1
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Fu J, Ling J, Li CF, Tsai CL, Yin W, Hou J, Chen P, Cao Y, Kang Y, Sun Y, Xia X, Jiang Z, Furukawa K, Lu Y, Wu M, Huang Q, Yao J, Hawke DH, Pan BF, Zhao J, Huang J, Wang H, Bahassi EIM, Stambrook PJ, Huang P, Fleming JB, Maitra A, Tainer JA, Hung MC, Lin C, Chiao PJ. Nardilysin-regulated scission mechanism activates polo-like kinase 3 to suppress the development of pancreatic cancer. Nat Commun 2024; 15:3149. [PMID: 38605037 PMCID: PMC11009390 DOI: 10.1038/s41467-024-47242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.
Collapse
Affiliation(s)
- Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenjuan Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Cao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yichen Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghou Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenei Furukawa
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Lu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qian Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - E I Mustapha Bahassi
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peng Huang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Pritchett EM, Van Goor A, Schneider BK, Young M, Lamont SJ, Schmidt CJ. Chicken pituitary transcriptomic responses to acute heat stress. Mol Biol Rep 2023; 50:5233-5246. [PMID: 37127810 DOI: 10.1007/s11033-023-08464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Poultry production is vulnerable to increasing temperatures in terms of animal welfare and in economic losses. With the predicted increase in global temperature and the number and severity of heat waves, it is important to understand how chickens raised for food respond to heat stress. This knowledge can be used to determine how to select chickens that are adapted to thermal challenge. As neuroendocrine organs, the hypothalamus and pituitary provide systemic regulation of the heat stress response. METHODS AND RESULTS Here we report a transcriptome analysis of the pituitary response to acute heat stress. Chickens were stressed for 2 h at 35 °C (HS) and transcriptomes compared with birds maintained in thermoneutral temperatures (25 °C). CONCLUSIONS The observations were evaluated in the context of ontology terms and pathways to describe the pituitary response to heat stress. The pituitaries of heat stressed birds exhibited responses to hyperthermia through altered expression of genes coding for chaperones, cell cycle regulators, cholesterol synthesis, transcription factors, along with the secreted peptide hormones, prolactin, and proopiomelanocortin.
Collapse
Affiliation(s)
| | - Angelica Van Goor
- Animal Science, Iowa State University, Ames, IA, USA
- Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | | | - Meaghan Young
- Animal and Food Science, University of Delaware, Newark, DE, USA
| | | | - Carl J Schmidt
- Animal and Food Science, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
5
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
6
|
Phosphorylation of PLK3 Is Controlled by Protein Phosphatase 6. Cells 2020; 9:cells9061506. [PMID: 32575753 PMCID: PMC7349513 DOI: 10.3390/cells9061506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases play essential roles in cell cycle control and mitosis. In contrast to other members of this kinase family, PLK3 has been reported to be activated upon cellular stress including DNA damage, hypoxia and osmotic stress. Here we knocked out PLK3 in human non-transformed RPE cells using CRISPR/Cas9-mediated gene editing. Surprisingly, we find that loss of PLK3 does not impair stabilization of HIF1α after hypoxia, phosphorylation of the c-Jun after osmotic stress and dynamics of DNA damage response after exposure to ionizing radiation. Similarly, RNAi-mediated depletion of PLK3 did not impair stress response in human transformed cell lines. Exposure of cells to various forms of stress also did not affect kinase activity of purified EGFP-PLK3. We conclude that PLK3 is largely dispensable for stress response in human cells. Using mass spectrometry, we identify protein phosphatase 6 as a new interacting partner of PLK3. Polo box domain of PLK3 mediates the interaction with the PP6 complex. Finally, we find that PLK3 is phosphorylated at Thr219 in the T-loop and that PP6 constantly dephosphorylates this residue. However, in contrast to PLK1, phosphorylation of Thr219 does not upregulate enzymatic activity of PLK3, suggesting that activation of both kinases is regulated by distinct mechanisms.
