1
|
Yu C, Asadian S, Tigano M. Molecular and cellular consequences of mitochondrial DNA double-stranded breaks. Hum Mol Genet 2024; 33:R12-R18. [PMID: 38779775 PMCID: PMC11112379 DOI: 10.1093/hmg/ddae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are subcellular organelles essential for life. Beyond their role in producing energy, mitochondria govern various physiological mechanisms, encompassing energy generation, metabolic processes, apoptotic events, and immune responses. Mitochondria also contain genetic material that is susceptible to various forms of damage. Mitochondrial double-stranded breaks (DSB) are toxic lesions that the nucleus repairs promptly. Nevertheless, the significance of DSB repair in mammalian mitochondria is controversial. This review presents an updated view of the available research on the consequences of mitochondrial DNA DSB from the molecular to the cellular level. We discuss the crucial function of mitochondrial DNA damage in regulating processes such as senescence, integrated stress response, and innate immunity. Lastly, we discuss the potential role of mitochondrial DNA DSB in mediating the cellular consequences of ionizing radiations, the standard of care in treating solid tumors.
Collapse
Affiliation(s)
- Chenxiao Yu
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107, United States
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Samieh Asadian
- Tehran University of Medical Sciences, Pour Sina St, Tehran 1416634793, Iran
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107, United States
| |
Collapse
|
2
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
4
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
5
|
Liu XC, Zhou PK. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation. Int J Mol Sci 2022; 23:ijms232314786. [PMID: 36499111 PMCID: PMC9738833 DOI: 10.3390/ijms232314786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The long-term survival rate of cancer patients has been increasing as a result of advances in treatments and precise medical management. The evidence has accumulated that the incidence and mortality of non-cancer diseases have increased along with the increase in survival time and long-term survival rate of cancer patients after radiotherapy. The risk of cardiovascular disease as a radiation late effect of tissue damage reactions is becoming a critical challenge and attracts great concern. Epidemiological research and clinical trials have clearly shown the close association between the development of cardiovascular disease in long-term cancer survivors and radiation exposure. Experimental biological data also strongly supports the above statement. Cardiovascular diseases can occur decades post-irradiation, and from initiation and development to illness, there is a complicated process, including direct and indirect damage of endothelial cells by radiation, acute vasculitis with neutrophil invasion, endothelial dysfunction, altered permeability, tissue reactions, capillary-like network loss, and activation of coagulator mechanisms, fibrosis, and atherosclerosis. We summarize the most recent literature on the tissue reactions and mechanisms that contribute to the development of radiation-induced cardiovascular diseases (RICVD) and provide biological knowledge for building preventative strategies.
Collapse
|
6
|
Herate C, Sabatier L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108287. [PMID: 32192645 DOI: 10.1016/j.mrrev.2019.108287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 01/28/2023]
Abstract
In the absence of physical data, biodosimetry tools are required for fast dose and risk assessment in the event of radiological or nuclear mass accidents or attacks to triage exposed humans and take immediate medical countermeasures. Biodosimetry tools have mostly been developed for retrospective dose assessment and the follow-up of victims of irradiation. Among them, cytogenetics analyses, to reveal chromosome damage, are the most developed and allow the determination of doses from blood samples as low as 100 mGy. Various cytogenetic tests have already allowed retrospective dose assessment of Chernobyl liquidators and military personnel exposed to nuclear tests after decades. In this review, we discuss the properties of various biodosimetry techniques, such as their sensitivity and limitations as a function of the time from exposure, using multiple examples of nuclear catastrophes or working exposure. Among them, chromosome FISH hybridization, which reveals chromosome translocations, is the most reliable due to the persistence of translocations for decades, whereas dicentric chromosome and micronuclei assays allow rapid and accurate dose assessment a short time after exposure. Both need to be adjusted through mathematical algorithms for retrospective analyses, accounting for the time since exposure and the victims' age. The goal for the future will be to better model chromosome damage, reduce the time to result, and develop new complementary biodosimetry approaches, such as mutation signatures.
