1
|
Cohen SM, Boobis AR, Jacobson-Kram D, Schoeny R, Rosol TJ, Williams GM, Kaminski NE, Eichenbaum GM, Guengerich FP, Nash JF. Mode of action approach supports a lack of carcinogenic potential of six organic UV filters. Crit Rev Toxicol 2025; 55:248-284. [PMID: 40208192 DOI: 10.1080/10408444.2025.2462642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 04/11/2025]
Abstract
Ultraviolet (UV) filters, the active ingredients in sunscreens, have been used for several decades to reduce the risk of acute and chronic damage to the skin from solar UV radiation, which can lead to skin cancer. Based on recent clinical studies showing that certain UV filters are absorbed systemically at low levels in humans, the US Food and Drug Administration (FDA) has requested supplementing existing safety data with preclinical studies including oral and dermal 2-year rodent carcinogenicity studies. Although the conduct of 2-year rodent carcinogenicity studies has been the standard approach for evaluating the carcinogenic potential of chemicals and new drugs for approximately 6 decades, there are multiple examples showing that such studies are not predictive of human cancer risk. Given these concerns with 2-year rodent carcinogenicity studies, we have developed and applied an alternative approach for supplementing existing data related to carcinogenic potential for six of the most commonly used UV filters in sunscreen products (i.e. avobenzone, ensulizole, homosalate, octinoxate, octisalate, and octocrylene). This approach evaluates their mode of action (MOA) based on in vivo, in vitro, and in silico data combined with an assessment of exposure margins. This approach is based on the substantial progress in understanding the MOAs that are responsible for tumor induction in humans. It is consistent with those being developed by the International Council for Harmonization (ICH) and other health authorities to replace 2-year carcinogenicity studies given their limitations and questionable biological relevance to humans. The available data for the six UV filters show that they are not genotoxic and show no evidence of biologically relevant carcinogenic MOAs. Furthermore, their systemic exposure levels in humans fall well below concentrations at which they have biologic activity. In conclusion, these data support the continued safe use of these six filters in sunscreen products.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology, Immunology, and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alan R Boobis
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | - Thomas J Rosol
- Histology Core Facility and Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Gary M Williams
- Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J F Nash
- Procter & Gamble, Mason, OH, USA
| |
Collapse
|
2
|
Diniz RR, de Pádula M, de Souza AMT. Let's shed light on photogenotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176354. [PMID: 39304165 DOI: 10.1016/j.scitotenv.2024.176354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Photosensitization reactions caused by ultraviolet and visible radiation (UV-vis) absorbing chemicals can induce DNA damage through direct and indirect mechanisms. In this context, the investigation of phototoxicity is an essential part of the toxicological assessment programs for drugs, cosmetics and other chemicals that may be exposed to UV-vis light. The current battery of photosafety assessment tests includes an initial investigation of their photoreactive potential followed by in vitro phototoxicity testing. The in vitro 3T3 Neutral Red Uptake (NRU) and the Reconstructed Human Epidermis phototoxicity methods are currently the only validated and recognized tests for this purpose. However, they are not suitable for detecting the photogenotoxic potential of compounds, as they are based on photocytotoxicity measurement. Although there are adaptations of genotoxicity assays in the presence of UV-vis irradiation, these methods are not validated and standardized, and their biomodels have limitations. Additionally, even though computational toxicology is an already implemented strategy for human health hazard assessment, in silico photosafety models also have limitations. The currently available in silico models are based on the 3T3 NRU assay, thus limiting their ability to reliably predict photogenotoxicity. There is evidence of chemicals that present negative results in 3T3 NRU-based in vitro and in silico tests, yet exhibit photogenotoxic potential. This is exemplified by the agrochemical glyphosate, whose photomutagenic effect was recently reported using a promising yeast-based method as a New Approach Methodology. Therefore, the need to implement a battery of phototoxicity tests, including in vitro and/or in silico photogenotoxicity assessments, to complement the existing photocytotoxicity tests should be re-discussed. Otherwise, photosafety is not completely guaranteed.
Collapse
Affiliation(s)
- Raiane R Diniz
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra M T de Souza
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Atha DH, Tona A, Reipa V. Development of a Reference Method and Materials for Quantitative Measurement of UV-Induced DNA Damage in Mammalian Cells: Comparison of Comet Assay and Cell Viability. J Nucleic Acids 2022; 2022:9188636. [PMID: 36164440 PMCID: PMC9509282 DOI: 10.1155/2022/9188636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Application of DNA damage diagnostic tests is rapidly growing, in particular for ovarian, prostate, and skin cancers; environmental monitoring; chronic and degenerative diseases; and male infertility. Such tests suffer from significant variability among different laboratories due the lack of standardization, experimental validation, and differences in data interpretation. Reference methods and materials for quantitative measurement of UVA-induced DNA damage in mammalian cells are frequently needed. In this study, we examined the use of the single-cell gel electrophoresis (comet) assay to assess the UVA-induced DNA damage in surface-attached Chinese hamster ovary (CHO) cells treated with a photosensitizer as a candidate cellular oxidative damage reference material. We found that the comet images became diffused and the viability of the cells decreased substantially (>20%) as the UVA dose and benzo [a] pyrene (BaP) concentration exceeded 6.3 J/cm2 and 10-6 mol/L BaP. Maintaining the conditions of exposure within this range can improve DNA damage measurement fidelity, particularly if used as a quantitative reference method and to produce materials considered as an in vitro standard for the comet assay.