Collapse
|
7
|
Babagana M, Kichina JV, Slabodkin H, Johnson S, Maslov A, Brown L, Attwood K, Nikiforov MA, Kandel ES. The role of polo-like kinase 3 in the response of BRAF-mutant cells to targeted anticancer therapies. Mol Carcinog 2019; 59:5-14. [PMID: 31571292 DOI: 10.1002/mc.23123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
The activation of oncogenic mitogen-activated protein kinase cascade via mutations in BRAF is often observed in human melanomas. Targeted inhibitors of BRAF (BRAFi), alone or as a part of a combination therapy, offer a significant benefit to such patients. Unfortunately, some cases are initially nonresponsive to these drugs, while others become refractory in the course of treatment, underscoring the need to understand and mitigate the underlying resistance mechanisms. We report that interference with polo-like kinase 3 (PLK3) reduces the tolerance of BRAF-mutant melanoma cells to BRAFi, while increased PLK3 expression has the opposite effect. Accordingly, PLK3 expression correlates with tolerance to BRAFi in a panel of BRAF-mutant cell lines and is elevated in a subset of recurring BRAFi-resistant melanomas. In PLK3-expressing cells, R406, a kinase inhibitor whose targets include PLK3, recapitulates the sensitizing effects of genetic PLK3 inhibitors. The findings support a role for PLK3 as a predictor of BRAFi efficacy and suggest suppression of PLK3 as a way to improve the efficacy of targeted therapy.
Collapse
Affiliation(s)
- Mahamat Babagana
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Julia V Kichina
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Hannah Slabodkin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sydney Johnson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lorin Brown
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mikhail A Nikiforov
- Department of Cancer Biology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
8
|
Ye C, Cai Y, Cai Q, Yuan S, Huang F, Yang X, He S, Li Z, Wang Y, Yang D, Li Z. High glucose induces the proliferation of prostatic cells via downregulating MRE11. Int J Mol Med 2018. [PMID: 29532862 PMCID: PMC5881645 DOI: 10.3892/ijmm.2018.3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to investigate the candidate genes and pathways associated with benign prostatic hyperplasia (BPH) and diabetes. In vitro experiments were performed using normal prostatic epithelial RWPE-1 and HPr-1 cells. The cell lines were treated with a high-glucose solution and MTS and bromodeoxyuridine assays were used to assess cell viability. Transcriptome sequencing was used to screen the candidate genes. The expression of candidate genes was further verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. A meiotic recombination 11 (MRE11) overexpression vector was designed and transfected into RWPE-1 cells to verify the function of MRE11. A streptozotocin-induced diabetic rat model was established and rat MRE11 levels were determined by RT-qPCR and immunohistochemical staining. High concentrations of glucose resulted in RWPE-1 and HPr-1 cells with high viability. Transcriptome sequencing revealed that MRE11 was downregulated when RWPE-1 cells were exposed to high-glucose conditions. When MRE11 was overexpressed, cell viability decreased and cell apoptosis was induced under high-glucose conditions. Prostatic tissues from rats were collected and assessed; MRE11 expression was observed to be decreased, which was consistent with the in vitro cell experiments. BPH may be associated with diabetes, as MRE11 expression in prostatic cells was decreased when exposed to high-glucose conditions. Therefore, MRE11 may have potential as a biomarker for the early diagnosis of BPH and diabetes.
Collapse
Affiliation(s)
- Chunwei Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Cai
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shunhui Yuan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Fan Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaofang Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shuchen He
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhuoheng Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yanwen Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhipeng Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
9
|
Abstract
The cellular hypoxic response contributes to cell transformation and tumor progression. Hypoxia-inducible factor 1 (HIF-1) is a key transcription factor that mediates transcription of genes whose products are essential for cellular adaptation to hypoxia. The activity of HIF-1 is largely regulated by the abundance of its alpha subunit (HIF-1α), which is primarily regulated by an oxygen-dependent and ubiquitin/proteasome-mediated degradation process. The HIF-1α protein level is also regulated by protein kinases through phosphorylation. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase with a tumor suppressive function. Plk3 phosphorylates and destabilizes HIF-1α. Plk3 also phosphorylates and stabilizes PTEN, a known regulator of HIF-1α stability via the PI3K pathway. Our latest study showed that the Plk3 protein is suppressed by hypoxia or nickel treatment via the ubiquitin/proteasome system. We discovered that Seven in Absentia Homologue 2 (SIAH2) is the E3 ubiquitin ligase of Plk3 and that Plk3 in turn destabilizes SIAH2. Given the role of SIAH2 in promoting stability of HIF-1α, our work reveals a novel mutual regulatory mechanism between Plk3 and SIAH2, which may function to fine-tune the cellular hypoxic response. Here we discuss the role of Plk3 in the hypoxic response and tumorigenesis in light of these latest findings.
Collapse
Affiliation(s)
- Dazhong Xu
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| | - Wei Dai
- b Department of Environmental Medicine , New York University Langone Medical Center , Tuxedo , NY , USA
| | - Cen Li
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| |
Collapse
|
10
|
Abstract
The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development.
