1
|
Wang C, Zhao F, Bai Y, Li C, Xu X, Kristiansen K, Zhou G. Proteomic Analysis of the Protective Effect of Eriodictyol on Benzo(a)pyrene-Induced Caco-2 Cytotoxicity. Front Nutr 2022; 9:839364. [PMID: 35308267 PMCID: PMC8927910 DOI: 10.3389/fnut.2022.839364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
We evaluated the possible protective effects of six polyphenols on benzo(a)pyrene (BaP)-induced cytotoxicity in Caco-2 cells. We show that treatment with quinic acid, ferulic acid, homovanillic acid, trolox and BaP decreased cell viability, whereas naringenin and eriodictyol affected viability in a bi-phasic manner with low concentrations decreasing viability whereas higher concentrations increase viability. Co-treatment with 20 μM eriodictyol or naringenin reduced BaP-induced cytotoxicity, including cell apoptosis, cell cycle progression, and oxidative stress. Our results show that the protective effect of eriodictyol was superior to that of naringenin. The potential protective mechanisms of eriodictyol on BaP-induced toxicity were investigated by proteomics. We identified 80 differentially expressed proteins (DEPs) with proteins associated with genetic information processing pathway representing the highest proportion and number of proteins responding to eriodictyol treatment, including key proteins such as RPA2, SNRPA, RAD23B, NUP155 and AARS. Our results provide new knowledge on how polyphenols may prevent BaP-induced carcinogenesis.
Collapse
Affiliation(s)
- Chong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
- Karsten Kristiansen
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
- *Correspondence: Guanghong Zhou
| |
Collapse
|
2
|
Cayir A. Environmental exposures and RNA N6-Methyladenosine modified long Non-Coding RNAs. Crit Rev Toxicol 2020; 50:641-649. [PMID: 32924714 DOI: 10.1080/10408444.2020.1812511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent advances in the field of RNA modifications and long non-coding RNAs (lncRNAs) have provided substantial evidence on important biological functions. LncRNAs are defined as longer than 200 nucleotides which are not translated into proteins. The term "epitranscriptome" refers to all modifications in RNA types. Adenine-6 methylation (m6A) is the most common, dynamic and prominent modifications in coding and non-coding RNAs and has critical and previously unappreciated functional roles. Accumulation evidence indicated the association between RNA m6A modification and cancer and nonmalignant diseases. Recent studies reported that several lncRNAs including MALAT1, MEG3, XIST, GAS5, and KCNK15-AS1 are subject to m6A modification. It can be suggested that lncRNAs modified by m6A modification have substantive roles in diseases. Currently limited data are available regarding how environmental exposure affects m6A-modified lncRNAs. Furthermore, we do not know the interaction of environmental exposure and m6A-modified lncRNAs in development of adverse human health outcomes. Thus, in this systematic review, we aimed to present the data of the studies that reported a significant association between environmental exposure and expression/DNA methylation of m6A-modified long non-coding RNAs.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
3
|
Angerer H. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes. BIOLOGY 2015; 4:133-50. [PMID: 25686363 PMCID: PMC4381221 DOI: 10.3390/biology4010133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/04/2015] [Indexed: 01/18/2023]
Abstract
In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.
Collapse
Affiliation(s)
- Heike Angerer
- Goethe University Frankfurt, Medical School, Institute of Biochemistry II, Structural Bioenergetics Group, Max-von-Laue Street 9, Frankfurt am Main 60438, Germany.
| |
Collapse
|
4
|
Huang YC, Yu HS, Chai CY. Proteins in the ERK pathway are affected by arsenic-treated cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00218k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study revealed that arsenic regulates SLC25A12, PSME3, vinculin, QR and STIP1 expressions through activation of the ERK-signaling pathway.
