1
|
Hernández AF, Lacasaña M, Garcia-Cortés H, Fernández MF, Gozález-Alzaga B. Identification and prioritisation of biomarkers of organophosphorus compounds-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2025; 199:109446. [PMID: 40253933 DOI: 10.1016/j.envint.2025.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Organophosphorus compounds (OPCs), a diverse group of chemicals widely utilised as pesticides and flame retardants, pose significant neurotoxic risks, even during neurodevelopment. While their primary molecular and cellular targets are well characterised, growing evidence suggest additional mechanisms, particularly in developmental neurotoxicity. Despite extensive research, predictive biomarkers of OPC-induced neurotoxicity beyond acetylcholinesterase remain underexplored. This study conducted a comprehensive review of epidemiological, in vivo, and in vitro evidence to identify and prioritise biomarkers associated with OPC-induced neurotoxicity. Findings highlight the critical roles of non-cholinergic mechanisms, including neuroinflammation, mitochondrial dysfunction, oxidative stress, and epigenetic modifications. Biomarkers were categorised based on their biological function, mechanistic relevance, and feasibility for early, non-invasive detection. Current research efforts focus on validating sensitive and reliable biomarkers capable of predicting and monitoring nervous system damage and severity. Growing attention is being directed toward non-invasive biomarkers that correlate with behavioural, neuropathological, and imaging outcomes. This review addresses two main aspects. The first provides an overview of established and emerging biomarkers for assessing neurotoxicity in the general population and in individuals occupationally exposed to OPC. The second evaluates molecular biomarkers prioritised based on scientific robustness, clinical relevance, and regulatory applicability. A structured ranking of biomarkers across different levels of biological organisation is proposed to enhance mechanistic understanding and improve risk assessment. This study underscores the need for a standardised biomarker framework for neurotoxicity risk assessment and regulatory decision-making. Implementing these biomarkers in biomonitoring for predictive purposes will facilitate early detection and prevention strategies, ultimately mitigating neurotoxic effects in exposed individuals.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Marina Lacasaña
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain; Andalusian Health and Environment Observatory (OSMAN), Granada, Spain.
| | - Helena Garcia-Cortés
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada 18016 Granada, Spain; Biomedical Research Centre (CIBM), University of Granada 18016 Granada, Spain
| | - Beatriz Gozález-Alzaga
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain
| |
Collapse
|
2
|
Huang J, Wang X. Alteration of microRNA expression in lymphocytes in patients with first-episode schizophrenia. BMC Psychiatry 2025; 25:210. [PMID: 40055650 PMCID: PMC11887151 DOI: 10.1186/s12888-025-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND The development of schizophrenia is related to a combination of genetic and epigenomic factors. MicroRNAs (miRNAs) play a crucial role in epigenetic processes and are relevant to the onset and progression of schizophrenia. They can regulate target genes during the growth and development of neurons and can be affected by genetic and environmental factors associated with schizophrenia. Although prior studies have found abnormal miRNA expression in schizophrenia, few studies have examined the miRNA level in first-episode schizophrenia (FES). The present study aimed to examine the expression of lymphocyte microRNA (miR-107, miR-181a, miR-181b, miR-223, miR-219, miR-137, miR-125b) in patients with first-episode schizophrenia who had never been treated. METHOD We investigated the expression of miRNAs using the real-time polymerase chain reaction (RT-PCR) technology. The severity of clinical symptoms was assessed using Positive and Negative Syndrome Scale (PANSS). The prognostic value of biomarkers was analyzed using receiver operating characteristic (ROC) curves, and the predictive value of these biomarkers was also compared. Logistic regression analysis was used to assess the relative risk related to microRNA alteration in schizophrenia. Logistic regression analyses were then performed to identify the most significant and sensitive miRNA biomarkers. RESULTS Compared with the control group, the patient group exhibited significantly higher levels of expression for six miRNAs (miR-181a, miR-137, miR-223, miR-107, miR-181b, and miR-125b) (P < 0.05). The ROCs indicated that miR-223 exhibited the highest diagnostic value, with an area under the curve being 0.916. CONCLUSIONS The present study provided some insights into the alteration of miRNA expression, which might improve our understanding of the complex global changes in gene expression in the pathophysiology of schizophrenia. This study identified six miRNAs (miR-223, miR-181a, miR-181b, miR-125b, miR-219, and miR-107) that might facilitate the diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Jingjing Huang
- The Affiliated Hospital of Hangzhou Normal University (Hangzhou Second People's Hospital), Hangzhou, Zhejiang, 310000, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xuyi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Al-Rawaf HA, Gabr SA, Alghadir T, Alghadir F, Iqbal A, Alghadir AH. Correlation between circulating microRNAs and vascular biomarkers in type 2 diabetes based upon physical activity: a biochemical analytic study. BMC Endocr Disord 2025; 25:55. [PMID: 40016689 PMCID: PMC11866858 DOI: 10.1186/s12902-025-01855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND This research investigated how physical activity (PA) might impact the expression of several microRNAs, specifically miR-126, miR-146a, miR-34a, miR-124a, miR-155, and miR-221, in the blood of elderly individuals with type 2 diabetes (T2D). Additionally, the study examined the relationship between these microRNAs and markers of vascular endothelial dysfunction, including vascular endothelial growth factor (VEGF), apolipoprotein A-I (apoA-I), and apolipoprotein B (apoB), to assess their potential in the prevention, early detection, and treatment of diabetes. METHODS This correlational observational study involved 100 male participants, aged between 18 and 65 years, all of whom had been living with type 2 diabetes (T2D) for over six years. The participants were divided into three groups: inactive, moderate, and active, depending on their level of physical activity (PA). Real-time PCR and immunoassays were employed to measure the expression of selected miRNAs, as well as VEGF, apoA-I, apoB, and diabetic management indicators. PA levels were determined using ACTi graph GT1M accelerometer (model WAM 7164; Fort Walton Beach, FL) and energy expenditure was measured in the form of metabolic equivalent (MET) by indirect calorimetry method. RESULTS The expression levels of miR-146a, miR-34a, and miR-124a were significantly higher in patients with higher physical activity, while no such increase was observed for the other miRNAs in less active participants. Additionally, PA-active individuals showed a more pronounced decrease in fasting blood sugar (FBS), insulin resistance (IR), fasting insulin (FINS), HOMA-IR, HbA1c (%), and levels of VEGF, apoAI, apoB, and the apoB/apoA-I ratio. The alteration in miRNA expression was positively associated with physical activity, VEGF, apoAI, apoB, the apoB/apoA-I ratio, and diabetes-related metrics, while being inversely related to BMI. CONCLUSIONS In diabetic patients with higher physical activity levels, circulating miR-146a, miR-34a, and miR-124a showed elevated expression, accompanied by a notable decrease in vascular biomarkers, including apoAI, apoB, and the apoB/apoA-I ratio. The findings revealed a strong correlation between these vascular biomarkers and the physiological responses of miR-146a, miR-34a, and miR-124a, though larger studies are required to validate these results further. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Talal Alghadir
- College of Medicine, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Faisal Alghadir
- College of Medicine, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
4
|
Ludwig L, Treleaven H, Khachadoorian A, Degasperi B, Walter I, Stuart D, Foster RA, Wood RD, Ali RA, Wood GA. MicroRNAs in serum and tissue can differentiate splenic hemangiosarcoma from other splenic masses in dogs. Vet Pathol 2025:3009858251317466. [PMID: 39968796 DOI: 10.1177/03009858251317466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Splenic masses are common in dogs and vary dramatically in their clinical behavior. Clinically, and even with histology, it can be challenging to differentiate between benign and malignant splenic masses. Hemangiosarcoma (HSA), the most common malignancy of the spleen, is a very aggressive tumor with a poor prognosis. We hypothesize that microRNAs (miRNAs) in mass tissue and serum can differentiate between HSA and other splenic masses. Fifty-nine miRNAs were investigated by reverse-transcription followed by real-time quantitative polymerase chain reaction (RT-qPCR) in serum and/or tissue from dogs with HSAs (serum n = 24 and tissue n = 17; postsplenectomy serum n = 11), lymphomas (serum n = 8 and tissue n = 11), nonangiomatous nonlymphomatous sarcomas (serum n = 6 and tissue n = 10), histiocytic sarcomas (tissue n = 4), benign splenic masses (myelolipomas, nodular hyperplasia, and hematomas; total serum n = 21 and total tissue n = 35), and normal dogs (serum n = 14 and tissue n = 7). Numerous miRNAs were differentially expressed in serum and tissue of HSA cases compared to those with other splenic masses or normal spleens. In serum, our 5-miRNA model (miR-135a-5p, miR-10a, miR-450b, miR-152-3p, and miR-126-5p) accurately classified 100% (24/24) of dogs with HSA from normal dogs and those with a benign splenic mass (recall = 1 for HSA). The overall accuracy of the model was 86%. In HSA and benign splenic mass tissues, our 3-miRNA model (miR-126-5p, miR-502-3p, and miR-452-5p) accurately classified 96% of the cases. This study demonstrates the utility of miRNA models in serum and tissue for screening and diagnosis of HSA in dogs. Future studies include the evaluation of prospective and prediagnosis serum samples.