Collapse
|
11
|
Goetz JJ, Laboissonniere LA, Wester AK, Lynch MR, Trimarchi JM. Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression. PLoS One 2016; 11:e0150878. [PMID: 26949938 PMCID: PMC4780821 DOI: 10.1371/journal.pone.0150878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/20/2016] [Indexed: 12/03/2022] Open
Abstract
During retinogenesis seven different cell types are generated in distinct yet overlapping timepoints from a population of retinal progenitor cells. Previously, we performed single cell transcriptome analyses of retinal progenitor cells to identify candidate genes that may play roles in the generation of early-born retinal neurons. Based on its expression pattern in subsets of early retinal cells, polo-like kinase 3 (Plk3) was identified as one such candidate gene. Further characterization of Plk3 expression by in situ hybridization revealed that this gene is expressed as cells exit the cell cycle. We obtained a Plk3 deficient mouse and investigated changes in the retina’s morphology and transcriptome through immunohistochemistry, in situ hybridization and gene expression profiling. These experiments have been performed initially on adult mice and subsequently extended throughout retinal development. Although morphological studies revealed no consistent changes in retinogenesis upon Plk3 loss, microarray profiling revealed potential candidate genes altered in Plk3-KO mice. Further studies will be necessary to understand the connection between these changes in gene expression and the loss of a protein kinase such as Plk3.
Collapse
Affiliation(s)
- Jillian J. Goetz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lauren A. Laboissonniere
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Andrea K. Wester
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Madison R. Lynch
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Ames High School, Ames, Iowa, United States of America
| | - Jeffrey M. Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kietzmann T, Mennerich D, Dimova EY. Hypoxia-Inducible Factors (HIFs) and Phosphorylation: Impact on Stability, Localization, and Transactivity. Front Cell Dev Biol 2016; 4:11. [PMID: 26942179 PMCID: PMC4763087 DOI: 10.3389/fcell.2016.00011] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible factor α-subunits (HIFα) are key transcription factors in the mammalian response to oxygen deficiency. The HIFα regulation in response to hypoxia occurs primarily on the level of protein stability due to posttranslational hydroxylation and proteasomal degradation. However, HIF α-subunits also respond to various growth factors, hormones, or cytokines under normoxia indicating involvement of different kinase pathways in their regulation. Because these proteins participate in angiogenesis, glycolysis, programmed cell death, cancer, and ischemia, HIFα regulating kinases are attractive therapeutic targets. Although numerous kinases were reported to regulate HIFα indirectly, direct phosphorylation of HIFα affects HIFα stability, nuclear localization, and transactivity. Herein, we review the role of phosphorylation-dependent HIFα regulation with emphasis on protein stability, subcellular localization, and transactivation.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of OuluFinland
| | | | | |
Collapse
|
13
|
Michel DR, Mun KS, Ho CC, Stambrook PJ. Cytoskeletal architecture and cell motility remain unperturbed in mouse embryonic fibroblasts from Plk3 knockout mice. Exp Biol Med (Maywood) 2016; 241:603-10. [PMID: 26843517 DOI: 10.1177/1535370216629010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022] Open
Abstract
Polo-like kinase 3 (Plk3) is best known for its involvement in cell cycle checkpoint regulation following exposure to cytotoxicants or induction of DNA damage. Yet, Plk3 has also been implicated in roles beyond those of cellular responses to DNA damage. Here, we have investigated the proposition, suggested by the Plk literature, that Plk3 regulates cytoskeletal architecture and cell functions mediated by the cytoskeleton. To this end, we have assayed mouse embryonic fibroblasts (MEFs) generated from both Plk3 knockout and wild-type mice. In particular, we asked whether Plk3 is involved in actin fiber and microtubule integrity, cell migration, cell attachment, and/or cell invasion. Our results demonstrate that functional Plk3 is not critical for the regulation of cytoskeletal integrity, cell morphology, cell adhesion, or motility in MEFs.
Collapse
Affiliation(s)
- Daniel R Michel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kyu-Shik Mun
- Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chia-Chi Ho
- Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
14
|
Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis. Oncogene 2016; 35:135-47. [PMID: 25915845 DOI: 10.1038/onc.2015.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
The polo-like kinases (Plks) encompass a family of five serine/threonine protein kinases that play essential roles in many cellular processes involved in the control of the cell cycle, including entry into mitosis, DNA replication and the response to different types of stress. Plk1, which has been validated as a cancer target, came into the focus of many pharmaceutical companies for the development of small-molecule inhibitors as anticancer agents. Recently, FDA (Food and Drug Administration) has granted a breakthrough therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. However, the various ATP-competitive inhibitors of Plk1 that are currently in clinical development also inhibit the activities of Plk2 and Plk3, which are considered as tumor suppressors. Plk3 contributes to the control and progression of the cell cycle while acting as a mediator of apoptosis and various types of cellular stress. The aberrant expression of Plk3 was found in different types of tumors. Recent progress has improved our understanding of Plk3 in regulating stress signaling and tumorigenesis. When using ATP-competitive Plk1 inhibitors, the biological roles of Plk1-related family members like Plk3 in cancer cells need to be considered carefully to improve treatment strategies against cancer.