Collapse
Affiliation(s)
- C Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France
| | - L Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France.
| |
Collapse
|
7
|
Livingston K, Schlaak RA, Puckett LL, Bergom C. The Role of Mitochondrial Dysfunction in Radiation-Induced Heart Disease: From Bench to Bedside. Front Cardiovasc Med 2020; 7:20. [PMID: 32154269 PMCID: PMC7047199 DOI: 10.3389/fcvm.2020.00020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation is a key modality in the treatment of many cancers; however, it can also affect normal tissues adjacent to the tumor, leading to toxic effects. Radiation to the thoracic region, such as that received as part of treatment for breast and lung cancer, can result in incidental dose to the heart, leading to cardiac dysfunction, such as pericarditis, coronary artery disease, ischemic heart disease, conduction defects, and valvular dysfunction. The underlying mechanisms for these morbidities are currently being studied but are not entirely understood. There has been increasing focus on the role of radiation-induced mitochondrial dysfunction and the ensuing impact on various cardiac functions in both preclinical models and in humans. Cardiomyocyte mitochondria are critical to cardiac function, and mitochondria make up a substantial part of a cardiomyocyte's volume. Mitochondrial dysfunction can also alter other cell types in the heart. This review summarizes several factors related to radiation-induced mitochondrial dysfunction in cardiomyocytes and endothelial cells. These factors include mitochondrial DNA mutations, oxidative stress, alterations in various mitochondrial function-related transcription factors, and apoptosis. Through improved understanding of mitochondria-dependent mechanisms of radiation-induced heart dysfunction, potential therapeutic targets can be developed to assist in prevention and treatment of radiation-induced heart damage.
Collapse
Affiliation(s)
- Katie Livingston
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Rachel A Schlaak
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lindsay L Puckett
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Hargitai R, Roivainen P, Kis D, Luukkonen J, Sáfrány G, Seppälä J, Szatmári T, Virén T, Vuolukka K, Salomaa S, Lumniczky K. Mitochondrial DNA damage in the hair bulb: can it be used as a noninvasive biomarker of local exposure to low LET ionizing radiation? Int J Radiat Biol 2019; 96:491-501. [PMID: 31846382 DOI: 10.1080/09553002.2020.1704910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Our aim was to evaluate whether mitochondrial DNA (mtDNA) damage in hair bulbs could be a suitable biomarker for the detection of local exposure to ionizing radiation.Materials and methods: Mouse hair was collected 4 and 24 hours, 3 and 10 days after single whole-body exposure to 0, 0.1, and 2 Gy radiation. Pubic hair (treated area) and scalp hair (control area) were collected from 13 prostate cancer patients before and after fractioned radiotherapy with an average total dose of 2.7 Gy to follicles after five fractions. Unspecified lesion frequency of mtDNA was analyzed with long PCR, large mtDNA deletion levels were tested with real-time PCR.Results: Unspecified lesion frequency of mtDNA significantly increased in mouse hair 24 hours after irradiation with 2 Gy, but variance among samples was high. No increase in lesion frequency could be detected after 0.1 Gy irradiation. In prostate cancer patients, there was no significant change in either the unspecified lesion frequency or in the proportion of 4934-bp deleted mtDNA in pubic hair after radiotherapy. The proportions of murine 3860-bp common deletion, human 4977-bp common deletion and 7455-bp deleted mtDNA were too low to be analyzed reliably.Conclusions: Our results suggest that the unspecified lesion frequency and proportion of large deletions of mtDNA in hair bulbs are not suitable biomarkers of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rita Hargitai
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Päivi Roivainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dávid Kis
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Géza Sáfrány
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Tünde Szatmári
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | | | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
9
|
Yin Z, Yang G, Deng S, Wang Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. JOURNAL OF RADIATION RESEARCH 2019; 60:204-214. [PMID: 30590649 PMCID: PMC6430248 DOI: 10.1093/jrr/rry105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/21/2018] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to set up a beagle dog model, for radiation-induced lung injury, that would be able to supply fresh lung tissues in the different injury phases for research into oxidative stress levels and mitochondrial gene expression. Blood serum and tissues were collected via CT-guided core needle biopsies from dogs in the various phases of the radiation response over a 40-week period. Levels of reactive oxygen species (ROS) and manganese superoxide dismutase 2 (MnSOD) protein expression in radiation-induced lung injury were determined by in situ immunocytochemistry; malondialdehyde (MDA) content and reductase activity in the peripheral blood were also tested; in addition, the copy number of the mitochondrial DNA and the level of function of the respiratory chain in the lung tissues were assessed. ROS showed dynamic changes and peaked at 4 weeks; MnSOD was mainly expressed in the Type II alveolar epithelium at 8 weeks; the MDA content and reductase activity in the peripheral blood presented no changes; the copy numbers of most mitochondrial genes peaked at 8 weeks, similarly to the level of function of the corresponding respiratory chain complexes; the level of function of the respiratory chain complex III did not peak until 24 weeks, similarly to the level of function of the corresponding gene Cytb. Radiation-induced lung injury was found to be a dynamically changing process, mainly related to interactions between local ROS, and it was not associated with the levels of oxidative stress in the peripheral blood. Mitochondrial genes and their corresponding respiratory chain complexes were found to be involved in the overall process.
