1
|
Wang J, Wang D. Mitophagy in gynecological malignancies: roles, advances, and therapeutic potential. Cell Death Discov 2024; 10:488. [PMID: 39639053 PMCID: PMC11621523 DOI: 10.1038/s41420-024-02259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Mitophagy is a process in which impaired or dysfunctional mitochondria are selectively eliminated through the autophagy mechanism to maintain mitochondrial quality control and cellular homeostasis. Based on specific target signals, several mitophagy processes have been identified. Defects in mitophagy are associated with various pathological conditions, including neurodegenerative disorders, cardiovascular diseases, metabolic diseases, and cancer. Mitophagy has been shown to play a critical role in the pathogenesis of gynecological malignancies and the development of drug resistance. In this review, we have summarized and discussed the role and recent advances in understanding the therapeutic potential of mitophagy in the development of gynecological malignancies. Therefore, the valuable insights provided in this review may serve as a basis for further studies that contribute to the development of novel treatment strategies and improved patient outcomes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Bailey SM, Kunkel SR, Bedford JS, Cornforth MN. The Central Role of Cytogenetics in Radiation Biology. Radiat Res 2024; 202:227-259. [PMID: 38981612 DOI: 10.1667/rade-24-00038.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Radiation cytogenetics has a rich history seldom appreciated by those outside the field. Early radiobiology was dominated by physics and biophysical concepts that borrowed heavily from the study of radiation-induced chromosome aberrations. From such studies, quantitative relationships between biological effect and changes in absorbed dose, dose rate and ionization density were codified into key concepts of radiobiological theory that have persisted for nearly a century. This review aims to provide a historical perspective of some of these concepts, including evidence supporting the contention that chromosome aberrations underlie development of many, if not most, of the biological effects of concern for humans exposed to ionizing radiations including cancer induction, on the one hand, and tumor eradication on the other. The significance of discoveries originating from these studies has widened and extended far beyond their original scope. Chromosome structural rearrangements viewed in mitotic cells were first attributed to the production of breaks by the radiations during interphase, followed by the rejoining or mis-rejoining among ends of other nearby breaks. These relatively modest beginnings eventually led to the discovery and characterization of DNA repair of double-strand breaks by non-homologous end joining, whose importance to various biological processes is now widely appreciated. Two examples, among many, are V(D)J recombination and speciation. Rapid technological advancements in cytogenetics, the burgeoning fields of molecular radiobiology and third-generation sequencing served as a point of confluence between the old and new. As a result, the emergent field of "cytogenomics" now becomes uniquely positioned for the purpose of more fully understanding mechanisms underlying the biological effects of ionizing radiation exposure.
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Stephen R Kunkel
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Joel S Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
3
|
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy. Int J Mol Sci 2022; 23:ijms231911343. [PMID: 36232638 PMCID: PMC9569617 DOI: 10.3390/ijms231911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.
Collapse
|
4
|
Balajee AS, Livingston GK, Escalona MB, Ryan TL, Goans RE, Iddins CJ. Cytogenetic follow-up studies on humans with internal and external exposure to ionizing radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S578-S601. [PMID: 34233319 DOI: 10.1088/1361-6498/ac125a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cells exposed to ionizing radiation have a wide spectrum of DNA lesions that include DNA single-strand breaks, DNA double-strand breaks (DSBs), oxidative base damage and DNA-protein crosslinks. Among them, DSB is the most critical lesion, which when mis-repaired leads to unstable and stable chromosome aberrations. Currently, chromosome aberration analysis is the preferred method for biological monitoring of radiation-exposed humans. Stable chromosome aberrations, such as inversions and balanced translocations, persist in the peripheral blood lymphocytes of radiation-exposed humans for several years and, therefore, are potentially useful tools to prognosticate the health risks of radiation exposure, particularly in the hematopoietic system. In this review, we summarize the cytogenetic follow-up studies performed by REAC/TS (Radiation Emergency Assistance Center/Training site, Oak Ridge, USA) on humans exposed to internal and external radiation. In the light of our observations as well as the data existing in the literature, this review attempts to highlight the importance of follow-up studies for predicting the extent of genomic instability and its impact on delayed health risks in radiation-exposed victims.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Gordon K Livingston
