1
|
Krassnig SC, Mäser M, Probst NA, Werner J, Schlett C, Schumann N, von Scheven G, Mangerich A, Bürkle A. Comparative analysis of chlorambucil-induced DNA lesion formation and repair in a spectrum of different human cell systems. Toxicol Rep 2023; 10:171-189. [PMID: 36714466 PMCID: PMC9881385 DOI: 10.1016/j.toxrep.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Chlorambucil (CLB) belongs to the class of nitrogen mustards (NMs), which are highly reactive bifunctional alkylating agents and were the first chemotherapeutic agents developed. They form DNA interstrand crosslinks (ICLs), which cause a blockage of DNA strand separation, inhibiting essential processes in DNA metabolism like replication and transcription. In fast replicating cells, e.g., tumor cells, this can induce cell death. The upregulation of ICL repair is thought to be a key factor for the resistance of tumor cells to ICL-inducing cytostatic agents including NMs. To monitor induction and repair of CLB-induced ICLs, we adjusted the automated reversed fluorometric analysis of alkaline DNA unwinding assay (rFADU) for the detection of ICLs in adherent cells. For the detection of monoalkylated DNA bases we established an LC-MS/MS method. We performed a comparative analysis of adduct formation and removal in five human cell lines and in peripheral blood mononuclear cells (PBMCs) after treatment with CLB. Dose-dependent increases in adduct formation were observed, and suitable treatment concentrations were identified for each cell line, which were then used for monitoring the kinetics of adduct formation. We observed significant differences in the repair kinetics of the cell lines tested. For example, in A2780 cells, hTERT immortalized VH10 cells, and in PBMCs a time-dependent repair of the two main monoalkylated DNA-adducts was confirmed. Regarding ICLs, repair was observed in all cell systems except for PBMCs. In conclusion, LC-MS/MS analyses combined with the rFADU technique are powerful tools to study the molecular mechanisms of NM-induced DNA damage and repair. By applying these methods to a spectrum of human cell systems of different origin and transformation status, we obtained insight into the cell-type specific repair of different CLB-induced DNA lesions, which may help identify novel resistance mechanisms of tumors and define molecular targets for therapeutic interventions.
Collapse
Key Words
- BER, base excision repair
- CLB, chlorambucil
- Chlorambucil
- DNA repair kinetics
- ICL, interstrand crosslink
- Interstrand crosslink
- MS, mass spectrometry
- Mass spectrometry
- Monoalkylated DNA adducts
- NER, nucleotide excision repair
- NM, Nitrogen mustard
- Nitrogen mustard
- PBMCs, peripheral blood mononuclear cells
- PI, propidium iodide
- RPE-1, human retinal pigment epithelial
- SD, standard deviation
- VH10, human foreskin fibroblasts
- dG, 2'-deoxyguanosine
- hTERT, human telomerase reverse transcriptase
- rFADU, reverse fluorometric analysis of alkaline DNA unwinding
Collapse
Affiliation(s)
- Sarah Ceylan Krassnig
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Marina Mäser
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nicola Anna Probst
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Jens Werner
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Charlotte Schlett
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nina Schumann
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Gudrun von Scheven
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
2
|
Translesion synthesis of the major nitrogen mustard-induced DNA lesion by human DNA polymerase η. Biochem J 2021; 477:4543-4558. [PMID: 33175093 DOI: 10.1042/bcj20200767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.
Collapse
|
3
|
Bradley NP, Washburn LA, Christov PP, Watanabe CMH, Eichman BF. Escherichia coli YcaQ is a DNA glycosylase that unhooks DNA interstrand crosslinks. Nucleic Acids Res 2020; 48:7005-7017. [PMID: 32409837 PMCID: PMC7367128 DOI: 10.1093/nar/gkaa346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Interstrand DNA crosslinks (ICLs) are a toxic form of DNA damage that block DNA replication and transcription by tethering the opposing strands of DNA. ICL repair requires unhooking of the tethered strands by either nuclease incision of the DNA backbone or glycosylase cleavage of the crosslinked nucleotide. In bacteria, glycosylase-mediated ICL unhooking was described in Streptomyces as a means of self-resistance to the genotoxic natural product azinomycin B. The mechanistic details and general utility of glycosylase-mediated ICL repair in other bacteria are unknown. Here, we identify the uncharacterized Escherichia coli protein YcaQ as an ICL repair glycosylase that protects cells against the toxicity of crosslinking agents. YcaQ unhooks both sides of symmetric and asymmetric ICLs in vitro, and loss or overexpression of ycaQ sensitizes E. coli to the nitrogen mustard mechlorethamine. Comparison of YcaQ and UvrA-mediated ICL resistance mechanisms establishes base excision as an alternate ICL repair pathway in bacteria.