Collapse
Affiliation(s)
- Ya-Chun Huang
- Department of Pathology
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung City
- Taiwan
| | - Hsin-Su Yu
- Department of Dermatology
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung City
- Taiwan
| | - Chee-Yin Chai
- Department of Pathology
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung City
- Taiwan
| |
Collapse
|
5
|
Moreau M, Ouellet N, Ayotte P, Bouchard M. Effects of intravenous benzo[a]pyrene dose administration on levels of exposure biomarkers, DNA adducts, and gene expression in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:166-184. [PMID: 25506633 DOI: 10.1080/15287394.2014.954072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of benzo[a]pyrene (BaP) administration on biomarkers of exposure and early effects were studied in male Sprague-Dawley rats intravenously injected with doses of 0.4, 4, 10, or 40 μmol BaP/kg . Blood, tissues, and excreta were collected 8 and 24 h posttreatment. BaP and several of its metabolites were simultaneously measured in blood, tissues and excreta by ultra-high-performance liquid chromatography (UHPLC)/fluorescence. DNA adducts of BaP diol epoxide (BaPDE) in lungs were quantified using an ultrasensitive immunoassay with chemiluminescence detection. Expression of selected genes in lungs of treated rats (lung RNA) compared to control rats was also assessed by quantitative real-time polymerase chain reaction. There was a dose-dependent increase in blood, tissue, and excreted levels of BaP metabolites. At 8 and 24 h postinjection, BaP and hydroxyBaP were found in higher concentrations in blood and tissues compared to other analytes. However, diolBaP were excreted in greater amounts in urine and apparently more rapidly than hydroxyBaP. Mean percentages (± SD) of injected dose excreted in urine as 4,5-diolBaP during the 0-8 h and 0-24 h period posttreatment were 0.16 ± 0.027% and 0.14 ± 0.083%, respectively. Corresponding values for 3-OHBaP were 0.0045 ± 0.0009% and 0.026 ± 0.014%. BaP-diones were not detectable in blood, tissues, and excreta; 7,8-diolBaP and BaPtetrol were found to be minor metabolites. There was also a dose-dependent increase in DNA adduct formation in lung. Analysis of gene expression further showed a modulation of Cyp1a1, Cyp1b1, Nqo1, Nrf2, Fos, and Ahr expression at 10- and 40-μmol/kg doses, but not at the lower doses. This study provided a better assessment of the influence of absorbed BaP doses on biological levels of diolBaP and OHBaP exposure biomarkers and association of the latter with early biological alterations, such as DNA adducts and gene expression.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | | | |
Collapse
|
6
|
Moreau M, Ayotte P, Bouchard M. Kinetics of Diol and Hydroxybenzo[a]pyrene Metabolites in Relation to DNA Adduct Formation and Gene Expression in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:725-746. [PMID: 26090558 DOI: 10.1080/15287394.2015.1028119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzo[a]pyrene (BaP) is a human carcinogen, but there are no validated biomarkers of exposure and the relationship of carcinogenesis with early biological alterations is not fully documented. This study aimed at better documenting the toxicokinetics of diolBaP and hydroxyBaP metabolites as potential biomarkers of exposure to BaP in relation to DNA adduct formation and gene expression. Rats were intravenously (iv) injected with 40 μmol/kg BaP. BaP and several metabolites were measured in blood, tissues, and excreta collected at frequent intervals over 72 h posttreatment. BaP diol epoxide (BaPDE)-DNA adduct formation and gene expression were assessed in lungs. 3-HydroxyBaP (3-OHBaP) and 4,5-diolBaP were the most abundant measured metabolites, and differences in time courses were apparent between the two metabolites. Over the 0-72 h period, mean proportions of BaP dose recovered in urine as 3-OHBaP and 4,5-diolBaP (±SD) were 0.017 ± 0.003% and 0.1 ± 0.03%. Corresponding values in feces were 1.5 ± 0.5% and 0.42 ± 0.052%. BaPDE-DNA adducts were significantly increased in lungs and a correlation was observed with urinary 3-OHBaP and 4,5-diolBaP. Analysis of gene expression showed a modulation of expression of metabolic genes (Cyp1a1, Cyp1b1, Nqo1, Ahr) and oxidative stress and repair genes (Nrf2, Rad51). However, BaPDE adducts formation did not exhibit any significant correlation with expression of genes, except a negative correlation with Rad51 expression. Similarly, there was no significant correlation between urinary excretion of OHBaP and diolBaP and expression of genes, except for urinary 7-OHBaP excretion, which was negatively correlated with Rad51 expression. Results indicate that concomitant measurements of diolBaP and OHBaP may serve to better assess the extent of exposure as compared to single metabolite measurements, given kinetic differences between metabolites. Further, although some urinary metabolites were correlated with BaPDE adducts, links with gene expression need to be further investigated.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and the Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | |