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Ronald E Goans
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Carol J Iddins
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Centre/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| |
Collapse
|
5
|
Berzsenyi I, Pantazi V, Borsos BN, Pankotai T. Systematic overview on the most widespread techniques for inducing and visualizing the DNA double-strand breaks. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108397. [PMID: 34893162 DOI: 10.1016/j.mrrev.2021.108397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
DNA double-strand breaks (DSBs) are one of the most frequent causes of initiating cancerous malformations, therefore, to reduce the risk, cells have developed sophisticated DNA repair mechanisms. These pathways ensure proper cellular function and genome integrity. However, any alteration or malfunction during DNA repair can influence cellular homeostasis, as improper recognition of the DNA damage or dysregulation of the repair process can lead to genome instability. Several powerful methods have been established to extend our current knowledge in the field of DNA repair. For this reason, in this review, we focus on the methods used to study DSB repair, and we summarize the advantages and disadvantages of the most commonly used techniques currently available for the site-specific induction of DSBs and the subsequent tracking of the repair processes in human cells. We highlight methods that are suitable for site-specific DSB induction (by restriction endonucleases, CRISPR-mediated DSB induction and laser microirradiation) as well as approaches [e.g., fluorescence-, confocal- and super-resolution microscopy, chromatin immunoprecipitation (ChIP), DSB-labeling and sequencing techniques] to visualize and follow the kinetics of DSB repair.
Collapse
Affiliation(s)
- Ivett Berzsenyi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Állomás Street H-6725, Szeged, Hungary.
| | - Vasiliki Pantazi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Állomás Street H-6725, Szeged, Hungary.
| | - Barbara N Borsos
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Állomás Street H-6725, Szeged, Hungary.
| | - Tibor Pankotai
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Állomás Street H-6725, Szeged, Hungary.
| |
Collapse
|
6
|
Mladenova V, Mladenov E, Scholz M, Stuschke M, Iliakis G. Strong Shift to ATR-Dependent Regulation of the G 2-Checkpoint after Exposure to High-LET Radiation. Life (Basel) 2021; 11:life11060560. [PMID: 34198619 PMCID: PMC8232161 DOI: 10.3390/life11060560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
The utilization of high linear-energy-transfer (LET) ionizing radiation (IR) modalities is rapidly growing worldwide, causing excitement but also raising concerns, because our understanding of their biological effects is incomplete. Charged particles such as protons and heavy ions have increasing potential in cancer therapy, due to their advantageous physical properties over X-rays (photons), but are also present in the space environment, adding to the health risks of space missions. Therapy improvements and the protection of humans during space travel will benefit from a better understanding of the mechanisms underpinning the biological effects of high-LET IR. There is evidence that high-LET IR induces DNA double-strand breaks (DSBs) of increasing complexity, causing enhanced cell killing, owing, at least partly, to the frequent engagement of a low-fidelity DSB-repair pathway: alternative end-joining (alt-EJ), which is known to frequently induce severe structural chromosomal abnormalities (SCAs). Here, we evaluate the radiosensitivity of A549 lung adenocarcinoma cells to X-rays, α-particles and 56Fe ions, as well as of HCT116 colorectal cancer cells to X-rays and α-particles. We observe the expected increase in cell killing following high-LET irradiation that correlates with the increased formation of SCAs as detected by mFISH. Furthermore, we report that cells exposed to low doses of α-particles and 56Fe ions show an enhanced G2-checkpoint response which is mainly regulated by ATR, rather than the coordinated ATM/ATR-dependent regulation observed after exposure to low doses of X-rays. These observations advance our understanding of the mechanisms underpinning high-LET IR effects, and suggest the potential utility for ATR inhibitors in high-LET radiation therapy.