Collapse
Affiliation(s)
- Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren A Washburn
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Plamen P Christov
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Coran M H Watanabe
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Zhang X, Zhang Z, Chen S, Zhao D, Zhang F, Hu Z, Xiao F, Ma X. Nitrogen mustard hydrochloride-induced acute respiratory failure and myelosuppression: A case report. Exp Ther Med 2015; 10:1293-1296. [PMID: 26622480 PMCID: PMC4578113 DOI: 10.3892/etm.2015.2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/14/2015] [Indexed: 11/05/2022] Open
Abstract
Nitrogen mustards are chemical agents that are similar to sulfur mustards, with similar toxicities. The present study describes a case of nitrogen mustard-induced acute respiratory failure and myelosuppression in a 33-year-old man. The patient, who was accidentally exposed to nitrogen mustard hydrochloride in a pharmaceutical factory, exhibited severe inhalation injury and respiratory symptoms. Laboratory tests revealed reduced white blood cell counts and lowered platelet levels during the first 6 days after the skin exposure to nitrogen mustard. Following treatment with mechanical ventilation, immunity-enhancing agents and nutritional supplements for 1 month, the patient successfully recovered and was released from hospital.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhidan Zhang
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Song Chen
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dongmei Zhao
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fangxiao Zhang
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ziwei Hu
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Xiao
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaochun Ma
- Intensive Care Unit, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
Inturi S, Tewari-Singh N, Agarwal C, White CW, Agarwal R. Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes. Mutat Res 2014; 763-764:53-63. [PMID: 24732344 DOI: 10.1016/j.mrfmmm.2014.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
Nitrogen mustard (NM), a structural analog of chemical warfare agent sulfur mustard (SM), forms adducts and crosslinks with DNA, RNA and proteins. Here we studied the mechanism of NM-induced skin toxicity in response to double strand breaks (DSBs) resulting in cell cycle arrest to facilitate DNA repair, as a model for developing countermeasures against vesicant-induced skin injuries. NM exposure of mouse epidermal JB6 cells decreased cell growth and caused S-phase arrest. Consistent with these biological outcomes, NM exposure also increased comet tail extent moment and the levels of DNA DSB repair molecules phospho H2A.X Ser139 and p53 Ser15 indicating NM-induced DNA DSBs. Since DNA DSB repair occurs via non homologous end joining pathway (NHEJ) or homologous recombination repair (HRR) pathways, next we studied these two pathways and noted their activation as defined by an increase in phospho- and total DNA-PK levels, and the formation of Rad51 foci, respectively. To further analyze the role of these pathways in the cellular response to NM-induced cytotoxicity, NHEJ and HRR were inhibited by DNA-PK inhibitor NU7026 and Rad51 inhibitor BO2, respectively. Inhibition of NHEJ did not sensitize cells to NM-induced decrease in cell growth and cell cycle arrest. However, inhibition of the HRR pathway caused a significant increase in cell death, and prolonged G2M arrest following NM exposure. Together, our findings, indicating that HRR is the key pathway involved in the repair of NM-induced DNA DSBs, could be useful in developing new therapeutic strategies against vesicant-induced skin injury.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
De Alencar TAM, Wilmart-Gonçalves TC, Vidal LS, Fortunato RS, Leitão AC, Lage C. Bipyridine (2,2'-dipyridyl) potentiates Escherichia coli lethality induced by nitrogen mustard mechlorethamine. Mutat Res 2014; 765:40-7. [PMID: 24632511 DOI: 10.1016/j.mrfmmm.2014.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 12/21/2022]
Abstract
