1
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Krayem M, Khatib SE, Hassan Y, Deluchat V, Labrousse P. In search for potential biomarkers of copper stress in aquatic plants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105952. [PMID: 34488000 DOI: 10.1016/j.aquatox.2021.105952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Over the last few decades, the use of pesticides and discharge of industrial and domestic wastewater on water surfaces have increased. Especially, Copper (Cu) pollution in aquatic ecosystems could constitute a major health problem, not only for flora and fauna but also for humans. To cope with this challenge, environmental monitoring studies have sought to find Cu-specific biomarkers in terrestrial and aquatic flora and/or fauna. This review discusses the toxic effects caused by Cu on the growth and development of plants, with a special focus on aquatic plants. While copper is considered as an essential metal involved in vital mechanisms for plants, when in excess it becomes toxic and causes alterations on biomarkers: biochemical (oxidative stress, pigment content, phytochelatins, polyamines), physiological (photosynthesis, respiration, osmotic potential), and morphological. In addition, Cu has a detrimental effect on DNA and hormonal balance. An overview of Cu toxicity and detoxification in plants is provided, along with information regarding Cu bioaccumulation and transport. Awareness of the potential use of these reactions as specific biomarkers for copper contamination has indeed become essential.
Collapse
Affiliation(s)
- Maha Krayem
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon; Université de Limoges, PEIRENE EA 7500, Limoges, France
| | - S El Khatib
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | - Yara Hassan
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | | | | |
Collapse
|
3
|
Lv Q, Liang X, Nong K, Gong Z, Qin T, Qin X, Wang D, Zhu Y. Advances in Research on the Toxicological Effects of Selenium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:715-726. [PMID: 33420800 DOI: 10.1007/s00128-020-03094-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/25/2020] [Indexed: 05/28/2023]
Abstract
Selenium is a trace element necessary for the growth of organisms. Moreover, selenium supplementation can improve the immunity and fertility of the body, as well as its ability to resist oxidation, tumors, heavy metals, and pathogenic microorganisms. However, owing to the duality of selenium, excessive selenium supplementation can cause certain toxic effects on the growth and development of the body and may even result in death in severe cases. At present, increasing attention is being paid to the development and utilization of selenium as a micronutrient, but its potential toxicity tends to be neglected. This study systematically reviews recent research on the toxicological effects of selenium, aiming to provide theoretical references for selenium toxicology-related research and theoretical support for the development of selenium-containing drugs, selenium-enriched dietary supplements, and selenium-enriched foods.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, Guangxi, China
| | - Xiaomei Liang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Keyi Nong
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Zifeng Gong
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Ting Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Daobo Wang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China.
| | - Yulin Zhu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China.
| |
Collapse
|
4
|
Kwasniewska J, Bara A. EdU-Based Step-by-Step Method for the Detection of Sister Chromatid Exchanges for Application in Plant Genotoxicity Assessment. FRONTIERS IN PLANT SCIENCE 2020; 11:1146. [PMID: 32849704 PMCID: PMC7396592 DOI: 10.3389/fpls.2020.01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This study is an example of using 5-ethynyl-2'-deoxyuridine (EdU) for detecting sister chromatid exchanges (SCEs) at chromosomal level. Here we report a detailed protocol for differential labeling sister chromatids in barley (Hordeum vulgare, 2n = 14) cells that is based on the incorporation and simple detection of EdU. The perfect distinguishing of sister chromatids enabled an analysis of the effects of two model agents-maleic acid hydrazide (MH) and gamma rays-on the formation of SCEs. Using this method, we demonstrated the high sensitivity of barley cells to maleic hydrazide, which is expressed as an increased level of SCEs. A gamma ray induced only slightly more SCEs than in the control cells. The possible mechanisms of MH and gamma ray action in respect to distinguishing chromatids using EdU are discussed. Recommendation for SCEs visualization using EdU as an easy and quick method that can be successfully adapted to other plant species and potentially for human genotoxicity studies is presented.