Collapse
Affiliation(s)
- Veronika Mladenova
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Emil Mladenov
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Scholz
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence:
| |
Collapse
|
7
|
Almayahi BA. Alpha particle rates and heavy metal concentrations in cosmetics available in the Najaf markets. Heliyon 2021; 7:e07067. [PMID: 34041406 PMCID: PMC8141883 DOI: 10.1016/j.heliyon.2021.e07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/31/2021] [Accepted: 05/11/2021] [Indexed: 11/01/2022] Open
Abstract
This study focuses to measure the emission of alpha particle rates (EAPR) and heavy metal concentrations (Cd, Pb, Zn, Cr, and Co) (HMC) in some cosmetics (kohl eye, compact powder, and lipsticks) from Najaf markets using CR39 Detectors and Spectrophotometry, respectively. The EAPR range from 0.0068 to 0.0499 mBq cm-2. The mean concentration of HMC in cosmetics ranged from 0.0007 to 0.0339 ppm (Cd), 0.0002-0.0986 ppm (Pb), 0.0350-9.7786 ppm (Zn), 0.0001-0.0058 ppm (Cr), 0.0011-0.1510 ppm (Co). The concentrations of Cr and Co were below the recommended limit for skin protection (1 ppm), whereas Cd and Pb were below the Canadian recommended limit. This study concludes that the HMC and EAPR in the cosmetics were within the recommended limits. The mean HMC contents were arranged in the order: Zn > Pb > Cd > Co > Cr for lipsticks; Zn > Co > Pb > Cd > Cr for powder; Zn > Co > Pb > Cd > Cr for Kohl. A statistically significant correlation (SSC) between HMC and EAPR in cosmetics was found at the 0.05 level. All the various cosmetics brands that contained HMC levels were lower than EPA limits (1 ppm and 0.3ppm, respectively), except the Zn. The cumulative exposure to HMC in cosmetics because of prolonged use is a possible source of HMC toxicity.
Collapse
Affiliation(s)
- B A Almayahi
- Department of Environment, Faculty of Science, University of Kufa, Najaf Governorate, Iraq
| |
Collapse
|
8
|
Cai TJ, Li S, Lu X, Zhang CF, Yuan JL, Zhang QZ, Tian XL, Lian DX, Li MS, Zhang Z, Liu G, Zhao H, Niu LM, Tian M, Hou CS, Liu QJ. Dose-effect relationships of 12C 6+ ions-induced dicentric plus ring chromosomes, micronucleus and nucleoplasmic bridges in human lymphocytes in vitro. Int J Radiat Biol 2021; 97:657-663. [PMID: 33704009 DOI: 10.1080/09553002.2021.1900945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes. MATERIALS AND METHODS Venous blood samples were collected from three healthy donors. 12C6+ ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/μm with a dose rate of 1 Gy/min in the spread-out Bragg peak. The irradiated doses were 0 (sham irradiation), 1, 2, 3, 4, 5 and 6 Gy. Dic + r chromosomes aberrations were scored in metaphases. The cytokinesis-block micronucleus cytome (CBMN) was conducted to analyze MN and NPB. The maximum low-dose relative biological effectiveness (RBEM) values of the induction of dic + r, MN and NPB in human lymphocytes for 12C6+ ions irradiation was calculated relative to 60Co γ-rays. RESULTS The frequencies of dic + r, MN and NPB showed significantly increases in a dose-depended manner after exposure to 12C6+ ions. The distributions of dic + r and MN exhibited overdispersion, while the distribution of NPB agreed with Poisson distribution at all doses. Linear-quadratic equations were established based on the frequencies of dic + r and MN. The dose-response curves of NPB frequencies followed a linear model. The derived RBEM values for dic + r, MN and NPB in human lymphocytes irradiated with 12C6+ ions were 8.07 ± 2.73, 2.69 ± 0.20 and 4.00 ± 2.69 in comparison with 60Co γ-rays. CONCLUSION The dose-response curves of carbon ions-induced dic + r, MN and NPB were constructed. These results could be helpful to improve radiation risk assessment and dose estimation after exposed to carbon ions irradiation.