Alkylating agents are used in anti-tumor chemotherapy because they bind covalently to DNA and generate adducts that may lead to cell death. Bifunctional (HN2) and monofunctional (HN1) nitrogen are two such agents, and HN2 was the first drug successfully employed in anti-leukemia chemotherapy. Currently, HN2 is used either alone or combined with other drugs to treat Hodgkin's disease. It is well known that several crosslinking agents require metabolic activation via reactive oxygen species (ROS) to exert their lethal effects. The objective of this work was therefore to determine whether the abovementioned mustards would also require metabolic activation to exert lethal action against Escherichia coli. For this purpose, we measured survival following exposure to HN2 in E. coli strains that were deficient in nucleotide excision repair (uvrA NER mutant), base excision repair (xthA nfo nth fpg BER mutant) or superoxide dismutase (sodAB mutant) activity. We also performed the same experiments in cells pretreated with an iron chelator (2,2'-dipyridyl, DIP). The NER and BER mutants were only sensitive to HN2 treatment (survival rates similar to those of the wild-type were achieved with 5-fold lower HN2 doses). However, wild-type and sodAB strains were not sensitive to treatment with HN2. In all tested strains, survival dropped by 2.5-fold following pretreatment with DIP compared to treatment with HN2 alone. Furthermore, DIP treatment increased ROS generation in both wild type and sodAB-deficient strains. Based on these data and on the survival of the SOD-deficient strain, we suggest that the increased production of ROS caused by Fe(2+) chelation may potentiate the lethal effects of HN2 but not HN1. This potentiation may arise as a consequence of enhancement in the number of or modification of the type of lesions formed. No sensitization was observed for the non-crosslinkable HN2 analog, HN1.
Collapse
Affiliation(s)
| | | | - L S Vidal
- Laboratório de Radiobiologia Molecular, Brazil
| | | | - A C Leitão
- Laboratório de Radiobiologia Molecular, Brazil
| | - C Lage
- Laboratório de Radiações em Biologia, Brazil.
| |
Collapse
|
7
|
Synthesis and characterization of glycosylated nitrogen mustard derivatives and their interaction with bovine serum albumin. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-012-0727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Felício DF, Vidal LDS, Irineu RS, Leitão AC, von Kruger WA, Britto CDP, Cardoso A, Cardoso JS, Lage C. Overexpression of Escherichia coli nucleotide excision repair genes after cisplatin-induced damage. DNA Repair (Amst) 2013; 12:63-72. [DOI: 10.1016/j.dnarep.2012.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/12/2022]
|
9
|
Vollebergh MA, Jonkers J, Linn SC. Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci 2012; 69:223-45. [PMID: 21922196 PMCID: PMC11114988 DOI: 10.1007/s00018-011-0809-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 12/20/2022]
Abstract
Breast and ovarian cancer are among the most common malignancies diagnosed in women worldwide. Together, they account for the majority of cancer-related deaths in women. These cancer types share a number of features, including their association with hereditary cancer syndromes caused by heterozygous germline mutations in BRCA1 or BRCA2. BRCA-associated breast and ovarian cancers are hallmarked by genomic instability and high sensitivity to DNA double-strand break (DSB) inducing agents due to loss of error-free DSB repair via homologous recombination (HR). Recently, poly(ADP-ribose) polymerase inhibitors, a new class of drugs that selectively target HR-deficient tumor cells, have been shown to be highly active in BRCA-associated breast and ovarian cancers. This finding has renewed interest in hallmarks of HR deficiency and the use of other DSB-inducing agents, such as platinum salts or bifunctional alkylators, in breast and ovarian cancer patients. In this review we discuss the similarities between breast and ovarian cancer, the hallmarks of genomic instability in BRCA-mutated and BRCA-like breast and ovarian cancers, and the efforts to search for predictive markers of HR deficiency in order to individualize therapy in breast and ovarian cancer.