Collapse
Affiliation(s)
- Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Corresponding author: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Tel: +86-159-2739-5672; Fax: +86-27-6565-0733;
| |
Collapse
|
10
|
Borghini A, Vecoli C, Piccaluga E, Guagliumi G, Picano E, Andreassi MG. Increased mitochondrial DNA4977-bp deletion in catheterization laboratory workers with long-term low-dose exposure to ionizing radiation. Eur J Prev Cardiol 2019; 26:976-984. [PMID: 30782005 DOI: 10.1177/2047487319831495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS Ionizing radiation may lead to mitochondrial DNA (mtDNA) mutations and changes in mtDNA content in cells, major driving mechanisms for carcinogenesis, vascular aging and neurodegeneration. The aim of this study was to investigate the possible induction of common mitochondrial deletion (mtDNA4977) and mtDNA copy number (mtDNA-CN) changes in peripheral blood of personnel working in high-volume cardiac catheterization laboratories (Cath Labs). METHODS A group of 147 Cath Lab workers (median individual effective dose = 16.8 mSv, for the 41 with lifetime dosimetric record) and 74 unexposed individuals were evaluated. The occupational radiological risk score was computed for each subject on the basis of the length of employment, individual caseload and proximity to the radiation source. mtDNA4977 deletion and mtDNA-CN were assessed by using quantitative real-time polymerase chain reaction. RESULTS Increased levels of mtDNA4977 deletion were observed in high-exposure Cath Lab workers compared with unexposed individuals ( p < 0.0001). Conversely, mtDNA-CN was significantly greater in the low-exposure workers ( p = 0.003). Occupational radiological risk score was positively correlated with mtDNA4977 deletion (Spearman's r = 0.172, p = 0.03) and inversely correlated with mtDNA-CN (Spearman's r = -0.202, p = 0.01). In multiple regression model, occupational radiological risk score emerged as significant predictor of high levels of mtDNA4977 deletion (ß coefficient = 0.236, p = 0.04). CONCLUSION mtDNA4977 deletion is significantly high in Cath Lab personnel. Beyond the well-recognized nuclear DNA, mtDNA damage might deserve attention as a pathogenetic molecular pathway and a potential therapeutic target of ionizing radiation damage.
Collapse
Affiliation(s)
| | | | | | - Giulio Guagliumi
- 3 Ospedale Papa Giovanni XXIII, Cardiovascular Department, Bergamo, Italy
| | | | | |
Collapse
|
11
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
12
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
13
|
Guo X, Zhang M, Gao Y, Cao G, Yang Y, Lu D, Li W. A genome-wide view of mutations in respiration-deficient mutants of Saccharomyces cerevisiae selected following carbon ion beam irradiation. Appl Microbiol Biotechnol 2019; 103:1851-1864. [PMID: 30661110 DOI: 10.1007/s00253-019-09626-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction in Saccharomyces cerevisiae was selected as a marker of ion penetration following carbon ion beam (CIB) irradiation. Respiration-deficient mutants were screened. Following confirmation of negligible spontaneous mutation, eight genetically stable S. cerevisiae respiration-deficient mutant strains and a control strain were resequenced with ~ 200-fold read depth. Strategies were established to identify and validate the particular mutations induced by CIB irradiation. In the nuclear genome, CIB irradiation mainly caused base substitutions and some small (< 100 bp) insertions/deletions (indels), which were widely distributed across the chromosomes. Although mitochondrial dysfunction was selected as a screening marker, variants in the nuclear genome were detected at a high frequency (10-7) relative to spontaneous mutations (10-9). The transition to transversion ratio for base substitutions was 0.746, which was less than that of spontaneous mutations. In the mitochondrial genome, there were very large deletions including substantial gene areas, resulting in extremely low read coverage. Meanwhile, every mutant possessed a distinctive mutation pattern, for both the nuclear and the mitochondrial genome. Nuclear genomes contained scanty mitochondrial respiration-related genes that were potentially affected by verified mutations, suggesting that variants in the mitochondrial genome may be the main drivers of respiratory deficiencies. Our study confirmed the previous finding that heavy ion beam (HIB) irradiation mainly induces substantial base substitutions and some small indels but also yielded some novel findings, in particular, novel structural variants in the mitochondrial genomes. These data will enhance the understanding of HIB-induced damage and mutations and aid in the HIB-based microbial mutation breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploition and Application, Lanzhou, 730000, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhen Cao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Department of Pharmacology, School of Preclinical Medicine of Xinjiang Medical University, Urumqi, 830011, China
| | - Yang Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Gansu Key Laboratory of Microbial Resources Exploition and Application, Lanzhou, 730000, China.