Collapse
|
5
|
Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:915-934. [PMID: 29253832 DOI: 10.1016/j.envpol.2017.12.019] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 05/06/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals, although controversial for different plant species. There exists a narrow line between essential, beneficial and toxic levels of Se to living organisms which greatly varies with Se speciation, as well as the type of living organisms. Therefore, it is crucial to monitor its solid- and solution-phase speciation, exposure levels and pathways to living organisms. Consumption of Se-laced food (cereals, vegetables, legumes and pulses) is the prime source of Se exposure to humans. Thus, it is imperative to assess the biogeochemical behavior of Se in soil-plant system with respect to applied levels and speciation, which ultimately affect Se status in humans. Based on available relevant literature, this review traces a plausible link among (i) Se levels, sources, speciation, bioavailability, and effect of soil chemical properties on selenium bioavailability/speciation in soil; (ii) role of different protein transporters in soil-root-shoot transfer of Se; and (iii) speciation, metabolism, phytotoxicity and detoxification of Se inside plants. The toxic and beneficial effects of Se to plants have been discussed with respect to speciation and toxic/deficient concentration of Se. We highlight the significance of various enzymatic (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione peroxidase) and non-enzymatic (phytochelatins and glutathione) antioxidants which help combat Se-induced overproduction of reactive oxygen species (ROS). The review also delineates Se accumulation in edible plant parts from soils containing low or high Se levels; elucidates associated health disorders or risks due to the consumption of Se-deficient or Se-rich foods; discusses the potential role of Se in different human disorders/diseases.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Zhang Z, Wang X, Liu C, Li J. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr Polym 2016; 150:227-31. [DOI: 10.1016/j.carbpol.2016.05.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
|
7
|
Zhang Z, Wang X, Li J, Liu C, Zhang Q. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells. Int J Biol Macromol 2016; 87:252-5. [DOI: 10.1016/j.ijbiomac.2016.02.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
|
8
|
Altwaty NH, El-Sayed OE, Aly NAH, Baeshen MN, Baeshen NA. Molecular and cytogenetic assessment of Dipterygium glaucum genotoxicity. AN ACAD BRAS CIENC 2016; 88 Suppl 1:623-34. [PMID: 27142548 DOI: 10.1590/0001-3765201620150208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/09/2015] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study is to assess the genotoxicity of Dipterygium glaucum grows widely in Saudi Arabia desert to produce safety herbal products. This work is considered the first and pioneer report so far due to the lack and poor evaluated reports of the plant species for their mutagensity, genotoxicity and cytogenetics effects. Cytogenetic effects of D. glaucum on mitotic in roots of Vicia faba showed reduction in mitotic activity using three extracts; water, ethanol and ethyl acetate. Chromosomal abnormalities were recorded that included stickiness of chromosomes, chromatin bridge, fragments, lagging chromosome and micronuclei. Protein bands and RAPD analyses of V. faba treated with three D. glaucum extracts revealed some newly induced proteins and DNA fragments and other disappeared. Chemical constitution of the plant species should be identified with their biological activities against human and animal cells like HeLa cancer cell line. We are recommending using additional genotoxicity tests and other toxicity tests on animal culture with different concentrations and also utilizing several drought and heat tolerant genes of the plant species in gene cloning to develop and improve other economical crop plants instead of using the species as oral herbal remedy.