Collapse
Affiliation(s)
- Donald H. Atha
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Alessandro Tona
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| |
Collapse
|
4
|
Paiva JP, Diniz RR, Leitão AC, Cabral LM, Fortunato RS, Santos BAMC, de Pádula M. Insights and controversies on sunscreen safety. Crit Rev Toxicol 2020; 50:707-723. [PMID: 33064037 DOI: 10.1080/10408444.2020.1826899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although sunlight provides several benefits, ultraviolet (UV) radiation plays an important role in the development of various skin damages such as erythema, photoaging, and photocarcinogenesis. Despite cells having endogenous defense systems, damaged DNA may not be efficiently repaired at chronic exposure. In this sense, it is necessary to use artificial defense strategies such as sunscreen formulations. UV filters should scatter, reflect, or absorb solar UV radiation in order to prevent direct or indirect DNA lesions. However, the safety of UV filters is a matter of concern due to several controversies reported in literature, such as endocrine alterations, allergies, increased oxidative stress, phototoxic events, among others. Despite these controversies, the way in which sunscreens are tested is essential to ensure safety. Sunscreen regulation includes mandatory test for phototoxicity, but photogenotoxicity testing is not recommended as a part of the standard photosafety testing program. Although available photobiological tests are still the first approach to assess photosafety, they are limited. Some existing tests do not always provide reliable results, mainly due to limitations regarding the nature of the assessed phototoxic effect, cell UV sensitivity, and the irradiation protocols. These aspects bring queries regarding the safety of sunscreen wide use and suggest the demand for the development of robust and efficient in vitro screening tests to overcome the existing limitations. In this way, Saccharomyces cerevisiae has stood out as a promising model to fill the gaps in photobiology and to complete the mandatory tests enabling a more extensive and robust photosafety assessment.
Collapse
Affiliation(s)
- Juliana P Paiva
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca A M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Sharma A, Řiháčková K, Čupr P. Isomers of photo-unstable compounds should be evaluated as the individual substances due to their potential different exposure effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:902-903. [PMID: 30677955 DOI: 10.1016/j.scitotenv.2018.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Anežka Sharma
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katarína Řiháčková
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
6
|
Ibbotson S. Drug and chemical induced photosensitivity from a clinical perspective. Photochem Photobiol Sci 2018; 17:1885-1903. [PMID: 30283959 DOI: 10.1039/c8pp00011e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drug photosensitivity is a relatively common occurrence and a range of mechanisms may be involved. Some of these mechanisms will be discussed, including the most common, that of drug phototoxicity. Different types of photosensitivity are addressed with respect to clinical presentation, mechanisms and additionally the contribution to our understanding through clinically directed investigations and regulatory requirements. Repeated controlled therapeutic use of drug phototoxicity, with psoralen-UVA (PUVA) photochemotherapy and photodynamic therapy (PDT) will also be discussed. Finally, the potential for drug-induced photocarcinogenesis will also be covered.
Collapse
Affiliation(s)
- Sally Ibbotson
- Photobiology Unit, Dermatology Department, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| |
Collapse
|
7
|
Elnagar AMB, Ibrahim A, Soliman AM. Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:249-256. [PMID: 29935072 PMCID: PMC6018179 DOI: 10.22074/ijfs.2018.5389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/17/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported that TiO2 induces oxidative stress and DNA damage. N-acetylcysteine (NAC) has been used to fight oxidative stress-induced damage in different tissues. The objective of this study was to evaluate the toxic effects of orally administered TiO2 nanoparticles and the possible protective effect of NAC on the testes of adult male albino rats. MATERIALS AND METHODS In this experimental study, 50 adult male albino rats were classified into five groups. Group I was the negative control, group II was treated with gum acacia solution , group III was treated with NAC, group IV was treated with TiO2 nanoparticles, and group V was treated with 100 mg/kg of NAC and 1200 mg/kg TiO2 nanoparticles. Total testosterone, glutathione (GSH), and serum malondialdehyde (MDA) levels were estimated. The testes were subjected to histopathological, electron microscopic examinations, and immunohistochemical detection for tumor necrosis factor (TNF)-α. Cells from the left testis were examined to detect the degree of DNA impairment by using the comet assay. RESULTS TiO2 nanoparticles induced histopathological and ultrastructure changes in the testes as well as positive TNF-α immunoreaction in the testicular tissue. Moreover, there was an increase in serum MDA while a decrease in testosterone and GSH levels in TiO2 nanoparticles-treated group. TiO2 resulted in DNA damage. Administration of NAC to TiO2- treated rats led to improvement of the previous parameters with modest protective effects against DNA damage. CONCLUSION TiO2-induced damage to the testes was mediated by oxidative stress. Notably, administration of NAC protected against TiO2's damaging effects.