Collapse
Affiliation(s)
- Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chun-Fei Zhang
- Central Medical District of PLA General Hospital, Beijing, P. R. China
| | - Ji-Long Yuan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - De-Xing Lian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Ming-Sheng Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Zhen Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Gang Liu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Li-Mei Niu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chang-Song Hou
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| |
Collapse
|
9
|
Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Cancers (Basel) 2020; 12:cancers12092336. [PMID: 32825012 PMCID: PMC7563219 DOI: 10.3390/cancers12092336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 01/21/2023] Open
Abstract
For precision cancer radiotherapy, high linear energy transfer (LET) particle irradiation offers a substantial advantage over photon-based irradiation. In contrast to the sparse deposition of low-density energy by χ- or γ-rays, particle irradiation causes focal DNA damage through high-density energy deposition along the particle tracks. This is characterized by the formation of multiple damage sites, comprising localized clustered patterns of DNA single- and double-strand breaks as well as base damage. These clustered DNA lesions are key determinants of the enhanced relative biological effectiveness (RBE) of energetic nuclei. However, the search for a fingerprint of particle exposure remains open, while the mechanisms underlying the induction of chromothripsis-like chromosomal rearrangements by high-LET radiation (resembling chromothripsis in tumors) await to be elucidated. In this work, we investigate the transformation of clustered DNA lesions into chromosome fragmentation, as indicated by the induction and post-irradiation repair of chromosomal damage under the dynamics of premature chromosome condensation in G0 human lymphocytes. Specifically, this study provides, for the first time, experimental evidence that particle irradiation induces localized shattering of targeted chromosome domains. Yields of chromosome fragments and shattered domains are compared with those generated by γ-rays; and the RBE values obtained are up to 28.6 for α-particles (92 keV/μm), 10.5 for C-ions (295 keV/μm), and 4.9 for protons (28.5 keV/μm). Furthermore, we test the hypothesis that particle radiation-induced persistent clustered DNA lesions and chromatin decompaction at damage sites evolve into localized chromosome shattering by subsequent chromatin condensation in a single catastrophic event—posing a critical risk for random rejoining, chromothripsis, and carcinogenesis. Consistent with this hypothesis, our results highlight the potential use of shattered chromosome domains as a fingerprint of high-LET exposure, while conforming to the new model we propose for the mechanistic origin of chromothripsis-like rearrangements.
Collapse
|
10
|
Yadav U, Bhat NN, Shirsath KB, Mungse US, Sapra BK. Multifaceted applications of pre-mature chromosome condensation in radiation biodosimetry. Int J Radiat Biol 2020; 96:1274-1280. [PMID: 32689847 DOI: 10.1080/09553002.2020.1798545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Biodosimetry with persistent cytogenetic indicators in peripheral blood lymphocytes (PBLs) plays crucial role in regulatory/medical management of individuals overexposed to radiation. Conventional methods require ∼48 h culture and have limited dose range (0.1-5Gy) applications due to checkpoint arrest/poor stimulation. G0-Phase Premature chromosome condensation (G0-PCC) allows chromosome aberration analysis within hours after blood collection. Due to high skill demand, applications of G0-PCC were not very well explored and being re-visited worldwide. Among all aberrations, analysis of excess chromosomal fragments is quickest. Radiation dose response curve for the fragments has been reported. PURPOSE In present study, excess fragment analysis has been addressed in detail, in addition to validation of radiation dose response curve, gender variation in the response, dose dependent repair kinetics, minimum detection limit (MDL), duration and accuracy of final dose estimation with 5blindfolded, ex vivo irradiated samples have been studied. In extension, feasibility of multiparametric dosimetry with Fluorescent in situ hybridization (FISH) based endpoints were qualitatively explored. MATERIAL AND METHODS PBLs were exposed to Gamma-Radiation and G0-PCC was performed at different time points. Decay kinetics and dose response curve were established. Gender Variation of the frequency of the fragments was assessed at 0, 2 and 4 Gy. FISH was performed with G0-PCC applying centromere probe, whole chromosome paints, multi-color FISH and multi-color banding probes. RESULTS Radiation response curve for fragments was found to be linear (Slope 1.09 ± 0.031 Gy-1). Background frequency as well as dose response did not show significant gender bias. Based on variation in background frequency of fragments MDL was calculated to be ∼0.3 Gy. Kinetics of fragment tested at 0, 4, 8, 16 and 24 h showed exponential decay pattern from 0 to 8 h and without further decay. Final dose estimation of five samples was completed within 13 man-hours. Dicentric chromosomes, translocations, insertions and breaks were identifiable in combination with centromere FISH and WCP. Advanced methods employing multicolor FISH and multi-color banding were also demonstrated with PCC spreads. CONCLUSION G0-PCC, can be useful tool for high dose biodosimetry with quick assessment of fragment frequency. Further, it holds potential for multi-parametric dosimetry in combination with FISH.