Collapse
Affiliation(s)
- Nada H Altwaty
- Department of Biology, Faculty of Scienc, King Abdulaziz University, P.O. Box 80200, Zip Code 21589, Saudi Arabia, King Abdulaziz University, Department of Biology, Faculty of Scienc, King Abdulaziz University, Saudi Arabia
| | - Osama E El-Sayed
- Department of Biology, Faculty of Scienc, King Abdulaziz University, P.O. Box 80200, Zip Code 21589, Saudi Arabia, King Abdulaziz University, Department of Biology, Faculty of Scienc, King Abdulaziz University, Saudi Arabia.,Genetics and Cytology Dept, National Research Centre, El-Buhouth St., Dokki, Postal Code 12311, Zip Code 12622, Cairo, Egypt, Genetics and Cytology Dept, National Research Centre, Cairo , Egypt
| | - Nariman A H Aly
- Department of Biology, Faculty of Scienc, King Abdulaziz University, P.O. Box 80200, Zip Code 21589, Saudi Arabia, King Abdulaziz University, Department of Biology, Faculty of Scienc, King Abdulaziz University, Saudi Arabia.,Genetics and Cytology Dept, National Research Centre, El-Buhouth St., Dokki, Postal Code 12311, Zip Code 12622, Cairo, Egypt, Genetics and Cytology Dept, National Research Centre, Cairo , Egypt
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Scienc, King Abdulaziz University, P.O. Box 80200, Zip Code 21589, Saudi Arabia, King Abdulaziz University, Department of Biology, Faculty of Scienc, King Abdulaziz University, Saudi Arabia
| | - Nabih A Baeshen
- Department of Biology, Faculty of Scienc, King Abdulaziz University, P.O. Box 80200, Zip Code 21589, Saudi Arabia, King Abdulaziz University, Department of Biology, Faculty of Scienc, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
9
|
Dou J, Jin Y, Li Y, Wu B, Li M. Potential genotoxicity and risk assessment of a chlorinated flame retardant, Dechlorane Plus. CHEMOSPHERE 2015; 135:462-466. [PMID: 25585867 DOI: 10.1016/j.chemosphere.2014.12.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Dechlorane Plus (DP) is a chlorinated flame retardants that is globally ubiquitous. It is a potentially persistent organic pollutant (POPs) and an environmental toxin. However, the toxicity data is still limited and cannot provide a comprehensive environmental ecological risk assessment for DP. In this study, luminous bacteria, Vicia faba and Tetrahymena thermophila were chosen as testing organisms to investigate the acute toxicity and mutagenicity of DP. The concentration gradient of DP used in this study was chosen based on its environmental levels (experiments of luminous bacteria: 0.591, 2.95, 14.8, 73.8, 369 μg L(-1); micronucleus tests: 2.4, 12, 60, 300, 1500 μg L(-1); comet assay: 2.4, 12, 60, 300, 1500 μg L(-1)). For luminous bacteria, the relative luminosities were around 100% in treated groups, which suggested that there is no acute toxicity to luminous bacteria under the studied DP concentrations. The micronucleus test showed no significant difference between treatment and control groups, indicating no genotoxicity of DP. However the comet assay conducted with T. thermophila was relatively sensitive as there was a significant increase in DNA damage when the concentrations of DP increased from 300 to 1500 μg L(-1), while the lower concentrations failed to show any treatment-related differences. Therefore, DP may pose a potential risk at concentration⩾300 μg L(-1). The results provide scientific information on the ecological risk assessment of DP.
Collapse
Affiliation(s)
- Jing Dou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yajie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Aksakal O, Esim N. Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7120-7128. [PMID: 25501642 DOI: 10.1007/s11356-014-3932-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Arsenic is a metalloid that is toxic to living organisms. It is known that high concentration of arsenic causes toxic damage to cells and tissues of plants. While the toxic effect of arsenic is known, limited efforts have been made to study its genotoxic effect on the crops. In the present study, effects of arsenic trioxide (As2O3) on seed germination, root length, reactive oxygen species (ROS), lipid peroxidation (malondialdehyde (MDA)), and activities of antioxidant enzymes, as well as DNA in wheat seedlings were investigated. Seedlings were exposed to different (10 to 40 mg/L) As2O3 concentrations for 7 days. Seed germination and root elongation decreased with increase of As2O3 concentration. The values of hydrogen peroxide (H2O2), superoxide anion (O2 (·-)), and MDA contents significantly increased by As2O3 concentrations. The highest values for H2O2, O2 (·-), and MDA were obtained in 40 mg/L treated wheat seedling. A significant increase of peroxidase (POX) and catalase (CAT) activity in seedlings were observed with increased concentration of As2O3, then decreased when reaching a value of 40 mg/L, whereas the activities of superoxide dismutase (SOD) were gradually enhanced with increasing As2O3 concentration. Alterations of DNA in wheat seedlings were detected using randomly amplified polymorphic DNA (RAPD) technique. The changes occurring in RAPD profiles of seedlings following As2O3 treatment included loss of normal bands and appearance of new bands in comparison to that of control seedlings. The results of our study showed that As2O3 induced DNA damage in a dose-dependent meaner, and the root cells of wheat studied showed a defense against As2O3-induced oxidative stress by enhancing their antioxidant activities.