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Gansu Key Laboratory of Microbial Resources Exploition and Application, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Kawamura K, Qi F, Kobayashi J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. JOURNAL OF RADIATION RESEARCH 2018; 59:ii91-ii97. [PMID: 29415254 PMCID: PMC5941154 DOI: 10.1093/jrr/rrx091] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/04/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Exposure to ionizing radiation (IR) induces various types of DNA damage, of which DNA double-strand breaks are the most severe, leading to genomic instability, tumorigenesis, and cell death. Hence, cells have developed DNA damage responses and repair mechanisms. IR also causes the accumulation of endogenous reactive oxidative species (ROS) in the irradiated cells. Upon exposure to low-dose irradiation, the IR-induced biological effects mediated by ROS were relatively more significant than those mediated by DNA damage. Accumulating evidence suggests that such increase in endogenous ROS is related with mitochondria change in irradiated cells. Thus, in this review we focused on the mechanism of mitochondrial ROS production and its relationship to the biological effects of IR. Exposure of mammalian cells to IR stimulates an increase in the production of endogenous ROS by mitochondria, which potentially leads to mitochondrial dysfunction. Since the remains of damaged mitochondria could generate or leak more ROS inside the cell, the damaged mitochondria are removed by mitophagy. The disruption of this pathway, involved in maintaining mitochondrial integrity, could lead to several disorders (such as neurodegeneration) and aging. Thus, further investigation needs to be performed in order to understand the relationship between the biological effects of low-dose IR and mitochondrial integrity.
Collapse
Affiliation(s)
- Kasumi Kawamura
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fei Qi
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan
- Corresponding author. Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto 606-8501, Japan. Tel: +81-75-753-7554; Fax: +81-75-753-7564;
| |
Collapse
|
15
|
Friedland W, Schmitt E, Kundrát P, Baiocco G, Ottolenghi A. Track-structure simulations of energy deposition patterns to mitochondria and damage to their DNA. Int J Radiat Biol 2018; 95:3-11. [PMID: 29584515 DOI: 10.1080/09553002.2018.1450532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Mitochondria have been implicated in initiating and/or amplifying the biological effects of ionizing radiation not mediated via damage to nuclear DNA. To help elucidate the underlying mechanisms, energy deposition patterns to mitochondria and radiation damage to their DNA have been modelled. METHODS Track-structure simulations have been performed with PARTRAC biophysical tool for 60Co γ-rays and 5 MeV α-particles. Energy deposition to the cell's mitochondria has been analyzed. A model of mitochondrial DNA reflecting experimental information on its structure has been developed and used to assess its radiation-induced damage. RESULTS Energy deposition to mitochondria is highly inhomogeneous, especially at low doses. Although a dose-dependent fraction of mitochondria sees no energy deposition at all, the hit ones receive rather high amounts of energy. Nevertheless, only little damage to mitochondrial DNA occurs, even at large doses. CONCLUSION Mitochondrial DNA does not represent a critical target for radiation effects. Likely, the key role of mitochondria in radiation-induced biological effects arises from the communication between mitochondria and/or with the nucleus. Through this signaling, initial modifications in a few heavily hit mitochondria seem to be amplified to a massive long-term effect manifested in the whole cell or even tissue.