Collapse
Affiliation(s)
- Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nagesh Nagabhushana Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | | | - Utkarsha Sagar Mungse
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Balvinder Kaur Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Almayahi BA, Aljarrah N. Relationship between heavy metals and alpha particles as a marker of environmental pollution in rice consumed in Najaf, Iraq. Heliyon 2019; 6:e03134. [PMID: 31909285 PMCID: PMC6940646 DOI: 10.1016/j.heliyon.2019.e03134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 11/01/2022] Open
Abstract
This study focuses on the emission of alpha particle rates (EAPR) and heavy metal concentrations (HMC) in the rice from Najaf markets. Nuclear Track Detectors and Flame Atomic Absorption Spectrophotometry, were used respectively. This study shows the pollution in the environment through AP and HM and also finds the relationship between AP and HM. The highest EAPR was found to be about 0.0249 mBq cm-2 in the basmati rice, whereas, the lowest EAPR (0.0092 mBq cm-2) was found in the Indian basmati rice. Highest Fe was found to be about 2.7237 mg/kg in basmati rice, while the lowest Fe (0.3997 mg/kg) was found in the USA basmati rice. Highest Cd was found to be about 0.0468 mg/kg in Iraqi Alnasryah rice, while the lowest Cd (0.0034 mg/kg) was found in Indian basmati rice. The most upper Pb was found to be about 0.2431 mg/kg in Babil Anbar Iraqi rice, while the lowest Pb (0.0695 mg/kg) was found in Indian basmati rice. Pb and Cd were lower than the FAO/WHO recommended limits (Pb, Cd: 0.50 mg/g) and the European Union acceptable dietary limits. In the combination of recent rice consumption data, an estimated weekly intake of toxic element was calculated for the Iraq population. A statistically significant correlation was found between EAPR and HMC in rice at the 0.05 level.
Collapse
Affiliation(s)
- B A Almayahi
- Department of Environment, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Naheda Aljarrah
- Department of Physics, College of Dentistry, Babylon University, Hilla, Iraq
| |
Collapse
|
12
|
Jin X, Zheng X, Li F, Liu B, Li H, Hirayama R, Li P, Liu X, Shen G, Li Q. Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions. Radiother Oncol 2018; 129:75-83. [DOI: 10.1016/j.radonc.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
|
13
|
Balajee AS, Hande MP. History and evolution of cytogenetic techniques: Current and future applications in basic and clinical research. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:3-12. [PMID: 30389159 DOI: 10.1016/j.mrgentox.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Chromosomes are the vehicles of genes, which are the functional units of a cell's nucleus. In humans, there are more than 20,000 genes that are distributed among 46 chromosomes in somatic cells. The study of chromosome structure and function is known as cytogenetics which is historically a field of hybrid science encompassing cytology and genetics. The field of cytogenetics has undergone rapid developments over the last several decades from classical Giemsa staining of chromosomes to 3-dimensional spatial organization of chromosomes with a high resolution mapping of gene structure at the nucleotide level. Improved molecular cytogenetic techniques have opened up exciting possibilities for understanding the chromosomal/molecular basis of various human diseases including cancer and tissue degeneration. This review summaries the history and evolution of various cytogenetic techniques and their current and future applications in diverse areas of basic research and medical diagnostics.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN 37830, USA.
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, 117593, Singapore.
| |
Collapse
|
14
|
Cornforth MN, Anur P, Wang N, Robinson E, Ray FA, Bedford JS, Loucas BD, Williams ES, Peto M, Spellman P, Kollipara R, Kittler R, Gray JW, Bailey SM. Molecular Cytogenetics Guides Massively Parallel Sequencing of a Radiation-Induced Chromosome Translocation in Human Cells. Radiat Res 2018; 190:88-97. [PMID: 29749794 PMCID: PMC6055522 DOI: 10.1667/rr15053.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.
