3 is a putative HCC tumor suppressor, and promoter hypermethylation potently regulates DPYSL3 transcription. Down-regulation of DPYSL3 expression in HCC tissues may serve as a predictive biomarker for HCC after curative resection.
Collapse
Affiliation(s)
- Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|