Collapse
|
5
|
Koh CC, Gollob KJ, Dutra WO. Cytokine Networks and the Clinical Outcome of American Teg-Umentary Leishmaniasis: Unveiling Targets for Alternative Therapeutic Interventions. Pathogens 2025; 14:188. [PMID: 40005563 PMCID: PMC11858318 DOI: 10.3390/pathogens14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
American Tegumentary Leishmaniasis (ATL), caused by parasites of the genus Leishmania, presents a significant global health challenge, especially in Brazil, where cutaneous and mucosal forms are highly prevalent. Cutaneous Leishmaniasis (CL) typically results in single lesions, while mucosal Leishmaniasis (ML) leads to destructive mucosal lesions with a worse prognosis. The immune response, regulated by cytokines, plays a crucial role in disease progression and resolution. In CL, a balance between pro-inflammatory and anti-inflammatory cytokines is associated with lesion resolution, whereas in ML, an exaggerated inflammatory response worsens tissue damage. Thus, understanding cytokine regulation is essential for unveiling disease pathology and developing effective immunotherapeutic strategies. Here we discuss gene polymorphisms and epigenetic modifications that affect cytokine expression, influencing disease susceptibility and severity, as well as immunotherapeutic approaches that involve cytokine function in Leishmaniasis. In addition, we examine advancements in drug discovery, utilizing in silico methods and targeted drug delivery systems, providing potential avenues for better therapeutic interventions. Continuous research into immune responses and cytokine production and function is critical for identifying novel therapeutic targets and optimizing patient care for ATL.
Collapse
Affiliation(s)
- Carolina Cattoni Koh
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
| | - Kenneth J. Gollob
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Walderez O. Dutra
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
| |
Collapse
|
6
|
Candan B, Gungor S. Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review. Diagnostics (Basel) 2025; 15:353. [PMID: 39941283 PMCID: PMC11817358 DOI: 10.3390/diagnostics15030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Complex regional pain syndrome (CRPS) is characterized by severe pain and reduced functionality, which can significantly affect an individual's quality of life. The current treatment of CRPS is challenging. However, recent advances in diagnostic and treatment methods show promise for improving patient outcomes. This review aims to place the question of CRPS in a broader context and highlight the objectives of the research for future directions in the management of CRPS. Methods: This study involved a comprehensive literature review. Results: Research has identified three primary pathophysiological pathways that may explain the clinical variability observed in CRPS: inflammatory mechanisms, vasomotor dysfunction, and maladaptive neuroplasticity. Investigations into these pathways have spurred the development of novel diagnostic and treatment strategies focused on N-Methyl-D-aspartate Receptor Antagonists (NMDA), Toll-like receptor 4 (TLR-4), α1 and α2 adrenoreceptors, as well as the identification of microRNA (miRNA) biomarkers. Treatment methods being explored include immune and glial-modulating agents, intravenous immunoglobulin (IVIG) therapy, plasma exchange therapy, and neuromodulation techniques. Additionally, there is ongoing debate regarding the efficacy of other treatments, such as free radical scavengers, alpha-lipoic acid (ALA), dimethyl fumarate (DMF), adenosine monophosphate-activated protein kinase (AMPK) activators such as metformin, and phosphodiesterase-5 inhibitors such as tadalafil. Conclusions: The controversies surrounding the mechanisms, diagnosis, and treatment of CRPS have prompted researchers to investigate new approaches aimed at enhancing understanding and management of the condition, with the goal of alleviating symptoms and reducing associated disabilities.
Collapse
Affiliation(s)
- Burcu Candan
- Department of Anesthesiology and Reanimation, Bahçeşehir University Göztepe Medical Park Hospital, 34732 Istanbul, Türkiye
| | - Semih Gungor
- Division of Musculoskeletal and Interventional Pain Management, Department of Anesthesiology, Critical Care and Pain Management, Hospital for Special Surgery, New York, NY 10021, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Chu CP, Nabity MB. Technical considerations and review of urinary microRNAs as biomarkers for chronic kidney disease in dogs and cats. Vet Clin Pathol 2025. [PMID: 39865558 DOI: 10.1111/vcp.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025]
Abstract
MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that play a crucial role in gene regulation, making them potential biomarkers for various diseases. In the field of veterinary medicine, there is a growing interest in exploring the diagnostic and therapeutic potential of miRNAs in kidney diseases affecting dogs and cats. This review focuses on the use of urinary miRNAs as biomarkers for chronic kidney disease (CKD) in these companion animals. We introduce miRNAs, their biogenesis, and their presence in biofluids, particularly within exosomes, and discuss studies investigating miRNAs in kidney tissue and urine. We acknowledge the challenges associated with miRNA studies, including preanalytical factors such as biological variation, sample collection/processing, storage conditions, and experimental design. We highlight the importance of technical considerations, such as sample pooling, sequencing depth, multiplexing, and the various steps of the miRNA experimental workflow. Furthermore, we discuss RNA isolation methods, small RNA sequencing data analysis, and the use of quantitative reverse transcription PCR (qRT-PCR) and droplet digital PCR for verification. We emphasize the importance of internal controls, spike-ins, and normalization methods to minimize technical variation and ensure reliable results in qRT-PCR analysis. This review concludes that while urinary miRNAs hold promise as non-invasive biomarkers for CKD in dogs and cats, addressing the challenges and standardization of protocols is vital for the successful translation of this research into clinical practice.
Collapse
Affiliation(s)
- Candice P Chu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Banoei MM, Hutchison J, Panenka W, Wong A, Wishart DS, Winston BW. Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity. Crit Care 2025; 29:26. [PMID: 39815318 PMCID: PMC11737060 DOI: 10.1186/s13054-025-05258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI. METHODS Serum samples from 59 adult patients with sTBI and 35 age- and sex-matched orthopedic injury controls were subjected to quantitative metabolomics, including proton nuclear magnetic resonance (1H-NMR) and direct infusion/liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS), to identify and quantify metabolites on days 1 and 4 post-injury. In addition, we used advanced analytical methods to discover metabo-patterns associated with sTBI diagnosis and those related to probable primary and secondary brain injury. RESULTS Our results showed different serum metabolic profiles between sTBI and orthopedic injury (OI) controls, with significant changes in measured metabolites on day 1 and day 4 post-brain injury. The number of altered metabolites and the extent of their change were more pronounced on day 4 as compared to day 1 post-injury, suggesting an evolution of mechanisms from primary to secondary brain injury. Data showed high sensitivity and specificity in separating sTBI from OI controls for diagnosis. Energy-related metabolites such as glucose, pyruvate, lactate, mannose, and polyamine metabolism metabolites (spermine and putrescine), as well as increased acylcarnitines and sphingomyelins, occurred mainly on day 1 post-injury. Metabolites of neurotransmission, catecholamine, and excitotoxicity mechanisms such as glutamate, phenylalanine, tyrosine, and branched-chain amino acids (BCAAs) increased to a greater degree on day 4. Further, there was an association of multiple metabolites, including acylcarnitines (ACs), lysophosphatidylcholines (LysoPCs), glutamate, and phenylalanine, with injury severity at day 4, while lactate, glucose, and pyruvate correlated with injury severity on day 1. CONCLUSION The results demonstrate that serum metabolomics has diagnostic potential for sTBI and may reflect molecular mechanisms of primary and secondary brain injuries when comparing metabolite profiles between day 1 and day 4 post-injury. These early changes in serum metabolites may provide insight into molecular pathways or mechanisms of primary injury and ongoing secondary injuries, revealing potential therapeutic targets for sTBI. This work also highlights the need for further research and validation of sTBI metabolite biomarkers in a larger cohort.
Collapse
Affiliation(s)
- Mohammad M Banoei
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - James Hutchison
- Department of Critical Care and Neuroscience and Mental Health Research Program, The Hospital for Sick Children and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - William Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Andy Wong
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David S Wishart
- Departments of Biological Sciences, Computing Sciences and Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Brent W Winston
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
- Dr. Brent W. Winston, Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Sharafeldin MA, Suef RA, Mousa AA, Ziada DH, Farag MMS. Serum miRNA-101 expression signature as non-invasive diagnostic biomarker for Hepatitis C virus-associated hepatocellular carcinoma in Egyptian patients. Sci Rep 2025; 15:645. [PMID: 39753619 PMCID: PMC11698908 DOI: 10.1038/s41598-024-81207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally due to HCC late diagnosis and limited treatment options. MiRNAs (miRNAs) emerged as potential biomarkers for various diseases, including HCC. However, the value of miRNA-101 as a serum biomarker for HCV-induced HCC has not been fully investigated. Our study aims to investigate the miRNA-101 differential expression in Egyptian HCV-induced HCC patients' serum versus HCV liver cirrhosis (LC) as prospective diagnostic biomarkers compared to alpha-fetoprotein (AFP). Blood samples were collected for clinical chemistry profile, liver function, and serum AFP investigations. The serum miR-101 expression levels were evaluated using real-time quantitative PCR (RT-qPCR) in 100 Egyptian subjects: 40 HCV-induced HCC, 40 HCV-induced cirrhosis, and 20 healthy controls. HCC patients showed significantly higher TB, DB, and AFP levels than those cirrhosis and control groups, whereas ALB and Total Protein exhibited significantly reduced levels. AFP sensitivity and specificity in differentiating HCC reported 60 and 67%, respectively, at the cut-off values of 7ng/dl. miR-101 shows fold change upregulation in HCC patients (P < 0.0001) compared to LC and control groups. ROC curve demonstrated miR-101 (AUC) of 0.9556, sensitivity 92.5%, and specificity 97.5%, highlighting the miR-101 diagnostic potential as a biomarker for HCC detection. Elevated miR-101 levels in HCC are significantly correlated with a higher number and larger size of focal lesions, advanced BCLC staging, and Child-Pugh score. These findings highlight the utility of miR-101 as a predictive and diagnostic non-invasive biomarker for HCV-related HCC from cirrhotic populations. More research is warranted to validate the clinical validity of miR-101 and explore underlying mechanisms in HCV-HCC progression.