Collapse
Affiliation(s)
- Michael N. Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555
- KromaTiD Inc., Fort Collins, Colorado 80523
| | - Pavana Anur
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Nicholas Wang
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | | | - F. Andrew Ray
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Joel S. Bedford
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Bradford D. Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Eli S. Williams
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Myron Peto
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Paul Spellman
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Rahul Kollipara
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Ralf Kittler
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joe W. Gray
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Susan M. Bailey
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
15
|
Malakhova LV, Lomaeva MG, Zakharova ML, Kirillova EN, Sokolova SN, Antipova VN, Bezlepkin VG. Mitochondrial DNA deletions in the peripheral blood of workers at the Mayak PA who were exposed to long-term combined effects of external γ- and internal α-radiation. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Friedman DA, Tait L, Vaughan ATM. Influence of nuclear structure on the formation of radiation-induced lethal lesions. Int J Radiat Biol 2016; 92:229-40. [DOI: 10.3109/09553002.2016.1144941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Berardinelli F, De Vitis M, Nieri D, Cherubini R, De Nadal V, Gerardi S, Tanzarella C, Sgura A, Antoccia A. mBAND and mFISH analysis of chromosomal aberrations and breakpoint distribution in chromosome 1 of AG01522 human fibroblasts that were exposed to radiation of different qualities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:55-63. [DOI: 10.1016/j.mrgentox.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022]
|
18
|
Samarth RM, Samarth M, Matsumoto Y. Utilization of cytogenetic biomarkers as a tool for assessment of radiation injury and evaluation of radiomodulatory effects of various medicinal plants - a review. Drug Des Devel Ther 2015; 9:5355-72. [PMID: 26451089 PMCID: PMC4590411 DOI: 10.2147/dddt.s91299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Systematic biological measurement of “cytogenetic endpoints” has helped phenomenally in assessment of risks associated with radiation exposure. There has been a surge in recent times for the usage of radioactive materials in health care, agriculture, industrial, and nuclear power sectors. The likelihood of radiation exposure from accidental or occupational means is always higher in an overburdened ecosystem that is continuously challenged to meet the population demands. Risks associated with radiation exposure in this era of modern industrial growth are minimal as international regulations for maintaining the safety standards are stringent and strictly adhered to, however, a recent disaster like “Fukushima” impels us to think beyond. The major objective of radiobiology is the development of an orally effective radio-modifier that provides protection from radiation exposure. Once available for mass usage, these compounds will not only be useful for providing selective protection against accidental and occupational radiation exposure but also help to permit use of higher doses of radiation during treatment of various malignancies curtailing unwarranted adverse effects imposed on normal tissues. Bio-active compounds isolated from natural sources enriched with antioxidants possess unique immune-modulating properties, thus providing a double edged benefit over synthetic radioprotectors. We aim to provide here a comprehensive overview of the various agents originating from plant sources that portrayed promising radioprotection in various experimental models with special emphasis on studies that used cytogenetic biomarkers. The agents will include crude extracts of various medicinal plants, purified fractions, and herbal preparations.
Collapse
Affiliation(s)
- Ravindra M Samarth
- Department of Research, Bhopal Memorial Hospital and Research Centre (ICMR), Bhopal, India ; National Institute for Research in Environmental Health (NIREH), Indian Council of Medical Research, Bhopal, India
| | - Meenakshi Samarth
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
19
|
Hill MA. Fishing for radiation quality: chromosome aberrations and the role of radiation track structure. RADIATION PROTECTION DOSIMETRY 2015; 166:295-301. [PMID: 25883310 DOI: 10.1093/rpd/ncv151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The yield of chromosome aberrations is not only dependent on dose but also on radiation quality, with high linear energy transfer (LET) typically having a greater biological effectiveness per unit dose than those of low-LET radiation. Differences in radiation track structure and cell morphology can also lead to quantitative differences in the spectra of the resulting chromosomal rearrangements, especially at low doses associated with typical human exposures. The development of combinatorial fluorescent labelling techniques (such as mFISH and mBAND) has helped to reveal the complexity of rearrangements, showing increasing complexity of observed rearrangements with increasing LET but has a resolution limited to ∼10 MBp. High-LET particles have not only been shown to produce clustered sites of DNA damage but also produce multiple correlated breaks along its path resulting in DNA fragments smaller than the resolution of these techniques. Additionally, studies have shown that the vast majority of radiation-induced HPRT mutations were also not detectable using fluorescent in situ hybridisation (FISH) techniques, with correlation of breaks along the track being reflected in the complexity of mutations, with intra- and inter-chromosomal insertions, and inversions occurring at the sites of some of the deletions. Therefore, the analysis of visible chromosomal rearrangements observed using current FISH techniques is likely to represent just the tip of the iceberg, considerably underestimating the extent and complexity of radiation induced rearrangements.