Collapse
Affiliation(s)
- Werner Friedland
- a Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany
| | - Elke Schmitt
- a Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany
| | - Pavel Kundrát
- a Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany
| | - Giorgio Baiocco
- b Department of Physics , University of Pavia , Pavia , Italy
| | | |
Collapse
|
16
|
Bonisoli-Alquati A, Ostermiller S, Beasley DAE, Welch SM, Møller AP, Mousseau TA. Faster Development Covaries with Higher DNA Damage in Grasshoppers (Chorthippus albomarginatus) from Chernobyl. Physiol Biochem Zool 2018; 91:776-787. [DOI: 10.1086/696005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Antipova VN, Lomaeva MG, Zyrina NV. Mitochondrial DNA deletions in tissues of mice after ionizing radiation exposure. Int J Radiat Biol 2018; 94:282-288. [DOI: 10.1080/09553002.2018.1419299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Valeriya N. Antipova
- Laboratory of Biophysics of Active Media, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Milena G. Lomaeva
- Laboratory of Radiation Molecular Biology, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nadezhda V. Zyrina
- Laboratory of Crystallophysics and X-ray Research, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
18
|
Oxygen Concentration and Oxidative Stress Modulate the Influence of Alzheimer's Disease A β1-42 Peptide on Human Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7567959. [PMID: 29576854 PMCID: PMC5821958 DOI: 10.1155/2018/7567959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) generated after exposure to ionizing radiation and toxic peptides, in mitochondrial metabolism and during aging contribute to damage of cell's structural and functional components and can lead to diseases. Monomers and small oligomers of amyloid beta (Aβ) peptide, players in Alzheimer's disease, are recently suggested to be involved in damaging of neurons, instead of extracellular Aβ plaques. We demonstrate that externally applied disaggregated Aβ1–42 peptide interacts preferentially with acidic compartments (lysosomes). We compared standard cell cultivation (21% O2) to more physiological cell cultivation (5% O2). Cells did not exhibit a dramatic increase in ROS and change in glutathione level upon 4 μM Aβ peptide treatment, whereas exposure to 2 Gy X-rays increased ROS and changed glutathione level and ATP concentration. The occurrence of the 4977 bp deletion in mtDNA and significant protein carbonylation were specific effects of IR and more pronounced at 21% O2. An increase in cell death after Aβ peptide treatment or irradiation was unexpectedly restored to the control level or below when both were combined, particularly at 5% O2. Therefore, Aβ peptide at low concentration can trigger neuroprotective mechanisms in cells exposed to radiation. Oxygen concentration is an important modulator of cellular responses to stress.
Collapse
|
19
|
Vo NTK, Sokeechand BSH, Seymour CB, Mothersill CE. Influence of chronic low-dose/dose-rate high-LET irradiation from radium-226 in a human colorectal carcinoma cell line. ENVIRONMENTAL RESEARCH 2017; 156:697-704. [PMID: 28477580 DOI: 10.1016/j.envres.2017.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE To evaluate potential damages of chronic environmentally relevant low-dose/dose-rate high-LET irradiation from a naturally occurring alpha-emitting radionuclide (radium-226, 226Ra) on a human colorectal carcinoma HCT116 p53+/+ cell line. METHODS Clonogenic survival assays and mitochondrial membrane potential (MMP) measurement with a sensitive fluorescent MMP probe JC-1 were performed in HCT116 p53+/+ cells chronically exposure to low doses/dose rates of 226Ra with high-LET. Comparisons were made with the human non-transformed keratinocyte HaCaT cell line and acute low-dose direct low-LET gamma radiation. RESULTS AND CONCLUSION The chronic low-dose/dose-rate alpha radiation (CLD/DRAR) did not reduce the clonogenic survival of HCT116 p53+/+ cells over the period of 70 days of exposure. Only one significant reduction in the HCT116 p53+/+ cells' clonogenic survival was when cells were grown with 10,000mBq/mL 226Ra for 40 days and progeny cells were clonogenically assessed in the presence of 10,000mBq/mL 226Ra. The cumulative doses that cells received during this period ranged from 0.05 to 46.2mGy. The mitochondrial membrane potential (MMP) dropped initially in both HCT116 p53+/+ and HaCaT cells in response to CLD/DRAR. The MMP in HCT116 p53+/+ cells recovered more quickly at all dose points than and that in HaCaT cells until the end of the exposure period. The highest dose rate of 0.66mGy/day depolarized the HaCaT's mitochondria more consistently during the exposure period. The faster recovery status of the MMP in HCT116 p53+/+ cells than that in HaCaT cells was also observed after exposure to acute low-dose gamma rays. Overall, it was found that CLD/DRAR had little impact on the MMP of human colorectal cancer and keratinocyte cell lines.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada.