Collapse
Affiliation(s)
- Mostafa A Sharafeldin
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Reda A Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Adel A Mousa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Dina H Ziada
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt.
- The Regional Centre for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
10
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
12
|
Venkatesh S, Manaz PM, Priya MH, Ambiga G, Basu S. Shedding Light on the Molecular Diversities of miRNA in Cancer- an Exquisite Mini Review. Mol Biotechnol 2024:10.1007/s12033-024-01312-5. [PMID: 39496855 DOI: 10.1007/s12033-024-01312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Short non-coding ribonucleic acids are also known as "Micro ribonucleic acids (miRNAs)". The miRNAs make a contribution to the regulation of genes and mitigation of cancer cell growth in humans. miRNAs play a significant role in several BPs, namely apoptosis, cell cycle progression, and development. It is well-recognized that miRNAs are crucial for the tumors' growth and also serve as Tumor Suppressors (TSs) or oncogenes. As miRNAs also act as an effective tumor suppressor, studying the molecular diversities of the miRNAs makes way to minimize cancer progression and the corresponding death rates in the future. Therefore, miRNAs along with their Biological Processes (BPs) and molecular diversities are thoroughly researched in this paper. Consequently, miRNAs particularly target their 3' UnTranslated Region (3'-UTR) for controlling the target mRNAs' stability and protein translation. So, this study also expresses the impact of microRNA variants in various cancer cells, namely Breast cancer, Gastric or stomach cancer, ovarian cancer, and lymphocytic leukemia. Furthermore, the database named PhenomiR and commercial kits that are used in the miRNA data analysis are discussed in this article to provide extensive knowledge about the molecular diversity analysis of miRNA and their influences on cancerous cells.
Collapse
Affiliation(s)
- Surya Venkatesh
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, India.
| | - P Mohammed Manaz
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, India
| | - M Harish Priya
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi, India
| | - G Ambiga
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi, India
| | - Soumyo Basu
- Department of Microbiology, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| |
Collapse
|
13
|
Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis 2024; 10:186. [PMID: 39369002 PMCID: PMC11455891 DOI: 10.1038/s41531-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/15/2024] [Indexed: 10/07/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Vision Research and Center for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
14
|
Sou YL, Chilian WM, Ratnam W, Zain SM, Syed Abdul Kadir SZ, Pan Y, Pung YF. Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus. PRECISION CLINICAL MEDICINE 2024; 7:pbae021. [PMID: 39347441 PMCID: PMC11438237 DOI: 10.1093/pcmedi/pbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease that is characterized by chronic hyperglycaemia. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play important roles in post-transcriptional gene regulation. They are negative regulators of their target messenger RNAs (mRNAs), in which they bind either to inhibit mRNA translation, or to induce mRNA decay. Similar to proteins, miRNAs exist in different isoforms (isomiRs). miRNAs and isomiRs are selectively loaded into small extracellular vesicles, such as the exosomes, to protect them from RNase degradation. In T2DM, exosomal miRNAs produced by different cell types are transported among the primary sites of insulin action. These interorgan crosstalk regulate various T2DM-associated pathways such as adipocyte inflammation, insulin signalling, and β cells dysfunction among many others. In this review, we first focus on the mechanism of exosome biogenesis, followed by miRNA biogenesis and isomiR formation. Next, we discuss the roles of exosomal miRNAs and isomiRs in the development of T2DM and provide evidence from clinical studies to support their potential roles as T2DM biomarkers. Lastly, we highlight the use of exosomal miRNAs and isomiRs in personalized medicine, as well as addressing the current challenges and future opportunities in this field. This review summarizes how research on exosomal miRNAs and isomiRs has developed from the very basic to clinical applications, with the goal of advancing towards the era of personalized medicine.
Collapse
Affiliation(s)
- Yong Ling Sou
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Yan Pan
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| |
Collapse
|
15
|
Gileles-Hillel A, Bhattacharjee R, Gorelik M, Narang I. Advances in Sleep-Disordered Breathing in Children. Clin Chest Med 2024; 45:651-662. [PMID: 39069328 DOI: 10.1016/j.ccm.2024.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pediatric sleep-disordered breathing disorders are a group of common conditions, from habitual snoring to obstructive sleep apnea (OSA) syndrome, affecting a significant proportion of children. The present article summarizes the current knowledge on diagnosis and treatment of pediatric OSA focusing on therapeutic and surgical advancements in the field in recent years. Advancements in OSA such as biomarkers, improving continuous pressure therapy adherence, novel pharmacotherapies, and advanced surgeries are discussed.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Neonatal Pulmonology Service, Pediatric Pulmonary and Sleep Unit; Pediatric Division, Hadassah Medical Center, Jerusalem 911111, Israel; The Faculty of Medicine, Hebrew University of Jerusalem; The Wohl Translational Research Institute, Hadassah Medical Center, Kiryat Hadassah, Ein Kerem, Jerusalem 911111, Israel.
| | - Rakesh Bhattacharjee
- Division of Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, UCSD, San Diego, CA 92123, USA
| | - Michael Gorelik
- Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Indra Narang
- Division of Respiratory Medicine, Faculty Development and EDI, Department of Paediatrics, Translational Medicine, Research Institute, Hospital for Sick Children; Department of Paediatrics, University of Toronto, 51 Banff Road, Toronto M4S2V6, Canada
| |
Collapse
|
16
|
Ayed A. The role of natural products versus miRNA in renal cell carcinoma: implications for disease mechanisms and diagnostic markers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6417-6437. [PMID: 38691151 DOI: 10.1007/s00210-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Natural products are chemical compounds produced by living organisms. They are isolated and purified to determine their function and can potentially be used as therapeutic agents. The ability of some bioactive natural products to modify the course of cancer is fascinating and promising. In the past 50 years, there have been advancements in cancer therapy that have increased survival rates for localized tumors. However, there has been little progress in treating advanced renal cell carcinoma (RCC), which is resistant to radiation and chemotherapy. Oncogenes and tumor suppressors are two roles played by microRNAs (miRNAs). They are involved in important pathogenetic mechanisms like hypoxia and epithelial-mesenchymal transition (EMT); they control apoptosis, cell growth, migration, invasion, angiogenesis, and proliferation through target proteins involved in various signaling pathways. Depending on their expression pattern, miRNAs may identify certain subtypes of RCC or distinguish tumor tissue from healthy renal tissue. As diagnostic biomarkers of RCC, circulating miRNAs show promise. There is a correlation between the expression patterns of several miRNAs and the prognosis and diagnosis of patients with RCC. Potentially high-risk primary tumors may be identified by comparing original tumor tissue with metastases. Variations in miRNA expression between treatment-sensitive and therapy-resistant patients' tissues and serum allow for the estimation of responsiveness to target therapy. Our knowledge of miRNAs' function in RCC etiology has a tremendous uptick. Finding and validating their gene targets could have an immediate effect on creating anticancer treatments based on miRNAs. Several miRNAs have the potential to be used as biomarkers for diagnosis and prognosis. This review provides an in-depth analysis of the current knowledge regarding natural compounds and their modes of action in combating cancer. Also, this study aims to give information about the diagnostic and prognostic value of miRNAs as cancer biomarkers and their involvement in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia.
| |
Collapse
|
17
|
Li D, Wei H, Hong R, Yue X, Dong L, Fan K, Yu J, Yao D, Xu H, Lu J, Wang G. WS 2 nanosheets-based electrochemical biosensor for highly sensitive detection of tumor marker miRNA-4484. Talanta 2024; 274:125965. [PMID: 38552480 DOI: 10.1016/j.talanta.2024.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
In this paper, a few-layer WS2 nanosheets-based electrochemical biosensor was fabricated for the highly sensitive detection of breast cancer tumor marker miRNA-4484. Firstly, few-layer WS2 nanosheets were prepared by shear stripping and characterized by SEM, TEM, AFM and UV spectrophotometer. After modification of few-layer WS2 nanosheets on the electrode surface, the miRNA probe was fixed on the few-layer WS2 nanosheets by polycytosine (PolyC). Then short-chain miRNA containing PolyC was used as the blocking agent to close the excess active sites on the surface of WS2 nanosheets to complete the fabrication of the sensor biosensing interface. Finally, the current changes caused by the specific binding of miRNA-4484 to the probe were analyzed by differential pulse voltammetry (DPV). The results showed that the sensor had a good linear relationship for the detection of miRNA-4484 in the concentration range of 1 aM-100 fM, and the detection limit was as low as 1.61 aM. In addition, the electrochemical sensor had excellent selectivity, stability and reproducibility. The artificial sample tests indicated that the developed biosensors have the potential for clinical application in the future.