Collapse
Affiliation(s)
- M A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
20
|
Dong C, He M, Ren R, Xie Y, Yuan D, Dang B, Li W, Shao C. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with γ-rays or carbon ions. Life Sci 2015; 127:19-25. [PMID: 25748424 DOI: 10.1016/j.lfs.2015.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/20/2023]
Abstract
AIMS The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. MAIN METHODS Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. KEY FINDINGS Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. SIGNIFICANCE The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Ruiping Ren
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
21
|
Radivoyevitch T, Li H, Sachs RK. Etiology and treatment of hematological neoplasms: stochastic mathematical models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:317-46. [PMID: 25480649 DOI: 10.1007/978-1-4939-2095-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Leukemias are driven by stemlike cancer cells (SLCC), whose initiation, growth, response to treatment, and posttreatment behavior are often "stochastic", i.e., differ substantially even among very similar patients for reasons not observable with present techniques. We review the probabilistic mathematical methods used to analyze stochastics and give two specific examples. The first example concerns a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We argue mathematically that, if independent SLCC are growing stochastically during prolonged treatment, then, other things being equal, front-loading doses are more effective for tumor eradication than back loading. We also argue that the interacting SLCC dynamics during treatment is often best modeled by considering SLCC in microenvironmental niches, with SLCC-SLCC interactions occurring only among SLCC within the same niche, and we present a stochastic dynamics formalism, involving "Poissonization," applicable in such situations. Interactions at a distance due to partial control of total cell numbers are also considered. The second half of this chapter concerns chromosomal aberrations, lesions known to cause some leukemias. A specific example is the induction of a Philadelphia chromosome by ionizing radiation, subsequent development of chronic myeloid leukemia (CML), CML treatment, and treatment outcome. This time evolution involves a coordinated sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular, macromolecular, cellular, tissue, and population scales, with corresponding time scales ranging from picoseconds to decades. We discuss models of these steps and progress in integrating models across scales.
Collapse
Affiliation(s)
- Tomas Radivoyevitch
- Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA,
| | | | | |
Collapse
|
22
|
Zhang B, Davidson MM, Hei TK. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:80-88. [PMID: 25072018 PMCID: PMC4111269 DOI: 10.1016/j.lssr.2014.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation find in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation, to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy, micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.
Collapse
Affiliation(s)
- Bo Zhang
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, VC 11-205/218, New York, N.Y. 10032
| | - Mercy M. Davidson
- Department of Radiation Oncology, Columbia University, 630 West 168th Street, P&S 11-451, New York, N.Y. 10032
| | - Tom K. Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, VC 11-205/218, New York, N.Y. 10032
- Corresponding authors: Tom K. Hei, Center for Radiological Research, 630 West 168th Street, VC 11-205/218, New York, N.Y. 10032. ; Phone: 212-305-8462; Fax: 212-305-3229
| |
Collapse
|
23
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
24
|
Pignalosa D, Lee R, Hartel C, Sommer S, Nikoghosyan A, Debus J, Ritter S, Durante M. Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions. Radiother Oncol 2013; 109:256-61. [DOI: 10.1016/j.radonc.2013.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
25
|
Friedland W, Kundrát P. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:213-23. [DOI: 10.1016/j.mrgentox.2013.06.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 02/01/2023]
|
26
|
Si J, Zhang H, Wang Z, Wu Z, Lu J, Di C, Zhou X, Wang X. Effects of (12)C(6+) ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression. Mutat Res 2013; 745-746:26-33. [PMID: 23535216 DOI: 10.1016/j.mrfmmm.2013.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1Gy, 3Gy and 7Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn-sod, Mn-sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better understand the mechanism of carbon ion-induced oxidative stress and FA-induced radioprotective effects.
Collapse
Affiliation(s)
- Jing Si
- Department of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:258-286. [DOI: 10.1016/j.mrrev.2012.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 02/07/2023]
|