| | - Bibi S H Sokeechand
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
20
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
21
|
Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med 2016; 38:1623-1641. [PMID: 27748824 PMCID: PMC5117755 DOI: 10.3892/ijmm.2016.2777] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Traditionally, non-cancer diseases are not considered as health risks following exposure to low doses of ionizing radiation. Indeed, non-cancer diseases are classified as deterministic tissue reactions, which are characterized by a threshold dose. It is judged that below an absorbed dose of 100 mGy, no clinically relevant tissue damage occurs, forming the basis for the current radiation protection system concerning non-cancer effects. Recent epidemiological findings point, however, to an excess risk of non-cancer diseases following exposure to lower doses of ionizing radiation than was previously thought. The evidence is the most sound for cardiovascular disease (CVD) and cataract. Due to limited statistical power, the dose-risk relationship is undetermined below 0.5 Gy; however, if this relationship proves to be without a threshold, it may have considerable impact on current low-dose health risk estimates. In this review, we describe the CVD risk related to low doses of ionizing radiation, the clinical manifestation and the pathology of radiation-induced CVD, as well as the importance of the endothelium models in CVD research as a way forward to complement the epidemiological data with the underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Charlotte Rombouts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Abderrafi Mohammed Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
22
|
Qian QZ, Cao XK, Shen FH, Wang Q. Effects of ionising radiation on micronucleus formation and chromosomal aberrations in Chinese radiation workers. RADIATION PROTECTION DOSIMETRY 2016; 168:197-203. [PMID: 26084304 PMCID: PMC4884887 DOI: 10.1093/rpd/ncv290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 05/27/2023]
Abstract
This study is aimed to investigate the effects of ionising radiation (IR) on micronuclei (MN) formation and chromosome aberrations (CAs) in Chinese radiation workers. The study was conducted using peripheral blood lymphocytes from 1392 radiation workers from Public Hospitals of the city of Tangshan (the exposed group), and 143 healthy individuals as the control group. Fluorescence in situ hybridisation (FISH) was used to detect the unstable and stable nuclear CAs on metaphase. The MN assay was performed using the cytochalasin B method for cytokinesis-block. The MN and CA frequencies were significantly higher in the exposed group than in healthy controls (both p < 0.001). Examination of the incidence rates of MN and CA showed an increasing trend among workers in some occupations compared with the others (all p < 0.05). There were also significant differences in MN and CA rates among workers with different exposure times (all p < 0.05). Stable CA rates demonstrated an increased trend among workers with different exposure times (all p < 0.05), while no significance of unstable CA rates was found among workers with different exposure times (all p < 0.05). Importantly, the frequencies of CA and MN increased among different cumulative radiation dose groups (all p < 0.05). Correlation analysis showed that the frequencies of MN and CA were positively associated with the cumulative radiation dose. Long-term exposure to IR may have harmful effects on the health of radiation workers. The data obtained here show an increased risk of genetic instability that correlated with occupation, exposure time and equivalent dose among Chinese radiation workers.
Collapse
Affiliation(s)
- Qing-Zeng Qian
- Central Laboratory, College of Public Health, Hebei United University, Tang Shan 063000, P. R. China
| | - Xiang-Ke Cao
- Central Laboratory, College of Life Sciences, Hebei United University, Tang Shan 063000, P. R. China
| | - Fu-Hai Shen
- Central Laboratory, College of Public Health, Hebei United University, Tang Shan 063000, P. R. China
| | - Qian Wang
- Central Laboratory, College of Public Health, Hebei United University, Tang Shan 063000, P. R. China
| |
Collapse
|
23
|
Sándor N, Schilling-Tóth B, Kis E, Benedek A, Lumniczky K, Sáfrány G, Hegyesi H. Growth Differentiation Factor-15 (GDF-15) is a potential marker of radiation response and radiation sensitivity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:142-9. [PMID: 26520384 DOI: 10.1016/j.mrgentox.2015.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/28/2022]
Abstract
We have investigated the importance of GDF-15 (secreted cytokine belonging to the TGF-β superfamily) in low and high dose radiation-induced cellular responses. A telomerase immortalized human fibroblast cell line (F11hT) was used in the experiments. A lentiviral system encoding small hairpin RNAs (shRNA) was used to establish GDF-15 silenced cells. Secreted GDF-15 levels were measured in culture medium by ELISA. Cell cycle analysis was performed by flow cytometry. The experiments demonstrated that in irradiated human fibroblasts GDF-15 expression increased with dose starting from 100mGy. Elevated GDF-15 expression was not detected in bystander cells. The potential role of GDF-15 in radiation response was investigated by silencing GDF-15 in immortalized human fibroblasts with five different shRNA encoded in lentiviral vectors. Cell lines with considerably reduced GDF-15 levels presented increased radiation sensitivity, while a cell line with elevated GDF-15 was more radiation resistant than wild type cells. We have investigated how the reduced GDF-15 levels alter the response of several known radiation inducible genes. In F11hT-shGDF-15 cells the basal expression level of CDKN1A was unaltered relative to F11hT cells, while GADD45A and TGF-β1 mRNA levels were slightly higher, and TP53INP1 was considerably reduced. The radiation-induced expression of TP53INP1 was lower in the silenced than in wild type fibroblast cells. Cell cycle analysis indicated that radiation-induced early G2/M arrest was abrogated in GDF-15 silenced cells. Moreover, radiation-induced bystander effect was less pronounced in GDF-15 silenced fibroblasts. In conclusion, the results suggest that GDF-15 works as a radiation inducible radiation resistance increasing factor in normal human fibroblast cells, acts by regulating the radiation-induced transcription of several genes and might serve as a radiation-induced early biomarker in exposed cells.