Collapse
Affiliation(s)
- C Helmke
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - S Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - K Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
15
|
Kazazian K, Brashavitskaya O, Zih FSW, Berger-Richardson D, Xu RSZ, Pacholczyk K, Macmillan J, Swallow CJ. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
17
|
Mamrosh JL, Lee JM, Wagner M, Stambrook PJ, Whitby RJ, Sifers RN, Wu SP, Tsai MJ, Demayo FJ, Moore DD. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. eLife 2014; 3:e01694. [PMID: 24737860 PMCID: PMC3987120 DOI: 10.7554/elife.01694] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.001 A protein can only work properly if it has been folded into the correct shape. However, it is estimated that about one third of new proteins have the wrong shape. This is a major challenge for cells because misfolded proteins are often toxic, and cause many neurodegenerative and metabolic disorders. In eukaryotic cells, most protein folding takes place inside a part of the cell called the endoplasmic reticulum (ER). If an incorrectly folded protein is detected, it is prevented from leaving the ER until it is refolded correctly, or destroyed. If too many proteins are misfolded, a process called the unfolded protein response helps the cell to cope with this ‘ER stress’ by expanding the ER and producing more of the molecules that assist protein folding. If this does not relieve the ER stress, the cell self-destructs. Neighboring cells then have to increase protein production to compensate for what would have been produced by the dead cell, thereby increasing the chance that they will also experience ER stress. Activation of a protein called LRH-1 (short for liver receptor homolog-1) that is produced in the liver, pancreas and intestine can relieve the symptoms of the various metabolic diseases that are associated with chronic ER stress, including type II diabetes and fatty liver disease. However, researchers have been puzzled by the fact that although LRH-1 performs many different roles, its molecular structure provides few clues as to how it can do this. Mamrosh et al. now confirm the speculated link between LRH-1 and ER stress relief in mice. LRH-1 triggers a previously unknown pathway that can relieve ER stress and is completely independent of the unfolded protein response. Targeting LRH-1 with certain chemical compounds alters its activity, suggesting that drug treatments could be developed to relieve ER stress. As similar targets for drugs have not been found in the unfolded protein response, the discovery of the LRH-1 pathway could lead to new approaches to the treatment of the diseases that result from ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.002
Collapse
Affiliation(s)
- Jennifer L Mamrosh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jordan PW, Karppinen J, Handel MA. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J Cell Sci 2012; 125:5061-72. [PMID: 22854038 PMCID: PMC3533391 DOI: 10.1242/jcs.105015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
During meiosis, accurate coordination of the completion of homologous recombination and synaptonemal complex (SC) disassembly during the prophase to metaphase I (G2/MI) transition is essential to avoid aneuploid gametes and infertility. Previous studies have shown that kinase activity is required to promote meiotic prophase exit. The first step of the G2/MI transition is the disassembly of the central element components of the SC; however, the kinase(s) required to trigger this process remains unknown. Here we assess roles of polo-like kinases (PLKs) in mouse spermatocytes, both in vivo and during prophase exit induced ex vivo by the phosphatase inhibitor okadaic acid. All four PLKs are expressed during the first wave of spermatogenesis. Only PLK1 (not PLK2-4) localizes to the SC during the G2/MI transition. The SC central element proteins SYCP1, TEX12 and SYCE1 are phosphorylated during the G2/MI transition. However, treatment of pachytene spermatocytes with the PLK inhibitor BI 2536 prevented the okadaic-acid-induced meiotic prophase exit and inhibited phosphorylation of the central element proteins as well as their removal from the SC. Phosphorylation assays in vitro demonstrated that PLK1, but not PLK2-4, phosphorylates central element proteins SYCP1 and TEX12. These findings provide mechanistic details of the first stage of SC disassembly in mammalian spermatocytes, and reveal that PLK-mediated phosphorylation of central element proteins is required for meiotic prophase exit.
Collapse
Affiliation(s)
| | - Jesse Karppinen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- College of the Atlantic, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
19
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|