Collapse
Affiliation(s)
- Ozkan Aksakal
- Department of Biology, Science Faculty, Atatürk University, 25240, Erzurum, Turkey,
| | | |
Collapse
|
11
|
Mekki L. Cytogenetic Effects of Crude Extracts of Peganum harmala Seeds and Their Effects on Vicia faba Plants. CYTOLOGIA 2014. [DOI: 10.1508/cytologia.79.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Laila Mekki
- Botany Department, Faculty of Science, Suiz Canal University
| |
Collapse
|
12
|
Ma X, Wang X, Liu Y. Cytotoxicity and genotoxicity evaluation of urban surface waters using freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 and Vicia faba root tip. J Environ Sci (China) 2012; 24:1861-1866. [PMID: 23520857 DOI: 10.1016/s1001-0742(11)61012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substances in three rivers, two lakes and effluent flows from two wastewater treatment plants (WWTPs) in Xi'an, China. Although the most seriously polluted river with high chemical oxygen demand (COD) and total organic carbon (TOC) showed high cytotoxicity (expressed as TII50, the toxicity impact index) and genotoxicity (expressed as RMCN, the relative frequency of micronucleus), no correlative relation was found between the ecotoxicity and organic content of the water samples. However, there was a linear correlative relation between TII50 and RMCN for most water samples except that from the Zaohe River, which receives discharge from WWTP and untreated industrial wastewaters. The ecotoxicity of the organic toxicants in the Chanhe River and Zaohe River indicated that cytotoxic and genotoxic effects were related to the pollutant source. The TII50 and RMCN were also found to correlate roughly to the dissolved oxygen concentration of the water. Sufficient dissolved oxygen in surface water is thus proved to be an indicator of a healthy water environmental condition.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Key Lab of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University ofArchitecture and Technology, Xi'an 710055, China
| | | | | |
Collapse
|
13
|
Xie X, Zhou Q, Bao Q, He Z, Bao Y. Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.). ENVIRONMENTAL TOXICOLOGY 2011; 26:417-423. [PMID: 20196145 DOI: 10.1002/tox.20567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
Increasing attention has been paid to antibiotic contamination as an increasingly serious environmental issue. Tetracycline has been widely used for decades in human and veterinary medicines, with incremental residues in the environment and adverse influences on living organisms. In the present study, the genetic toxicity of tetracycline was investigated using a bioassay method with wheat (Triticum aestivum L.) root-meristem cells at a concentration range of 0.25-300 mg L(-1) and exposure times of 24, 48, and 72 h. The results indicated that tetracycline at lower concentrations (0.25-1 mg L(-1) ) stimulated cell mitotic division, whereas at 50-300 mg L(-1) concentration caused a concentration-related decrease in mitotic index (MI). The lower tetracycline concentrations induced a slight increase in the frequency of micronucleus (MN), chromosomal aberration (CA), and sister chromatid exchange (SCE) in wheat root tips. However, there were significant increases in these indices at higher concentrations in concentration- and time-dependent manners, including the frequencies of MN (25-200 mg L(-1) ), CA (10-200 mg L(-1) ), and SCE (5-200 mg L(-1) ), respectively. The inducement of MN, CA, and SCE decreased at 250 and 300 mg L(-1) due to acute cell toxicity for all tested times. Comparatively, SCE was the most sensitive, followed by CA, with MN the least sensitive to the genotoxicity of tetracycline in wheat. These results imply that tetracycline may be genotoxic to plant cells, and exposure to tetracycline may pose a genotoxic risk to living organisms. The results also suggest that the wheat bioassay was efficient, simple, and reproducible in monitoring the genotoxicity of tetracycline in the environment.
