1
|
Su H, Dong B, Xiao L, Zhang D. Insights into long-term effects of low-dose cerium on partial-nitrification process: Accelerating nitrite supply by endogenous heterotrophic nitrification partial denitrification. BIORESOURCE TECHNOLOGY 2025; 431:132604. [PMID: 40315930 DOI: 10.1016/j.biortech.2025.132604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
Cerium (Ce(III)) is ubiquitously quantified in many rivers (up to 4.48 mg/L), especially in nitrogen-rich streams affected by rare earth mining. This study investigated effects and mechanisms for long-term (123 d) low-dose (0.5-5.0 mg/L) Ce(III) on partial-nitrification (PN) process. In this study, Ach1 and PrpE were upregulated by 1.0 mg/L Ce(III), which increased the proportion of acetate in metabolic products and enriched Pseudofulvimonas. Moreover, PN/endogenous nitrification partial denitrification (PN/ENPD) process established via the synergy of Pseudofulvimonas and Nitrosomonas, which increased specific nitrite production rate (60 %) and decreased N2O (95 %). Furthermore, the "biotic/abiotic synergistic detoxification mechanism" activated when Ce(III) concentration reached 1.0 mg/L, which increased abundance of Nitrosomonas, performance, and secretion of biomolecules. Finally, PN/ENPD process collapsed when Ce(III) concentration reached 5.0 mg/L due to Ce(III) accumulated toxicity. Overall, this study advances the understanding of long-term risks of low-dose Ce(III) to PN process and provides novel insights into accelerating nitrite supply.
Collapse
Affiliation(s)
- Hao Su
- Jiangxi University of Science and Technology, School of Resources Environmental Engineering, Jiangxi Province, Ganzhou City 341000, PR China; Jiangxi University of Science and Technology, Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou city 341000, PR China.
| | - Bingyan Dong
- Jiangxi University of Science and Technology, School of Resources Environmental Engineering, Jiangxi Province, Ganzhou City 341000, PR China; Jiangxi University of Science and Technology, Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou city 341000, PR China.
| | - Longwen Xiao
- Jiangxi University of Science and Technology, School of Resources Environmental Engineering, Jiangxi Province, Ganzhou City 341000, PR China; Jiangxi University of Science and Technology, Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou city 341000, PR China.
| | - Dachao Zhang
- Jiangxi University of Science and Technology, School of Resources Environmental Engineering, Jiangxi Province, Ganzhou City 341000, PR China; Jiangxi University of Science and Technology, Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Ganzhou city 341000, PR China.
| |
Collapse
|
2
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
3
|
Ilmjärv T, Naanuri E, Kivisaar M. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS One 2017; 12:e0182484. [PMID: 28777807 PMCID: PMC5544203 DOI: 10.1371/journal.pone.0182484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source.
Collapse
Affiliation(s)
- Tanel Ilmjärv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eve Naanuri
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
4
|
Ding WY, Li YH, Lian H, Ai XY, Zhao YL, Yang YB, Han Q, Liu X, Chen XY, He Z. Sub-Minimum Inhibitory Concentrations of Rhubarb Water Extracts Inhibit Streptococcus suis Biofilm Formation. Front Pharmacol 2017; 8:425. [PMID: 28736523 PMCID: PMC5500959 DOI: 10.3389/fphar.2017.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus suis is one of the most important swine pathogens, which can cause persistent infection by forming biofilms. In this study, sub-minimum inhibitory concentration (sub-MIC) of rhubarb water extracts were found to inhibit biofilm formation. Two-component signal transduction systems (TCSs), transcriptional regulators, and DNA binding proteins were compared under two conditions: (1) cells treated with sub-MIC rhubarb water extracts and (2) untreated cells. Using an isobaric tags for relative and absolute quantitation (iTRAQ) strategy, we found that TCSs constituent proteins of histidine kinase and response regulator were significantly down-regulated. This down-regulation can affect the transfer of information during biofilm formation. The transcriptional regulators and DNA binding proteins that can interact with TCSs and interrupt gene transcription were also significantly altered. For these reasons, the levels of protein expressions varied in different parts of the treated vs. untreated cells. In summary, rhubarb water extracts might serve as potential inhibitor for the control of S. suis biofilm formation. The change in TCSs, transcriptional regulators, and DNA binding proteins may be important factors in S. suis biofilm inhibition.
Collapse
Affiliation(s)
- Wen-Ya Ding
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China.,Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Hua Li
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - He Lian
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China
| | - Xiao-Yu Ai
- School of Pharmacy, Nankai UniversityTianjin, China
| | - Yu-Lin Zhao
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Bei Yang
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Qiang Han
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China.,Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xin Liu
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xue-Ying Chen
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Zhonggui He
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China
| |
Collapse
|
5
|
Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS One 2017; 12:e0170719. [PMID: 28118378 PMCID: PMC5261740 DOI: 10.1371/journal.pone.0170719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis.
Collapse
Affiliation(s)
- Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| | - Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| |
Collapse
|
6
|
Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. FreeingPseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol 2014; 17:76-90. [DOI: 10.1111/1462-2920.12492] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program; Centro Nacional de Biotecnología-CSIC; Campus de Cantoblanco 28049 Madrid Spain
| | - Tatjana Jatsenko
- Department of Genetics; Institute of Molecular and Cell Biology; University of Tartu; Tartu Estonia
| | - Maia Kivisaar
- Department of Genetics; Institute of Molecular and Cell Biology; University of Tartu; Tartu Estonia
| | - Víctor de Lorenzo
- Systems Biology Program; Centro Nacional de Biotecnología-CSIC; Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
7
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|