Collapse
Affiliation(s)
- Nikolett Sándor
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Boglárka Schilling-Tóth
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Enikő Kis
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Anett Benedek
- Division of Cellular and Immune-radiobiology, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Katalin Lumniczky
- Division of Cellular and Immune-radiobiology, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Géza Sáfrány
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary.
| | - Hargita Hegyesi
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary; Department of Morphology and Physiology, College of Health Care, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
25
|
Kam WWY, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013; 65:607-619. [PMID: 23892359 DOI: 10.1016/j.freeradbiomed.2013.07.024] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/08/2023]
Abstract
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.
Collapse
Affiliation(s)
- Winnie Wai-Ying Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia.
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia; National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
26
|
Kam WWY, McNamara AL, Lake V, Banos C, Davies JB, Kuncic Z, Banati RB. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: A Monte Carlo simulation and quantitative PCR study. Mitochondrion 2013; 13:736-42. [DOI: 10.1016/j.mito.2013.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
27
|
Green fluorescent protein alters the transcriptional regulation of human mitochondrial genes after gamma irradiation. J Fluoresc 2013; 23:613-9. [PMID: 23475276 DOI: 10.1007/s10895-013-1206-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/24/2013] [Indexed: 12/21/2022]
Abstract
Green fluorescent proteins (GFP), extensively used as reporters in biological and imaging studies, are assumed to be mostly biologically inert. Here, we test the assumption in regard to the transcriptional regulation of 18 mitochondrially encoded genes in GFP expressing human T-cell line (JURKAT cells) exposed to gamma radiation. Using quantitative polymerase chain reaction, we demonstrate that wild type and GFP expressing JURKAT cells have different baseline mitochondrial transcript expression (10 out of the 18 tested genes) and after a single dose of radiation (100 Gy) show a significantly different transcriptional regulation of their mitochondrial genes. While in wild type cells, ten of the tested genes are up-regulated in response to radiation exposure, GFP expressing cells show less transcriptional regulation with a small down-regulation in five genes. Our results indicate that the presence of GFP in the cytoplasm can alter the cellular response to ionizing radiation.
Collapse
|
28
|
Mothersill C, Antonelli F, Dahle J, Dini V, Hegyesi H, Iliakis G, Kämäräinen K, Launonen V, Lumniczky K, Lyng F, Safrany G, Salomaa S, Schilling-Tóth B, Tabocchini A, Kadhim MA. A laboratory inter-comparison of the importance of serum serotonin levels in the measurement of a range of radiation-induced bystander effects: overview of study and results presentation. Int J Radiat Biol 2012; 88:763-9. [PMID: 22891994 DOI: 10.3109/09553002.2012.715795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Recent research has suggested that serotonin may play an important role in the expression of radiation-induced bystander effects. Serotonin levels in serum were reported to range from 6-22 μM and to correlate inversely with the magnitude of cellular colony-forming ability in medium transfer bystander assays. That is, high serotonin concentration correlated with a low cloning efficiency in cultures receiving medium derived from irradiated cells. METHODS Because of the potential importance of this observation, the European Union's Non-targeted Effects Integrated Project (NOTE) performed an inter-comparison exercise where serum samples with high and low serotonin levels were distributed to seven laboratories which then performed their own assay to determine the magnitude of the bystander effect. RESULTS The results provided some support for a role for serotonin in four of the laboratories. Two saw no difference between the samples and one gave inconclusive results. In this summary paper, full data sets are presented from laboratories whose data was inconclusive or insufficient for a full paper. Other data are published in full in the special issue. CONCLUSION The data suggest that there may be multiple bystander effects and that the underlying mechanisms may be modulated by both the culture conditions and the intrinsic properties of the cells used in the assay.