Collapse
|
7
|
The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins. Biochem Soc Trans 2013; 41:1335-41. [DOI: 10.1042/bst20130116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial LYRM (leucine/tyrosine/arginine motif) proteins are members of the Complex1_LYR-like superfamily. Individual LYRM proteins have been identified as accessory subunits or assembly factors of mitochondrial OXPHOS (oxidative phosphorylation) complexes I, II, III and V respectively, and they play particular roles in the essential Fe–S cluster biogenesis and in acetate metabolism. LYRM proteins have been implicated in mitochondrial dysfunction, e.g. in the context of insulin resistance. However, the functional significance of the common LYRM is still unknown. Analysis of protein–protein interaction screens suggests that LYRM proteins form protein complexes with phylogenetically ancient proteins of bacterial origin. Interestingly, the mitochondrial FAS (fatty acid synthesis) type II acyl-carrier protein ACPM associates with some of the LYRM protein-containing complexes. Eukaryotic LYRM proteins interfere with mitochondrial homoeostasis and might function as adaptor-like ‘accessory factors’.
Collapse
|
8
|
Fang X, Thornton C, Scheffler BE, Willett KL. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:40-50. [PMID: 23542452 PMCID: PMC3654064 DOI: 10.1016/j.etap.2013.02.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/09/2013] [Indexed: 05/17/2023]
Abstract
DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24μg/L from 2.5 to 96hpf to zebrafish embryos significantly decreased global cytosine methylation by 44.8% and promoter methylation in vasa by 17%. Consequently, vasa expression was significantly increased by 33%. In contrast, BaP exposure at environmentally relevant concentrations did not change CpG island methylation or gene expression in cancer genes such as ras-association domain family member 1 (rassf1), telomerase reverse transcriptase (tert), c-jun, and c-myca. Similarly, BaP did not change gene expression of DNA methyltransferase 1 (dnmt1) and glycine N-methyltransferase (gnmt). While total DNMT activity was not affected, GNMT enzyme activity was moderately increased. In summary, BaP is an epigenetic modifier for global and gene specific DNA methylation status in zebrafish larvae.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Brian E. Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, Stoneville, MS 38776
| | - Kristine L. Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
- Corresponding author Box 1848, 303 Faser Hall Department of Pharmacology University of Mississippi University, MS, 38677 Tel: (662) 915-6691 Fax: (662) 915-5148
| |
Collapse
|
9
|
Zhu H, Fan Y, Shen J, Qi H, Shao J. Characterization of human DNA polymerase κ promoter in response to benzo[a]pyrene diol epoxide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:205-211. [PMID: 22227292 DOI: 10.1016/j.etap.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/18/2011] [Accepted: 12/04/2011] [Indexed: 05/31/2023]
Abstract
DNA polymerase κ (Pol κ), a member of Y-family DNA polymerases, can synthesize DNA with moderate fidelity on undamaged DNAs and replicate accurately in vitro thymine glycol, 8-oxo-G and aromatic adducts such as benzo[a]pyrene diol epoxide (BPDE). However, few studies have been done on the transcriptional regulation of Pol κ. In this study, we predicted and cloned the promoter region of the human POLK gene. Through the analysis of deletion constructs of the POLK promoter, we demonstrated that the region -336/-141 contained repressing elements and the region -141/+226 contained positive regulatory elements for transcription of human Pol κ. Furthermore, quantitative RT-PCR showed that human POLK mRNA expression was dysregulated in FL cells treated by BPDE. The transcriptional activities of the POLK promoter regions -336/+437 and +20/+437 were significantly reduced by BPDE treatment, indicating that transcription factors in this two regions, such as HSF1, may regulate the transcription of human POLK gene in response to BPDE.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity
- Base Sequence
- Binding Sites
- Carcinogens, Environmental/toxicity
- Cells, Cultured
- Cloning, Molecular
- Computational Biology
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- Epithelial Cells/enzymology
- Genes, Reporter
- Humans