Collapse
Affiliation(s)
- Xiujie Xie
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Xie X, Zhou Q, Lin D, Guo J, Bao Y. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:566-75. [PMID: 20936531 DOI: 10.1007/s11356-010-0398-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 09/23/2010] [Indexed: 05/05/2023]
Abstract
INTRODUCTION More attention has been paid to tetracycline contamination in view of its rapid increasing concentration in the environment. Therefore, it is important to set up rapid, simple, and accurate methods for monitoring tetracycline ecotoxicity. METHODS In the present study, a hydroponics experiment was conducted to examine toxic effects of tetracycline at the concentration range of 0.5 to 300 mg L(-1) on growth, antioxidative, and genetic indices of wheat (Triticum aestivum L.). RESULTS The results indicated that tetracycline at 0.5-10 mg L(-1) could stimulate seed germination, cell mitotic division, and growth of wheat seedlings and did not induce a significant increase in the activity of antioxidative enzymes. However, tetracycline at the high concentrations (10-300 mg L(-1)) could significantly inhibit these parameters in the concentration-dependent manner, including germination percentage (≥100 mg L(-1)), shoot height (≥100 mg L(-1)), root length (≥50 mg L(-1)), and mitotic index (≥50 mg L(-1)), and increased the activity of antioxidative enzymes (≥25 mg L(-1)) in the dose-dependent manner, including superoxide dismutase, catalase, and peroxidase. Tetracycline at 5 mg L(-1) and above significantly augmented chromosome aberration frequency and malondialdehyde (MDA) content. On the other hand, MDA has positive correlation with the inhibition rates of seed germination, root length, shoot length, mitotic index, and antioxidative enzyme activities. CONCLUSION Tetracycline may have potential physiological, biochemical, and genetic toxicity to plant cells, and chromosome aberration and MDA might be sensitive bioindicators for tetracycline contamination than the other plant characteristics.
Collapse
Affiliation(s)
- Xiujie Xie
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China.
| | | | | | | | | |
Collapse
|
15
|
Yi M, Yi H, Li H, Wu L. Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. ENVIRONMENTAL TOXICOLOGY 2010; 25:124-129. [PMID: 19274764 DOI: 10.1002/tox.20482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aluminum (Al) exists naturally in air, water, and soil, and also in our diet. Al can be absorbed into the human body and accumulates in different tissues, which has been linked to the occurrence of Alzheimer's disease and various neurological disorders. By using Vicia cytogenetic tests, which are commonly used to monitor the genotoxicity of environmental pollutants, cytogenetic effects of aluminum (AlCl(3)) were investigated in this study. Present results showed that Al caused significant increases in the frequencies of micronuclei (MN) and anaphase chromosome aberrations in Vicia faba root tips exposed to Al over a concentration-tested range of 0.01-10 mM for 12 h. The frequency of micronucleated cells was higher in Al-treated groups at pH 4.5 than that at pH 5.8. Similarly, AlCl(3) treatment caused a decrease in the number of mitotic cells in a dose- and pH-dependent manner. The number of cells in each mitotic phase changed in Al-treated samples. Mitotic indices (MI) decreased with the increases of pycnotic cells. Our results demonstrate that aluminum chloride is a clear clastogenic/genotoxic and cytotoxic agent in Vicia root cells. The V. faba cytogenetic test could be used for the genotoxicity monitoring of aluminum water contamination.