Collapse
Affiliation(s)
- Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Huyue Wei
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Rui Hong
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaojie Yue
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jing Yu
- Zhejiang Key Laboratory of Ecological and Environmental Big Data, Hangzhou, 321001, China
| | - Defei Yao
- Zhejiang Key Laboratory of Ecological and Environmental Big Data, Hangzhou, 321001, China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
18
|
Karlin H, Sooda M, Larson M, Rong J, Huan T, Mens MMJ, van Rooij FJA, Ikram MA, Courchesne P, Freedman JE, Joehanes R, Mueller GP, Kavousi M, Ghanbari M, Levy D. Plasma Extracellular MicroRNAs Associated With Cardiovascular Disease Risk Factors in Middle-Aged and Older Adults. J Am Heart Assoc 2024; 13:e033674. [PMID: 38860398 PMCID: PMC11255734 DOI: 10.1161/jaha.123.033674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Extracellular microRNAs (miRNAs) are a class of noncoding RNAs that remain stable in the extracellular milieu, where they contribute to various physiological and pathological processes by facilitating intercellular signaling. Previous studies have reported associations between miRNAs and cardiovascular diseases (CVDs); however, the plasma miRNA signatures of CVD and its risk factors have not been fully elucidated at the population level. METHODS AND RESULTS Plasma miRNA levels were measured in 4440 FHS (Framingham Heart Study) participants. Linear regression analyses were conducted to test the cross-sectional associations of each miRNA with 8 CVD risk factors. Prospective analyses of the associations of miRNAs with new-onset obesity, hypertension, type 2 diabetes, CVD, and all-cause mortality were conducted using proportional hazards regression. Replication was carried out in 1999 RS (Rotterdam Study) participants. Pathway enrichment analyses were conducted and target genes were predicted for miRNAs associated with ≥5 risk factors in the FHS. In the FHS, 6 miRNAs (miR-193b-3p, miR-122-5p, miR-365a-3p, miR-194-5p, miR-192-5p, and miR-193a-5p) were associated with ≥5 risk factors. This miRNA signature was enriched for pathways associated with CVD and several genes annotated to these pathways were predicted targets of the identified miRNAs. Furthermore, miR-193b-3p, miR-194-5p, and miR-193a-5p were each associated with ≥2 risk factors in the RS. Prospective analysis revealed 8 miRNAs associated with all-cause mortality in the FHS. CONCLUSIONS These findings highlight associations between miRNAs and CVD risk factors that may provide valuable insights into the underlying pathogenesis of CVD.
Collapse
Affiliation(s)
- Hannah Karlin
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Meera Sooda
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Martin Larson
- Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jian Rong
- Framingham Heart StudyFraminghamMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Tianxiao Huan
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Ophthalmology and Visual SciencesUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michelle M. J. Mens
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
- Department of Social and Behavioral SciencesHarvard T.H Chan School of Public HealthBostonMAUSA
| | - Frank J. A. van Rooij
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paul Courchesne
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Jane E. Freedman
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Roby Joehanes
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Daniel Levy
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Boston University School of MedicineBostonMAUSA
| |
Collapse
|
19
|
Matsuo S, Yokoi A, Yoshida K, Kitagawa M, Asano‐Inami E, Miura M, Yasui T, Tano S, Ushida T, Imai K, Kajiyama H, Kotani T. Amniotic fluid-derived small extracellular vesicles for predicting postnatal severe outcome of congenital diaphragmatic hernia. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e160. [PMID: 38947173 PMCID: PMC11212330 DOI: 10.1002/jex2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/18/2024] [Indexed: 07/02/2024]
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening condition with high morbidity and mortality rates. The survival rate of neonates with severe CDH is reportedly only 10%-15%. However, prenatal prediction of severe cases is difficult, and the discovery of new predictive markers is an urgent issue. In this study, we focused on microRNAs (miRNAs) in amniotic fluid-derived small EVs (AF-sEVs). We identified four miRNAs (hsa-miR-127-3p, hsa-miR-363-3p, hsa-miR-493-5p, and hsa-miR-615-3p) with AUC > 0.8 to classify good prognosis group and poor prognosis group in human study. The AUC for hsa-miR-127-3p and hsa-miR-615-3p, for predicting the poor prognosis, were 0.93 and 0.91, respectively. In addition, in the in vivo study, the miRNA profiles of the lung tissues of CDH rats were different from those of control rats. Additionally, two elevated miRNAs (rno-miR-215-5p and rno-miR-148a-3p) in the lung tissues of CDH rats were increased in the AF-sEVs of CDH rats. Our results suggest that severe CDH neonates can be predicted prenatally with high accuracy using miRNAs contained in AF-sEVs. Furthermore, miRNA profile changes in AF-sEVs reflected the lung status in CDH. Our findings may contribute to the development of advanced perinatal care for patients with CDH.
Collapse
Affiliation(s)
- Seiko Matsuo
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Akira Yokoi
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Nagoya University Institute for Advanced ResearchNagoyaJapan
- Japan Science and Technology Agency (JST)FORESTKawaguchiJapan
| | - Kosuke Yoshida
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Nagoya University Institute for Advanced ResearchNagoyaJapan
| | - Masami Kitagawa
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Eri Asano‐Inami
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mayo Miura
- Department of Obstetrics and GynecologyTokoname Municipal HospitalTokonameJapan
| | - Takao Yasui
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Institute of Nano‐Life Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
| | - Sho Tano
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Takafumi Ushida
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Reproduction and Perinatology, Center for Maternal‐Neonatal CareNagoya University HospitalNagoyaJapan
| | - Kenji Imai
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomomi Kotani
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Reproduction and Perinatology, Center for Maternal‐Neonatal CareNagoya University HospitalNagoyaJapan
| |
Collapse
|
20
|
Mohammed OA, Alghamdi M, Adam MIE, BinAfif WF, Alfaifi J, Alamri MMS, Alqarni AA, Alhalafi AH, Bahashwan E, AlQahtani AAJ, Ayed A, Hassan RH, Abdel-Reheim MA, Abdel Mageed SS, Rezigalla AA, Doghish AS. miRNAs dysregulation in ankylosing spondylitis: A review of implications for disease mechanisms, and diagnostic markers. Int J Biol Macromol 2024; 268:131814. [PMID: 38677679 DOI: 10.1016/j.ijbiomac.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFβ signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ali Alqarni
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo 11517, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
21
|
Passaro A, Al Bakir M, Hamilton EG, Diehn M, André F, Roy-Chowdhuri S, Mountzios G, Wistuba II, Swanton C, Peters S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024; 187:1617-1635. [PMID: 38552610 PMCID: PMC7616034 DOI: 10.1016/j.cell.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
The integration of cancer biomarkers into oncology has revolutionized cancer treatment, yielding remarkable advancements in cancer therapeutics and the prognosis of cancer patients. The development of personalized medicine represents a turning point and a new paradigm in cancer management, as biomarkers enable oncologists to tailor treatments based on the unique molecular profile of each patient's tumor. In this review, we discuss the scientific milestones of cancer biomarkers and explore future possibilities to improve the management of patients with solid tumors. This progress is primarily attributed to the biological characterization of cancers, advancements in testing methodologies, elucidation of the immune microenvironment, and the ability to profile circulating tumor fractions. Integrating these insights promises to continually advance the precision oncology field, fostering better patient outcomes.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emily G Hamilton
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabrice André
- Gustave-Roussy Cancer Center, Paris Saclay University, Villejuif, France
| | - Sinchita Roy-Chowdhuri
- Department of Anatomic Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
22
|
Tian Z, Zhang C, Wu M, Luo J, Zhou H, Duan Y, Li Y. Flexible-Arranged Biomimetic Array Integrated with Parallel Entropy-Driven Circuits for Ultrasensitive, Multiple, and Reliable Detection of Cancer-Related MicroRNAs. ACS Sens 2024; 9:1290-1300. [PMID: 38478991 DOI: 10.1021/acssensors.3c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
With the emergence of microRNA (miRNA) as a promising biomarker in cancer diagnosis, it is significant to develop multiple analyses of miRNAs. However, it still faces difficulties in ensuring the sensitivity and accuracy during multiplex detection owing to the low abundance and experimental deviation of miRNAs. In this work, a flexible-arranged biomimetic array integrated with parallel entropy-driven circuits (EDCs) was developed for ultrasensitive, multiplex, reliable, and high-throughput detection of miRNAs. The biomimetic array was fabricated by arrangement of various photonic crystals (PCs) for adjustable photonic band gaps (PBGs) and specific fluorescence enhancement. Meanwhile, two cancer-related miRNAs and one reference miRNA were introduced as multiple analytes as a proof-of-concept. The parallel EDCs with negligible crosstalk were designed based on the modular property. Because of the one-to-one match between the emitted fluorescence of parallel EDCs and the PBGs of the flexible-arranged biomimetic array, the generated fluorescence signal triggered by target miRNAs can be enhanced on the corresponding domain of the array. Furthermore, the amplified signal of the array was detected with high-throughput scanning, which could reveal specific information on cancer-related miRNAs as well as reference miRNA, enhancing the abundance and reliability of the analysis. The proposed array has the merits of a modular design, flexible deployment, simple operation (nonenzymatic and isothermal), improved accuracy, high sensitivity, and multiplex analysis, showing potential in disease diagnosis.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Chuyan Zhang
- Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Huiling Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
23
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
24
|
Chen MJ, Hsu A, Lin PY, Chen YL, Wu KW, Chen KC, Wang T, Yi YC, Kung HF, Chang JC, Yang WJ, Lu F, Guu HF, Chen YF, Chuan ST, Chen LY, Chen CH, Yang PE, Huang JYJ. Development of a Predictive Model for Optimization of Embryo Transfer Timing Using Blood-Based microRNA Expression Profile. Int J Mol Sci 2023; 25:76. [PMID: 38203247 PMCID: PMC10779357 DOI: 10.3390/ijms25010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) can regulate the expression of genes involved in the establishment of the window of implantation (WOI) in the endometrium. Recent studies indicated that cell-free miRNAs in uterine fluid and blood samples could act as alternative and non-invasive sample types for endometrial receptivity analysis. In this study, we attempt to systematically evaluate whether the expression levels of cell-free microRNAs in blood samples could be used as non-invasive biomarkers for assessing endometrial receptivity status. We profiled the miRNA expression levels of 111 blood samples using next-generation sequencing to establish a predictive model for the assessment of endometrial receptivity status. This model was validated with an independent dataset (n = 73). The overall accuracy is 95.9%. Specifically, we achieved accuracies of 95.9%, 95.9%, and 100.0% for the pre-receptive group, the receptive group, and the post-respective group, respectively. Additionally, we identified a set of differentially expressed miRNAs between different endometrial receptivity statuses using the following criteria: p-value < 0.05 and fold change greater than 1.5 or less than -1.5. In conclusion, the expression levels of cell-free miRNAs in blood samples can be utilized in a non-invasive manner to distinguish different endometrial receptivity statuses.