Collapse
Affiliation(s)
- Marieke A. Vollebergh
- Division of Molecular Biology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Biology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sabine C. Linn
- Division of Molecular Biology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Differential survival of Escherichia coli uvrA, uvrB, and uvrC mutants to psoralen plus UV-A (PUVA): Evidence for uncoupled action of nucleotide excision repair to process DNA adducts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 98:40-7. [PMID: 20004108 DOI: 10.1016/j.jphotobiol.2009.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
The nucleotide excision repair mechanism (NER) of Escherichia coli is responsible for the recognition and elimination of more than twenty different DNA lesions. Herein, we evaluated the in vivo role of NER in the repair of DNA adducts generated by psoralens (mono- or bi-functional) and UV-A light (PUVA) in E. coli. Cultures of wild-type E. coli K12 and mutants for uvrA, uvrB, uvrC or uvrAC genes were treated with PUVA and cell survival was determined. In parallel, kinetics of DNA repair was also evaluated by the comparison of DNA sedimentation profiles in all the strains after PUVA treatment. The uvrB mutant was more sensitive to PUVA treatment than all the other uvr mutant strains. Wild-type strain, and uvrA and uvrC mutants were able to repair PUVA-induced lesions, as seen by DNA sedimentation profiles, while the uvrB mutant was unable to repair the lesions. In addition, a quadruple fpg nth xth nfo mutant was unable to nick PUVA-treated DNA when the crude cell-free extract was used to perform plasmid nicking. These data suggest that DNA repair of PUVA-induced lesions may require base excision repair functions, despite proficient UvrABC activity. These results point to a specific role for UvrB protein in the repair of psoralen adducts, which appear to be independent of UvrA or UvrC proteins, as described for the classical UvrABC endonuclease mechanism.
Collapse
|
11
|
Kisby GE, Olivas A, Park T, Churchwell M, Doerge D, Samson LD, Gerson SL, Turker MS. DNA repair modulates the vulnerability of the developing brain to alkylating agents. DNA Repair (Amst) 2009; 8:400-12. [PMID: 19162564 DOI: 10.1016/j.dnarep.2008.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag(-/-)) or O(6)-methylguanine methyltransferase (Mgmt(-/-)), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt(-/-) neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag(-/-) neurons were for the most part significantly less sensitive than wild type or Mgmt(-/-) neurons to MAM and HN2. Aag(-/-) neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt(-/-) mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag(-/-) or MGMT-overexpressing (Mgmt(Tg+)) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt(Tg+) mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, United States.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lage C, Alencar TD, Vidal LS, Wilmart-Gonçalves TC, Borba-Santos L, Alves AM, Paula-Pereira-Jr MV, Felicio DL, Irineu R, Cardoso JS, Leitão AC. Targeting DNA in therapies: using damages to design strategies on cell sensitisation. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/101/1/012013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Moir DT, Opperman T, Schweizer HP, Bowlin TL. A high-throughput, homogeneous, bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents. ACTA ACUST UNITED AC 2007; 12:855-64. [PMID: 17644773 PMCID: PMC2561246 DOI: 10.1177/1087057107304729] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A homogeneous, sensitive, cellular bioluminescent high-throughput screen was developed for inhibitors of gyrase and other DNA-damaging agents in Pseudomonas aeruginosa. The screen is based on a Photorhabdus luminescens luciferase operon transcriptional fusion to a promoter that responds to DNA damage caused by reduced gyrase levels and fluoroquinolone inhibition. This reporter strain is sensitive to levels of ciprofloxacin as low as one-fourth minimum inhibitory concentration (MIC) with Z' scores greater than 0.5, indicating the assay is suitable for high-throughput screening. This screen combines the benefits of a whole-cell assay with a sensitivity and target specificity superior to those of traditional cell-based screens for inhibitors of viability or growth. In duplicate pilot screens of 2000 known bioactive compounds, 13 compounds generated reproducible signals >50% of that of the control (ciprofloxacin at one-half MIC) using bioluminescence readings after 7 h of incubation. Ten are fluoroquinolones known to cause accumulation of cleaved DNA-enzyme complexes in bacterial cells; the other 3 are known to create DNA adducts. Therefore, all 13 hits inhibit DNA synthesis but by a variety of different DNA-damaging mechanisms. This convenient, inexpensive screen will be useful for rapidly identifying DNA gyrase inhibitors and other DNA-damaging agents, which may lead to potent new antibacterials.
Collapse
Affiliation(s)
- Donald T Moir
- Microbiotix, Inc., Worcester, Massachusetts 01605, USA.
| | | | | | | |
Collapse
|