Collapse
Affiliation(s)
- Min Yi
- School of Life Science and Technology, Shanxi University, Taiyuan 030006, China.
| | | | | | | |
Collapse
|
16
|
Xie X, Zhou Q, He Z, Bao Y. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:922-928. [PMID: 20821522 DOI: 10.1002/etc.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Increasing attention is now being paid to antibiotic contamination as a serious environmental issue. Chlortetracycline has been widely used for decades as a human and veterinary medicine, which has resulted in environmental residues and damage to living organisms. In the present study, the physiological and potential genetic toxicity of chlortetracycline was investigated using a wheat (Triticum aestivum L.) bioassay at a concentration range of 0.0625 to 300 mg/L and an exposure time of 24, 48, and 72 h. The results indicated that chlortetracycline at the lower concentrations stimulated germination and cell mitotic division and growth, whereas higher concentrations significantly inhibited processes such as bud length (50-300 mg/L), percentage germination (25-300 mg/L), root length (25-300 mg/L), and mitotic index (MI) (25-300 mg/L). The lowest concentration of chlortetracycline slightly augmented the frequency of micronucleus (MN), chomosomal aberration (CA), and sister chomatid exchange (SCE) in the root tips; however, significant (p < 0.05 and 0.01) levels of augmentation were observed at higher concentrations in a concentration-dependent manner, including the frequencies of MN (25-200 mg/L), CA (10-200 mg/L), and SCE (5-200 mg/L), respectively. The inducement of MN, CA, and SCE decreased at 250 and 300 mg/L as a result of acute cell toxicity. In addition, all endpoints showed a time-dependent increase at 0.0625 to 200 mg/L. These results imply that chlortetracycline (>or=5 mg/L) may be genotoxic to plant cells, and exposure to chlortetracycline may pose a potential genotoxic risk to living organisms. Comparatively, SCE was the most sensitive, followed by CA, and MN was the least sensitive to chlortetracycline genotoxicity in wheat. The results also suggest that the wheat bioassay is efficient, simple, and reproducible for monitoring the genotoxicity of chlortetracycline in the environment.
Collapse
Affiliation(s)
- Xiujie Xie
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Valdiglesias V, Pásaro E, Méndez J, Laffon B. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 2009; 84:337-51. [DOI: 10.1007/s00204-009-0505-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
|
18
|
Espinosa-Aguirre J, Barajas-Lemus C, Hernández-Ojeda S, Govezensky T, Rubio J, Camacho-Carranza R. RecBCD and RecFOR dependent induction of chromosomal deletions by sodium selenite in Salmonella. Mutat Res 2009; 665:14-19. [PMID: 19427506 DOI: 10.1016/j.mrfmmm.2009.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
RecBCD and RecFOR homologous recombination pathways induced bacterial chromosomal duplication-segregation by sodium selenite (SSe) at sub-inhibitory concentrations. This evidence suggests that SSe induces both, double and single DNA strand damage with a concomitant DNA repair response, however the strong dependence for recombinogenic activity of RecB product suggests that the main DNA repair pathway copes with dsDNA breaks. A role for SSe recombinogenic induction is proposed to explain its effect on DNA instability.
Collapse
Affiliation(s)
- Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | |
Collapse
|
19
|
Yi H, Wu L, Jiang L. Genotoxicity of arsenic evaluated by Allium-root micronucleus assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 383:232-6. [PMID: 17574654 DOI: 10.1016/j.scitotenv.2007.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 05/15/2023]
Abstract
Arsenic exposure is associated with various diseases and cancers. By using Allium-root micronucleus (MN) assay, possible genotoxicity of sodium arsenite (0.3-100 mg/l) and arsenic trioxide (0.05-50 mg/l) was evaluated in this study. Our results showed that arsenic compounds induced MN formation concentration-dependently. Exposure to 0.5-20 mg/l arsenic trioxide or to 1-100 mg/l sodium arsenite caused MN significantly in meristematic cells and daughter cells of Allium roots. A time-course study revealed that MN increased significantly after a short term (1 h) exposure to 10 mg/l sodium arsenite, demonstrating an effective rapid response. Arsenic compounds also caused mitotic delay and a concentration-dependent decrease in mitotic index. Results of the present study suggest that Allium-root MN assay is a simple, efficient and reproducible method for the genotoxicity monitoring of arsenic water contamination.
Collapse
Affiliation(s)
- Huilan Yi
- College of Life Science and Technology, Shanxi University, Taiyuan, China.
| | | | | |
Collapse
|