- Luciferases, Firefly/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- Huifang Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
10
|
Michaelson JJ, Trump S, Rudzok S, Gräbsch C, Madureira DJ, Dautel F, Mai J, Attinger S, Schirmer K, von Bergen M, Lehmann I, Beyer A. Transcriptional signatures of regulatory and toxic responses to benzo-[a]-pyrene exposure. BMC Genomics 2011; 12:502. [PMID: 21995607 PMCID: PMC3215681 DOI: 10.1186/1471-2164-12-502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/13/2011] [Indexed: 01/01/2023] Open
Abstract
Background Small molecule ligands often have multiple effects on the transcriptional program of a cell: they trigger a receptor specific response and additional, indirect responses ("side effects"). Distinguishing those responses is important for understanding side effects of drugs and for elucidating molecular mechanisms of toxic chemicals. Results We explored this problem by exposing cells to the environmental contaminant benzo-[a]-pyrene (B[a]P). B[a]P exposure activates the aryl hydrocarbon receptor (Ahr) and causes toxic stress resulting in transcriptional changes that are not regulated through Ahr. We sought to distinguish these two types of responses based on a time course of expression changes measured after B[a]P exposure. Using Random Forest machine learning we classified 81 primary Ahr responders and 1,308 genes regulated as side effects. Subsequent weighted clustering gave further insight into the connection between expression pattern, mode of regulation, and biological function. Finally, the accuracy of the predictions was supported through extensive experimental validation. Conclusion Using a combination of machine learning followed by extensive experimental validation, we have further expanded the known catalog of genes regulated by the environmentally sensitive transcription factor Ahr. More broadly, this study presents a strategy for distinguishing receptor-dependent responses and side effects based on expression time courses.
Collapse
Affiliation(s)
- Jacob J Michaelson
- Cellular Networks and Systems Biology, Biotechnology Center, TU Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Q, Jiang H, Fan Y, Huang X, Shen J, Qi H, Li Q, Lu X, Shao J. Phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α) alleviates benzo[a]pyrene-7,8-diol-9,10-epoxide induced cell cycle arrest and apoptosis in human cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:18-24. [PMID: 21787665 DOI: 10.1016/j.etap.2010.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 08/31/2010] [Indexed: 05/31/2023]
Abstract
Benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) is a carcinogen causing bulky-adduct DNA damage and inducing extensive cell responses regulating cell cycle, cell survival and apoptosis. However, the mechanism of cellular responses to BPDE exposure is not fully understood. In this study, we demonstrated the involvement of the phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α) in the cellular response to BPDE exposure and addressed the role of eIF2α phosphorylation in the regulation of the cellular stress. Phosphorylation of eIF2α was induced in a normal human FL amnion epithelial cell line, and the expression of ATF4, a conserved downstream transcriptional factor of eIF2α phosphorylation, was up-regulated after BPDE exposure; however, the four known primary kinases for eIF2α phosphorylation (GCN2, HRI, PKR, and PERK) were not found activated. While BPDE induced severe cell cycle arrest and apoptosis and decreased cell viability in FL cells, salubrinal, a selective inhibitor of eIF2α dephosphorylation, maintained the eIF2α phosphorylation and attenuated cell cycle arrest and apoptosis and promoted cell survival. The findings reveal that when BPDE causes cellular damages, it induces eIF2α phosphorylation as well, which produces a pro-survival and anti-apoptotic effect to alleviate the cellular damages. Thus, the present study proposes a new cellular defensive mechanism during the environmental mutagen and carcinogen attack.
Collapse
Affiliation(s)
- Qiaoling Wang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 388 Yuhang Tang Road, Hangzhou 310058, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lenglet G, David-Cordonnier MH. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences. J Nucleic Acids 2010; 2010. [PMID: 20725618 PMCID: PMC2915751 DOI: 10.4061/2010/290935] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 01/06/2023] Open
Abstract
DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.
Collapse
Affiliation(s)
- Gaëlle Lenglet
- INSERM U-837, Jean-Pierre Aubert Research Center (JPARC), Team 4 Molecular and Cellular Targeting for Cancer Treatment, Institute for Research on Cancer of Lille (IRCL), Lille F-59045, France
| | | |
Collapse
|