Collapse
Affiliation(s)
- Ming-Jer Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - An Hsu
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Pei-Yi Lin
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Yu-Ling Chen
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Ko-Wen Wu
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Kuan-Chun Chen
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Tiffany Wang
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Yu-Chiao Yi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Hsiao-Fan Kung
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Jui-Chun Chang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Wen-Jui Yang
- Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu 30274, Taiwan; (W.-J.Y.); (F.L.); (C.-H.C.)
| | - Farn Lu
- Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu 30274, Taiwan; (W.-J.Y.); (F.L.); (C.-H.C.)
| | - Hwa-Fen Guu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Ya-Fang Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Shih-Ting Chuan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Li-Yu Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics Gynecology & Women’s Health, Taichung Veterans General Hospital, Taichung 40764, Taiwan; (M.-J.C.); (Y.-C.Y.); (H.-F.K.); (J.-C.C.); (H.-F.G.); (Y.-F.C.); (S.-T.C.); (L.-Y.C.)
| | - Ching-Hung Chen
- Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu 30274, Taiwan; (W.-J.Y.); (F.L.); (C.-H.C.)
| | - Pok Eric Yang
- Inti Labs, Hsinchu 30261, Taiwan; (A.H.); (P.-Y.L.); (Y.-L.C.); (K.-W.W.); (K.-C.C.); (T.W.)
| | - Jack Yu-Jen Huang
- Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu 30274, Taiwan; (W.-J.Y.); (F.L.); (C.-H.C.)
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Gomes BC, Peixinho N, Pisco R, Gromicho M, Pronto-Laborinho AC, Rueff J, de Carvalho M, Rodrigues AS. Differential Expression of miRNAs in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:7104-7117. [PMID: 37531027 PMCID: PMC10657797 DOI: 10.1007/s12035-023-03520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that affects nerve cells in the brain and spinal cord, causing loss of muscle control, muscle atrophy and in later stages, death. Diagnosis has an average delay of 1 year after symptoms onset, which impairs early management. The identification of a specific disease biomarker could help decrease the diagnostic delay. MicroRNA (miRNA) expression levels have been proposed as ALS biomarkers, and altered function has been reported in ALS pathogenesis. The aim of this study was to assess the differential expression of plasma miRNAs in ALS patients and two control populations (healthy controls and ALS-mimic disorders). For that, 16 samples from each group were pooled, and then 1008 miRNAs were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). From these, ten candidate miRNAs were selected and validated in 35 ALS patients, 16 ALS-mimic disorders controls and 15 healthy controls. We also assessed the same miRNAs in two different time points of disease progression. Although we were unable to determine a miRNA signature to use as disease or condition marker, we found that miR-7-2-3p, miR-26a-1-3p, miR-224-5p and miR-206 are good study candidates to understand the pathophysiology of ALS.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Nuno Peixinho
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Pisco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria CHULN, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
26
|
Zhang R, Tao Y, Huang J. The Application of MicroRNAs in Glaucoma Research: A Bibliometric and Visualized Analysis. Int J Mol Sci 2023; 24:15377. [PMID: 37895056 PMCID: PMC10607922 DOI: 10.3390/ijms242015377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glaucoma is similar to a neurodegenerative disorder and leads to global irreversible loss of vision. Despite extensive research, the pathophysiological mechanisms of glaucoma remain unclear, and no complete cure has yet been identified for glaucoma. Recent studies have shown that microRNAs can serve as diagnostic biomarkers or therapeutic targets for glaucoma; however, there are few bibliometric studies that focus on using microRNAs in glaucoma research. Here, we have adopted a bibliometric analysis in the field of microRNAs in glaucoma research to manifest the current tendencies and research hotspots and to present a visual map of the past and emerging tendencies in this field. In this study, we retrieved publications in the Web of Science database that centered on this field between 2007 and 2022. Next, we used VOSviewer, CiteSpace, Scimago Graphica, and Microsoft Excel to present visual representations of a co-occurrence analysis, co-citation analysis, tendencies, hotspots, and the contributions of authors, institutions, journals, and countries/regions. The United States was the main contributor. Investigative Ophthalmology and Visual Science has published the most articles in this field. Over the past 15 years, there has been exponential growth in the number of publications and citations in this field across various countries, organizations, and authors. Thus, this study illustrates the current trends, hotspots, and emerging frontiers and provides new insight and guidance for searching for new diagnostic biomarkers and clinical trials for glaucoma in the future. Furthermore, international collaborations can also be used to broaden and deepen the field of microRNAs in glaucoma research.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (R.Z.); (Y.T.)
| |
Collapse
|
27
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Luo Y, Liu C, Li D, Yang B, Shi J, Guo X, Fan H, Lv Q. Progress in the Diagnostic and Predictive Evaluation of Crush Syndrome. Diagnostics (Basel) 2023; 13:3034. [PMID: 37835777 PMCID: PMC10572195 DOI: 10.3390/diagnostics13193034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Crush syndrome (CS), also known as traumatic rhabdomyolysis, is a syndrome with a wide clinical spectrum; it is caused by external compression, which often occurs in earthquakes, wars, and traffic accidents, especially in large-scale disasters. Crush syndrome is the second leading cause of death after direct trauma in earthquakes. A series of clinical complications caused by crush syndrome, including hyperkalemia, myoglobinuria, and, in particular, acute kidney injury (AKI), is the main cause of death in crush syndrome. The early diagnosis of crush syndrome, the correct evaluation of its severity, and accurate predictions of a poor prognosis can provide personalized suggestions for rescuers to carry out early treatments and reduce mortality. This review summarizes various methods for the diagnostic and predictive evaluation of crush syndrome, including urine dipstick tests for a large number of victims, traditional and emerging biomarkers, imaging-assisted diagnostic methods, and developed evaluation models, with the aim of providing materials for scholars in this research field.
Collapse
Affiliation(s)
- Yu Luo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Chunli Liu
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Duo Li
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Bofan Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Haojun Fan
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Y.L.)
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| |
Collapse
|
29
|
Liu H, Shen L, Zhao H, Yang J, Huang D. Parkinson's disease patients combined with constipation tend to have higher serum expression of microRNA 29c, prominent neuropsychiatric disorders, possible RBD conversion, and a substandard quality of life. Neurol Sci 2023; 44:3141-3150. [PMID: 37067722 DOI: 10.1007/s10072-023-06793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION The symptom of constipation has been confirmed as an early diagnose criteria for Parkinson's disease (PD). Furthermore, evidences suggest that pathogenesis of PD initiates in gut, rather than brain. If so, identifying biomarkers for constipation in PD might have potentials to assist early diagnosis and initial treatment. METHOD We first identified that microRNA 29c (miR-29c) was dysregulated both in PD and constipation patients through bioinformatics analysis. Then, serological analysis of the expression of miR-29c in 67 PD patients with constipation (PD-C), 51 PD patients without constipation (PD-NC), and 50 healthy controls (HC) was carried out by qPCR. Demographic and clinical features were also compared. Patients in PD-C group were further classified into two groups: those with prodromal stage constipation (PD-C-Pro) (n = 36) and those with clinical stage constipation (PD-C-Clinic) (n = 31), to explore their different characteristics. RESULTS The levels of miR-29c in PD-C group were higher than that in PD-NC group, both higher than HC group. PD-C-Pro group's miR-29c levels were statistically higher compared with PD-C-Clinic group's. What is more, PD-C group had higher scores of MDS-UPDRS-I, NMSS, NMSS3, NMSS4, NMSS6, NMSS9, SCOPA-AUT, HAMD, HAMA, RBDSQ, CSS, and PACQOL compared with PD-NC party. Relative to the PD-C-Clinic, patients in PD-C-Pro group had higher MDS-UPDRS-I, NMSS, NMSS3, HAMD, and HAMA scores, and were more likely to have RBD. CONCLUSION Our results indicated that miR-29c seems to be an underlying cause for developing constipation in patients with PD and PD-C identifies a group of patients with more severe non-motor impairment, prominent neuropsychiatric disorders, and possible RBD conversion as well as a substandard quality of life. We further confirmed that there is a close relationship between symptoms representing the same pathological origin, especially constipation and RBD.