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao XY, Sun JL, Hu YJ, Yang Y, Zhang WJ, Hu Y, Li J, Sun Y, Zhong Y, Peng W, Zhang HL, Kong WJ. The effect of overexpression of PGC-1α on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear Res 2012; 296:13-24. [PMID: 23159434 DOI: 10.1016/j.heares.2012.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/17/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Aging is a natural process usually defined as a progressive loss of function with an accumulation of senescent cells. The clinical manifestations of this process include age-related hearing loss (AHL)/presbycusis. Several investigations indicated the association between a mitochondrial common deletion (CD) (mtDNA 4977-bp deletion in humans, corresponding to 4834-bp deletion in rats) and presbycusis. Previous researches have shown that peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key regulator of mitochondrial biogenesis and energy metabolism. However, the expression of PGC-1α in the inner ear and the possible effect of PGC-1α on presbycusis are not clear. Our data demonstrated the distribution of PGC-1α and its downstream transcription factors nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (Tfam) and nuclear factor κB (NF-κB) in marginal cells (MCs) for the first time. To explore the role of PGC-1α in cellular senescence, we established a model of marginal cell senescence harboring the mtDNA4834 common deletion induced by d-galactose. We also found that PGC-1α and its downstream transcription factors compensatorily increased in our cell senescence model. Furthermore, the overexpression of PGC-1α induced by transfection largely increased the expression levels of NRF-1 and TFAM and significantly decreased the expression level of NF-κB in the cell senescence model. And the levels of CD, senescent cells and apoptotic cells in the cell model decreased after PGC-1α overexpression. These results suggested that PGC-1α might protect MCs in this cell model from senescence through a nuclear-mitochondrial interaction and against apoptosis. Our study may shed light on the pathogenesis of presbycusis and provide a new therapeutic target for presbycusis.
Collapse
Affiliation(s)
- Xue-Yan Zhao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mothersill C, Smith RW, Fazzari J, McNeill F, Prestwich W, Seymour CB. Evidence for a physical component to the radiation-induced bystander effect? Int J Radiat Biol 2012; 88:583-91. [DOI: 10.3109/09553002.2012.698366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Mikulich A, Kavaliauskiene S, Juzenas P. Blebbistatin, a myosin inhibitor, is phototoxic to human cancer cells under exposure to blue light. Biochim Biophys Acta Gen Subj 2012; 1820:870-7. [PMID: 22507270 DOI: 10.1016/j.bbagen.2012.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/06/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blebbistatin is a new inhibitor of cell motility. It is used to study dynamics of cytokinesis machinery in cells. However, the potential of this inhibitor as an anticancer agent has not been studied so far. METHODS Cytotoxicity of blebbistatin was evaluated in five human cell lines, FEMX-I melanoma, U87 glioma, androgen independent Du145 and androgen sensitive LNCaP prostate adenocarcinoma, and F11-hTERT immortalized fibroblasts. Phototoxicity of blebbistatin was assessed in these cell lines after their exposure to a blue light (390-470 nm). Photostability of blebbistatin and its reactive oxygen species (ROS) generating properties were measured during irradiation with the blue light. RESULTS Blebbistatin at a concentration range of 10-200 μmol/L was toxic to all studied cells. Toxic concentrations (TC) were about 10-25 μmol/L corresponding to TC10, 50-100 μmol/L to TC50 and 140-190 μmol/L to TC90. Only for the U87 glioma cells TC90 could not be measured as the highest studied concentration of 200 μmol/L gave around 70% toxicity. However, after exposure to the blue light blebbistatin exhibited phototoxicity on the cells, with a cytotoxicity enhancement ratio that was greatest for the FEMX-I cells (about 9) followed by LNCaP (5), Du145 (3), U87 (2) and F11-hTERT (1.7) cells. CONCLUSIONS Blebbistatin inhibits cell motility and viability. Under exposure to the blue light blebbistatin exhibits photodynamic action on human cancer cells. During the irradiation blebbistatin oxidizes dihydrorhodamine 123 but not Singlet Oxygen Sensor Green. GENERAL SIGNIFICANCE Our findings offer new possibilities for blebbistatin as a potential anticancer and photodynamic agent.
Collapse
Affiliation(s)
- Aliaksandr Mikulich
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello NO-0310 Oslo, Norway
| | | | | |
Collapse
|