1
|
Rychlik KA, Kashiwagi C, Liao J, Mathur A, Illingworth EJ, Sanchez SS, Kleensang A, Maertens A, Sillé FCM. Prenatal Arsenic Exposure and Gene Expression in Fetal Liver, Heart, Lung, and Placenta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622821. [PMID: 39605375 PMCID: PMC11601249 DOI: 10.1101/2024.11.10.622821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Prenatal arsenic exposure has been linked to a myriad of negative health effects. There is relatively little insight into the mechanisms and signaling alterations across different fetal organs that drive long-term immune-related issues following prenatal arsenic exposure. Therefore, the effects of this exposure window on gene expression in the liver, placenta, heart, and lung of gestation day (GD) 18 C57BL/6 mouse fetuses were investigated. From two weeks prior to mating until tissue collection at GD18, mice were exposed to 0 or 100 ppb sodium (meta) arsenite in drinking water. Genes of interest were analyzed by RT-qPCR, complemented with untargeted Agilent 44K microarray analysis. Data cleanup and analysis was performed in RStudio. Differentially expressed mRNAs were queried in the String Database and using Cytoscape to create interaction networks and identify significantly enriched biological pathways. A total of 251, 165, 158, and 41 genes were significantly altered in the liver, placenta, heart, and lung, respectively, when treated samples were compared to controls. Many altered pathways were immune-related, supporting prior research. Most notably, gene expression of Gbp3, a key player in the cellular response to interferon gamma, was found to be reduced in placentas of female fetuses exposed to arsenic compared to controls (p=0.0762). Impact This is the first study comparing alterations in gene expression across multiple organs following prenatal exposure to environmentally relevant levels of arsenic. These findings, elucidating the multi-organ impact of prenatal arsenic exposure on predominantly immune-related pathways, further our mechanistic understanding of the long-term health effects observed in early-life arsenic-exposed populations.
Collapse
Affiliation(s)
- K A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Public Health Program, School of Health Professions, Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| | - C Kashiwagi
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Liao
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Mathur
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - E J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - S S Sanchez
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Kleensang
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Maertens
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - F C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 2014; 88:1043-67. [PMID: 24691704 DOI: 10.1007/s00204-014-1233-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The "double capacity" of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56123, Pisa, Italy
| | | | | | | |
Collapse
|
3
|
Salazar AM, Mendlovic F, Cruz-Rivera M, Chávez-Talavera O, Sordo M, Avila G, Flisser A, Ostrosky-Wegman P. Genotoxicity induced by Taenia solium and its reduction by immunization with calreticulin in a hamster model of taeniosis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:347-353. [PMID: 23704053 DOI: 10.1002/em.21782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms.
Collapse
Affiliation(s)
- Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México, D.F., México
| | | | | | | | | | | | | | | |
Collapse
|