Collapse
Affiliation(s)
- Hong Liu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Lei Shen
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Haonan Zhao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
30
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Kuscu C, Mallisetty Y, Naik S, Han Z, Berta CJ, Kuscu C, Kovesdy CP, Sumida K. Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy. J Clin Med 2023; 12:5010. [PMID: 37568412 PMCID: PMC10419472 DOI: 10.3390/jcm12155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION Patients with kidney failure with replacement therapy (KFRT) suffer from a disproportionately high cardiovascular disease burden. Circulating small non-coding RNAs (c-sncRNAs) have emerged as novel epigenetic regulators and are suggested as novel biomarkers and therapeutic targets for cardiovascular disease; however, little is known about the associations of c-sncRNAs with premature cardiovascular death in KFRT. METHODS In a pilot case-control study of 50 hemodialysis patients who died of cardiovascular events as cases, and 50 matched hemodialysis controls who remained alive during a median follow-up of 2.0 years, we performed c-sncRNAs profiles using next-generation sequencing to identify differentially expressed circulating microRNAs (c-miRNAs) between the plasma of cases and that of controls. mRNA target prediction and pathway enrichment analysis were performed to examine the functional relevance of differentially expressed c-miRNAs to cardiovascular pathophysiology. The association of differentially expressed c-miRNAs with cardiovascular mortality was examined using multivariable conditional logistic regression. RESULTS The patient characteristics were similar between cases and controls, with a mean age of 63 years, 48% male, and 54% African American in both groups. We detected a total of 613 miRNAs in the plasma, among which five miRNAs (i.e., miR-129-1-5p, miR-500b-3p, miR-125b-1-3p, miR-3648-2-5p, and miR-3150b-3p) were identified to be differentially expressed between cases and controls with cut-offs of p < 0.05 and log2 fold-change (log2FC) > 1. When using more stringent cut-offs of p-adjusted < 0.05 and log2FC > 1, only miR-129-1-5p remained significantly differentially expressed, with higher levels of miR-129-1-5p in the cases than in the controls. The pathway enrichment analysis using predicted miR-129-1-5p mRNA targets demonstrated enrichment in adrenergic signaling in cardiomyocytes, arrhythmogenic right ventricular cardiomyopathy, and oxytocin signaling pathways. In parallel, the circulating miR-129-1-5p levels were significantly associated with the risk of cardiovascular death (adjusted OR [95% CI], 1.68 [1.01-2.81] for one increase in log-transformed miR-129-1-5p counts), independent of potential confounders. CONCLUSIONS Circulating miR-129-1-5p may serve as a novel biomarker for premature cardiovascular death in KFRT.
Collapse
Affiliation(s)
- Canan Kuscu
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Yamini Mallisetty
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Surabhi Naik
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Caleb J. Berta
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Cem Kuscu
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
- Nephrology Section, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| |
Collapse
|
32
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Xiong C, Huang X, Chen S, Li Y. Role of Extracellular microRNAs in Sepsis-Induced Acute Lung Injury. J Immunol Res 2023; 2023:5509652. [PMID: 37378068 PMCID: PMC10292948 DOI: 10.1155/2023/5509652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening pathological disease characterized by the damage of pulmonary endothelial cells and epithelial cell barriers by uncontrolled inflammation. During sepsis-induced ALI, multiple cells cooperate and communicate with each other to respond to the stimulation of inflammatory factors. However, the underlying mechanisms of action have not been fully identified, and the modes of communication therein are also being investigated. Extracellular vesicles (EVs) are a heterogeneous population of spherical membrane structures released by almost all types of cells, containing various cellular components. EVs are primary transport vehicles for microRNAs (miRNAs), which play essential roles in physiological and pathological processes in ALI. EV miRNAs from different sources participated in regulating the biological function of pulmonary epithelial cells, endothelial cells, and phagocytes by transferring miRNA through EVs during ALI induced by sepsis, which has great potential diagnostic and therapeutic values. This study aims to summarize the role and mechanism of extracellular vesicle miRNAs from different cells in the regulation of sepsis-induced ALI. It provides ideas for further exploring the role of extracellular miRNA secreted by different cells in the ALI induced by sepsis, to make up for the deficiency of current understanding, and to explore the more optimal scheme for diagnosis and treatment of ALI.
Collapse
Affiliation(s)
- Chenlu Xiong
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shibiao Chen
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
35
|
Hu Y, Yu Y, Dong H, Jiang W. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. PeerJ 2023; 11:e15437. [PMID: 37250717 PMCID: PMC10225123 DOI: 10.7717/peerj.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diabetic nephropathy (DN), the most intractable complication in diabetes patients, can lead to proteinuria and progressive reduction of glomerular filtration rate (GFR), which seriously affects the quality of life of patients and is associated with high mortality. However, the lack of accurate key candidate genes makes diagnosis of DN very difficult. This study aimed to identify new potential candidate genes for DN using bioinformatics, and elucidated the mechanism of DN at the cellular transcriptional level. Methods The microarray dataset GSE30529 was downloaded from the Gene Expression Omnibus Database (GEO), and the differentially expressed genes (DEGs) were screened by R software. We used Gene Ontology (GO), gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify the signal pathways and genes. Protein-protein interaction (PPI) networks were constructed using the STRING database. The GSE30122 dataset was selected as the validation set. Receiver operating characteristic (ROC) curves were applied to evaluate the predictive value of genes. An area under curve (AUC) greater than 0.85 was considered to be of high diagnostic value. Several online databases were used to predict miRNAs and transcription factors (TFs) capable of binding hub genes. Cytoscape was used for constructing a miRNA-mRNA-TF network. The online database 'nephroseq' predicted the correlation between genes and kidney function. The serum level of creatinine, BUN, and albumin, and the urinary protein/creatinine ratio of the DN rat model were detected. The expression of hub genes was further verified through qPCR. Data were analyzed statistically using Student's t-test by the 'ggpubr' package. Results A total of 463 DEGs were identified from GSE30529. According to enrichment analysis, DEGs were mainly enriched in the immune response, coagulation cascades, and cytokine signaling pathways. Twenty hub genes with the highest connectivity and several gene cluster modules were ensured using Cytoscape. Five high diagnostic hub genes were selected and verified by GSE30122. The MiRNA-mRNA-TF network suggested a potential RNA regulatory relationship. Hub gene expression was positively correlated with kidney injury. The level of serum creatinine and BUN in the DN group was higher than in the control group (unpaired t test, t = 3.391, df = 4, p = 0.0275, r = 0.861). Meanwhile, the DN group had a higher urinary protein/creatinine ratio (unpaired t test, t = 17.23, df = 16, p < 0.001, r = 0.974). QPCR results showed that the potential candidate genes for DN diagnosis included C1QB, ITGAM, and ITGB2. Conclusions We identified C1QB, ITGAM and ITGB2 as potential candidate genes for DN diagnosis and therapy and provided insight into the mechanisms of DN development at transcriptome level. We further completed the construction of miRNA-mRNA-TF network to propose potential RNA regulatory pathways adjusting disease progression in DN.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Dong
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
36
|
Abgoon R, Wijesinghe P, Garnis C, Nunez DA. The Expression Levels of MicroRNAs Differentially Expressed in Sudden Sensorineural Hearing Loss Patients' Serum Are Unchanged for up to 12 Months after Hearing Loss Onset. Int J Mol Sci 2023; 24:ijms24087307. [PMID: 37108470 PMCID: PMC10138909 DOI: 10.3390/ijms24087307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is an acquired idiopathic hearing loss. Serum levels of small, non-coding RNAs and microRNAs (miRNAs) miR-195-5p/-132-3p/-30a-3p/-128-3p/-140-3p/-186-5p/-375-3p/-590-5p are differentially expressed in SSNHL patients within 28 days of hearing loss onset. This study determines if these changes persist by comparing the serum miRNA expression profile of SSNHL patients within 1 month of hearing loss onset with that of patients 3-12 months after hearing loss onset. We collected serum from consenting adult SSNHL patients at presentation or during clinic follow-up. We matched patient samples drawn 3-12 months after hearing loss onset (delayed group, n = 9 patients) by age and sex to samples drawn from patients within 28 days of hearing loss onset (immediate group, n = 14 patients). We compared the real-time PCR-determined expression levels of the target miRNAs between the two groups. We calculated the air conduction pure-tone-averaged (PTA) audiometric thresholds in affected ears at the initial and final follow-up visits. We undertook inter-group comparisons of hearing outcome status and initial and final PTA audiometric thresholds. There was no significant inter-group difference in miRNA expression level, hearing recovery status and initial and final affected ear PTA audiometric thresholds.
Collapse
Affiliation(s)
- Reyhaneh Abgoon
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Printha Wijesinghe
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Cathie Garnis
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Desmond A Nunez
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
- Division of Otolaryngology-Head & Neck Surgery, Vancouver General Hospital, Vancouver, BC V57 1M9, Canada
| |
Collapse
|
37
|
Kim JA, Park C, Sung JJ, Seo DJ, Choi SJ, Hong YH. Small RNA sequencing of circulating small extracellular vesicles microRNAs in patients with amyotrophic lateral sclerosis. Sci Rep 2023; 13:5528. [PMID: 37016037 PMCID: PMC10073149 DOI: 10.1038/s41598-023-32717-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNA) in small extracellular vesicles (sEV) such as exosomes have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Although circulating cell-free miRNA have been extensively investigated in ALS, sEV-derived miRNAs have not been systemically explored yet. Here, we performed small RNA sequencing analysis of serum sEV and identified 5 differentially expressed miRNA in a discovery cohort of 12 patients and 11 age- and sex-matched healthy controls (fold change > 2, p < 0.05). Two of them (up- and down-regulation of miR-23c and miR192-5p, respectively) were confirmed in a separate validation cohort (18 patients and 15 healthy controls) by droplet digital PCR. Bioinformatic analysis revealed that these two miRNAs interact with distinct sets of target genes and involve biological processes relevant to the pathomechanism of ALS. Our results suggest that circulating sEV from ALS patients have distinct miRNA profiles which may be potentially useful as a biomarker of the disease.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Canaria Park
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Jin Seo
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Neuroscience Research Institute, Medical Research Council, Seoul National University College of Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea.
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, 20 Boramaero-5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
38
|
Yang Y, Liu H, Chen Y, Xiao N, Zheng Z, Liu H, Wan J. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis 2023; 14:230. [PMID: 37002211 PMCID: PMC10066332 DOI: 10.1038/s41419-023-05757-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most threatening malignancies to human health and life. In most cases, patients with NSCLC are already at an advanced stage when they are diagnosed. In recent years, lung cancer has made great progress in precision therapy, but the efficacy of immunotherapy is unstable, and its response rate varies from patient to patient. Several biomarkers have been proposed to predict the outcomes of immunotherapy, such as programmed cell death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB). Nevertheless, the detection assays are invasive and demanding on tumor tissue. To effectively predict the outcomes of immunotherapy, novel biomarkers are needed to improve the performance of conventional biomarkers. Liquid biopsy is to capture and detect circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and exosomes in body fluids, such as blood, saliva, urine, pleural fluid and cerebrospinal fluid as samples from patients, so as to make analysis and diagnosis of cancer and other diseases. The application of liquid biopsy provides a new possible solution, as it has several advantages such as non-invasive, real-time dynamic monitoring, and overcoming tumor heterogeneity. Liquid biopsy has shown predictive value in immunotherapy, significantly improving the precision treatment of lung cancer patients. Herein, we review the application of liquid biopsy in predicting the outcomes of immunotherapy in NSCLC patients, and discuss the challenges and future directions in this field.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyang Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
39
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
40
|
Differential Expression of microRNAs in Serum of Patients with Chronic Painful Polyneuropathy and Healthy Age-Matched Controls. Biomedicines 2023; 11:biomedicines11030764. [PMID: 36979743 PMCID: PMC10045018 DOI: 10.3390/biomedicines11030764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polyneuropathies (PNP) are the most common type of disorder of the peripheral nervous system in adults. However, information on microRNA expression in PNP is lacking. Following microRNA sequencing, we compared the expression of microRNAs in the serum of patients experiencing chronic painful PNP with healthy age-matched controls. We have been able to identify four microRNAs (hsa-miR-3135b, hsa-miR-584-5p, hsa-miR-12136, and hsa-miR-550a-3p) that provide possible molecular links between degenerative processes, blood flow regulation, and signal transduction, that eventually lead to PNP. In addition, these microRNAs are discussed regarding the targeting of proteins that are involved in high blood flow/pressure and neural activity dysregulations/disbalances, presumably resulting in PNP-typical symptoms such as chronical numbness/pain. Within our study, we have identified four microRNAs that may serve as potential novel biomarkers of chronic painful PNP, and that may potentially bear therapeutic implications.
Collapse
|
41
|
Roointan A, Gholaminejad A, Shojaie B, Hudkins KL, Gheisari Y. Candidate MicroRNA Biomarkers in Lupus Nephritis: A Meta-analysis of Profiling Studies in Kidney, Blood and Urine Samples. Mol Diagn Ther 2023; 27:141-158. [PMID: 36520403 DOI: 10.1007/s40291-022-00627-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 12/16/2022]
Abstract
CONTEXT Lupus nephritis (LN) is a kidney disease caused by systemic lupus erythematosus in which kidneys are attacked by the immune system. So far, various investigations have reported altered miRNA expression profiles in LN patients and different miRNAs have been introduced as biomarkers and/or therapeutic targets in LN. The aim of this study was to introduce a consensus panel of potential miRNA biomarkers by performing a meta-analysis of miRNA profiles in the LN patients. MATERIALS AND METHODS A comprehensive literature review approach was performed to find LN-related miRNA expression profiles in renal tissues, blood, and urine samples. After selecting the eligible studies and performing the data extraction, meta-analysis was done based on the vote-counting rank strategy as well as meta-analysis of p-values. The meta-miRNAs and their related genes were subjected to functional enrichment analyses and network construction. RESULTS The results of the meta-analysis of 41 studies were three lists of consensus miRNAs with altered expression profiles in the various tissue samples of LN patients (meta-analysis of p-values < 0.05). Of the 13 studies on kidney tissue, the meta-miRNAs were let-7a, miR-198, let-7e, miR-145, and miR-26a. In addition, meta-miRNAs of miR-199a, miR-21, miR-423, miR-1260b, miR-589, miR-150, miR-155, miR-146a, and miR-183 from 21 studies on blood samples, and miR-146a, miR-204, miR-30c, miR-3201, and miR-1273e from 11 studies on urine samples can be considered as non-invasive biomarker panels for LN. Functional enrichment analysis on the meta-miRNA lists confirmed the involvement of their target genes in nephropathy-related signaling pathways. CONCLUSION Using a meta-analytical approach, our study proposes three meta-miRNA panels that could be the target of further research to assess their potential as therapeutic targets/biomarkers in LN disease.
Collapse
Affiliation(s)
- Amir Roointan
- Faculty of Medicine, Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar jarib St, Isfahan, 81746-73461, Iran
| | - Alieh Gholaminejad
- Faculty of Medicine, Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar jarib St, Isfahan, 81746-73461, Iran.
| | - Behrokh Shojaie
- Faculty of Medicine, Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar jarib St, Isfahan, 81746-73461, Iran
| | - Kelly L Hudkins
- Department of Pathology, School of Medicine, University of Washington, Seattle, USA
| | - Yousof Gheisari
- Faculty of Medicine, Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar jarib St, Isfahan, 81746-73461, Iran
| |
Collapse
|
42
|
Twenty Novel MicroRNAs in the Aqueous Humor of Pseudoexfoliation Glaucoma Patients. Cells 2023; 12:cells12050737. [PMID: 36899874 PMCID: PMC10000531 DOI: 10.3390/cells12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The microRNAs (miRNAs) are short non-coding RNAs (19-25 nt) that regulate the level of gene expression at the post-transcriptional stage. Altered miRNAs expression can lead to the development of various diseases, e.g., pseudoexfoliation glaucoma (PEXG). In this study, we assessed the levels of miRNA expression in the aqueous humor of PEXG patients using the expression microarray method. Twenty new miRNA molecules have been selected as having the potential to be associated with the development or progression of PEXG. Ten miRNAs were downregulated in PEXG (hsa-miR-95-5p, hsa-miR-515-3p, hsa-mir-802, hsa-miR-1205, hsa-miR-3660, hsa-mir-3683, hsa -mir-3936, hsa-miR-4774-5p, hsa-miR-6509-3p, hsa-miR-7843-3p) and ten miRNAs were upregulated in PEXG (hsa-miR-202 -3p, hsa-miR-3622a-3p, hsa-mir-4329, hsa-miR-4524a-3p, hsa-miR-4655-5p, hsa-mir-6071, hsa-mir-6723-5p, hsa-miR-6847-5p, hsa-miR-8074, and hsa-miR-8083). Functional analysis and enrichment analysis showed that the mechanisms that can be regulated by these miRNAs are: extracellular matrix (ECM) imbalance, cell apoptosis (possibly retinal ganglion cells (RGCs)), autophagy, and elevated calcium cation levels. Nevertheless, the exact molecular basis of PEXG is unknown and further research is required on this topic.
Collapse
|
43
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
44
|
Fortunato F, Ferlini A. Biomarkers in Duchenne Muscular Dystrophy: Current Status and Future Directions. J Neuromuscul Dis 2023; 10:987-1002. [PMID: 37545256 PMCID: PMC10657716 DOI: 10.3233/jnd-221666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
45
|
Al Gashaamy ZJ, Alomar T, Al-Sinjary L, Wazzan M, Saeed MH, Al-Rawi NH. MicroRNA expression in apical periodontitis and pulpal inflammation: a systematic review. PeerJ 2023; 11:e14949. [PMID: 36890871 PMCID: PMC9987318 DOI: 10.7717/peerj.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Background The aim of this systematic review is to determine microRNAs (miRs) that are differently expressed between diseased pulpal and periapical tissues. Design This systematic review used PubMed, Scopus, EBSCO, ProQuest, Cochrane database as well as manual searching to extract studies from January 2012 up to February 2022. Results A total of 12 studies met the eligibility criteria were included. All selected studies were of case-control type. Twenty-four miRNAs associated with apical periodontitis, 11 were found to be upregulatedand 13 were downregulated. Four out of the 44 miRs associated with pulpal inflammation were upregulated, whereas forty were downregulated. Six miRs, namely hsa-miR-181b, hsa-miR-181c,hsa-miR-455-3p,hsa-miR-128-3p, hsa-miR199a-5p, and hsa-miR-95, exhibited considerable downregulation in both periapical and pulp tissues. Conclusion MiRs have been investigated for their role in pulpal and periapical biology and may be utilised in diagnostic and therapeutic purposes. Further investigations are required to determine why certain irreversible pulpitis situations progress to apical periodontitis and others do not, based on the various miR expressions. Moreover, clinical and laboratory trials are needed to support this theory.
Collapse
Affiliation(s)
- Zainab Jamal Al Gashaamy
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tiba Alomar
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Linah Al-Sinjary
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Wazzan
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Science, College of Dentistry, Ajman University, Ajman, United Arab Emirates.,Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Natheer H Al-Rawi
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
46
|
Haque SS. Biomarkers in the diagnosis of neurodegenerative diseases. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-4-431-440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomarkers are molecules that behave as of biological states. Ideally, they should have high sensitivity, specificity, and accuracy in reflecting the total disease burden. The review discusses the current status of biomarkers used in neurological disorders. Neurodegenerative diseases are a heterogeneous group disorders characterized by progressive loss of structure and function of the central nervous system or peripheral nervous system. The review discusses the main biomarkers that have predictive value for describing clinical etiology, pathophysiology, and intervention strategies. Preciseness and reliability are one of important requirement for good biomarker. As a result of the analysis of literature data, it was revealed that beta-amyloid, total tau protein and its phosphorylated forms are the first biochemical biomarkers of neurodegenerative diseases measured in cerebrospinal fluid, but these markers are dependent upon invasive lumbar puncture and therefore it’s a cumbersome process for patients. Among the various biomarkers of neurodegenerative diseases, special attention is paid to miRNAs. MicroRNAs, important biomarkers in many disease states, including neurodegenerative disorders, make them promising candidates that may lead to identify new therapeutic targets. Conclusions. Biomarkers of neurological disease are present optimal amount in the cerebrospinal fluid but they are also present in blood at low levels. The data obtained reveal the predictive value of molecular diagnostics of neurodegenerative disorders and the need for its wider use.
Collapse
|
47
|
Expression profiles of microRNAs in midbrain of MPTP-treated mice determined by microRNA sequencing. Neurosci Lett 2022; 788:136841. [PMID: 35988790 DOI: 10.1016/j.neulet.2022.136841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
MPTP models have been developed to mimic human Parkinson's disease and serve as an indispensable tool for studying PD. Among them, subacute MPTP PD models are popular due to their short modeling period and similarity to PD pathology. However, the early pathophysiological mechanism of the model remains to be further clarified. More and more studies have shown that dysregulation of miRNAs plays an important role in the occurrence and development of neurodegenerative diseases, including PD. In this study, we identified 43 differentially expressed microRNAs (miRNAs) in the ventral midbrain of MPTP-induced subacute PD mouse by RNA sequencing. Further bioinformatics analysis revealed that these miRNAs were significantly enriched in axon guidance/neuron projection, metabolic pathways/cellular macromolecule metabolic process and PI3K/AKT signaling pathways, which were involved in the occurrence and development of early PD. Thus, targeted regulation of these miRNAs may reverse the neurodegeneration of early PD.
Collapse
|
48
|
Dudakovic A, Jerez S, Deosthale PJ, Denbeigh JM, Paradise CR, Gluscevic M, Zan P, Begun DL, Camilleri ET, Pichurin O, Khani F, Thaler R, Lian JB, Stein GS, Westendorf JJ, Plotkin LI, van Wijnen AJ. MicroRNA-101a enhances trabecular bone accrual in male mice. Sci Rep 2022; 12:13361. [PMID: 35922466 PMCID: PMC9349183 DOI: 10.1038/s41598-022-17579-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Padmini J Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L Roudebush VA Medical Center, Indianapolis, IN, USA.
| | | |
Collapse
|
49
|
Waheed W, Newman E, Aboukhatwa M, Moin M, Tandan R. Practical Management for Use of Eculizumab in the Treatment of Severe, Refractory, Non-Thymomatous, AChR + Generalized Myasthenia Gravis: A Systematic Review. Ther Clin Risk Manag 2022; 18:699-719. [PMID: 35855752 PMCID: PMC9288180 DOI: 10.2147/tcrm.s266031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disorder caused by specific autoantibodies at the neuromuscular junction. MG is classified by the antigen specificity of these antibodies. Acetylcholine receptor (AChR) antibodies are the most common type (74–88%), followed by anti-muscle specific kinase (MuSK) and other antibodies. While all these antibodies lead to neuromuscular transmission failure, the immuno-pathogenic mechanisms are distinct. Complement activation is a primary driver of AChR antibody-positive MG (AChR+ MG) pathogenesis. This leads to the formation of the membrane attack complex and destruction of AChR receptors and the postsynaptic membrane resulting in impaired neurotransmission and muscle weakness characteristic of MG. Broad-based immune-suppressants like corticosteroids are effective in controlling MG; however, their long-term use can be associated with significant adverse effects. Advances in translational research have led to the development of more directed therapeutic agents that are likely to alter the future of MG treatment. Eculizumab is a humanized monoclonal antibody that inhibits the cleavage of complement protein C5 and is approved for use in generalized MG. In this review, we discuss the pathophysiology of MG; the therapeutic efficacy and tolerability of eculizumab, as well as the practical guidelines for its use in MG; future studies exploring the role of eculizumab in different stages and subtypes of MG subtypes; the optimal duration of therapy and its discontinuation; the characterization of non-responder patients; and the use of biomarkers for monitoring therapy are highlighted. Based on the pathophysiologic mechanisms, emerging therapies and new therapeutic targets are also reviewed.
Collapse
Affiliation(s)
- Waqar Waheed
- Department of Neurological Sciences, The University of Vermont and the University of Vermont Medical Center, Burlington, VT, USA
| | - Eric Newman
- Department of Neurological Sciences, The University of Vermont and the University of Vermont Medical Center, Burlington, VT, USA
| | - Marwa Aboukhatwa
- Pharmacotherapy Department, University of Vermont Medical Center, Burlington, VT, USA
| | - Maryam Moin
- Department of Neurology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Rup Tandan
- Department of Neurological Sciences, The University of Vermont and the University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
50
|
Ruhela V, Gupta A, Sriram K, Ahuja G, Kaur G, Gupta R. A Unified Computational Framework for a Robust, Reliable, and Reproducible Identification of Novel miRNAs From the RNA Sequencing Data. FRONTIERS IN BIOINFORMATICS 2022; 2:842051. [PMID: 36304305 PMCID: PMC9580950 DOI: 10.3389/fbinf.2022.842051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, miRNAs regulate a plethora of cellular functionalities ranging from cellular metabolisms, and development to the regulation of biological networks and pathways, both under homeostatic and pathological states like cancer.Despite their immense importance as key regulators of cellular processes, accurate and reliable estimation of miRNAs using Next Generation Sequencing is challenging, largely due to the limited availability of robust computational tools/methods/pipelines. Here, we introduce miRPipe, an end-to-end computational framework for the identification, characterization, and expression estimation of small RNAs, including the known and novel miRNAs and previously annotated pi-RNAs from small-RNA sequencing profiles. Our workflow detects unique novel miRNAs by incorporating the sequence information of seed and non-seed regions, concomitant with clustering analysis. This approach allows reliable and reproducible detection of unique novel miRNAs and functionally same miRNAs (paralogues). We validated the performance of miRPipe with the available state-of-the-art pipelines using both synthetic datasets generated using the newly developed miRSim tool and three cancer datasets (Chronic Lymphocytic Leukemia, Lung cancer, and breast cancer). In the experiment over the synthetic dataset, miRPipe is observed to outperform the existing state-of-the-art pipelines (accuracy: 95.23% and F1-score: 94.17%). Analysis on all the three cancer datasets shows that miRPipe is able to extract more number of known dysregulated miRNAs or piRNAs from the datasets as compared to the existing pipelines.
Collapse
Affiliation(s)
- Vivek Ruhela
- Department of Computational Biology & Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
- *Correspondence: Vivek Ruhela, ; Anubha Gupta, ; Ritu Gupta,
| | - Anubha Gupta
- SBILab, Department of ECE & Centre of Excellence in Healthcare, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
- *Correspondence: Vivek Ruhela, ; Anubha Gupta, ; Ritu Gupta,
| | - K. Sriram
- Department of Computational Biology & Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology & Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- *Correspondence: Vivek Ruhela, ; Anubha Gupta, ; Ritu Gupta,
| |
Collapse
|