Collapse
Affiliation(s)
- Amir M Bassam Elnagar
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt.,Department of Pathology, Insaniah University, Kuala Ketil Kedah, Darul Aman, Malaysia
| | - Abdelnasser Ibrahim
- Forensic Unit, Department of Pathology, National University of Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amro Mohamed Soliman
- Department of Anatomy, National University of Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia. Electronic Address:
| |
Collapse
|
8
|
Bouvier G, Astri S, Orsini N, Kunze G, Luzy AP, Gross D. Different damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells: A response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:262-263. [PMID: 29289774 DOI: 10.1016/j.scitotenv.2017.12.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Guy Bouvier
- Nestlé Skin Health, Galderma Research and Development, BP87, F-06902 Sophia-Antipolis Cedex, France.
| | - Séphanie Astri
- Nestlé Skin Health, Galderma Research and Development, BP87, F-06902 Sophia-Antipolis Cedex, France
| | - Nicolas Orsini
- Nestlé Skin Health, Galderma Research and Development, BP87, F-06902 Sophia-Antipolis Cedex, France
| | - Gernot Kunze
- Nestlé Skin Health, Spirig Pharma AG, Froschackerstrasse 6, 4622 Egerkingen, Switzerland
| | - Anne-Pascale Luzy
- Nestlé Skin Health, Galderma Research and Development, BP87, F-06902 Sophia-Antipolis Cedex, France
| | - Denis Gross
- Nestlé Skin Health, Galderma Research and Development, BP87, F-06902 Sophia-Antipolis Cedex, France
| |
Collapse
|
9
|
Khandpur S, Porter R, Boulton S, Anstey A. Drug-induced photosensitivity: new insights into pathomechanisms and clinical variation through basic and applied science. Br J Dermatol 2017; 176:902-909. [DOI: 10.1111/bjd.14935] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- S. Khandpur
- Department of Dermatology and Venereology; All India Institute of Medical Sciences; New Delhi India
| | - R.M. Porter
- Academic Dermatology; Aneurin Bevan Health Board, Stow Hill; St Woolos Hospital; Newport NP20 4SZ U.K
| | - S.J. Boulton
- School of Biomedical Sciences; Faculty of Medical Sciences; Newcastle University Medical School, Framlington Place; Newcastle upon Tyne NE2 4HH U.K
| | - A. Anstey
- Betsi Cadwaladr University Health Board; Ysbyty Gwynedd, Penrhosgarnedd; Bangor Gwynedd LL57 2PY U.K
| |
Collapse
|
10
|
de Ávila RI, de Sousa Vieira M, Gaeti MPN, Moreira LC, de Brito Rodrigues L, de Oliveira GAR, Batista AC, Vinhal DC, Menegatti R, Valadares MC. Toxicity evaluation of the photoprotective compound LQFM048: Eye irritation, skin toxicity and genotoxic endpoints. Toxicology 2017; 376:83-93. [DOI: 10.1016/j.tox.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/25/2016] [Indexed: 11/27/2022]
|
11
|
Skrzypczak A, Przystupa N, Zgadzaj A, Parzonko A, Sykłowska-Baranek K, Paradowska K, Nałęcz-Jawecki G. Antigenotoxic, anti-photogenotoxic and antioxidant activities of natural naphthoquinone shikonin and acetylshikonin and Arnebia euchroma callus extracts evaluated by the umu-test and EPR method. Toxicol In Vitro 2015; 30:364-72. [DOI: 10.1016/j.tiv.2015.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/24/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022]
|
12
|
Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh A, Klingberg H, Christophersen DV, Hersoug LG, Loft S. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis 2015; 30:67-83. [PMID: 25527730 DOI: 10.1093/mutage/geu035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure to TiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Jette Gjerke Hemmingsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Dorina Gabriela Karottki
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yi Cao
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Henrik Klingberg
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Lars-Georg Hersoug
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
13
|
Ibuki Y, Toyooka T. Evaluation of chemical phototoxicity, focusing on phosphorylated histone H2AX. JOURNAL OF RADIATION RESEARCH 2015; 56:220-8. [PMID: 25480829 PMCID: PMC4380052 DOI: 10.1093/jrr/rru105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 05/27/2023]
Abstract
Histone H2AX is a minor component of nuclear histone H2A. The phosphorylation of histone H2AX at Ser 139, termed γ-H2AX, was originally identified as an early event after the direct formation of DNA double-strand breaks (DSBs) by ionizing radiation. Now, the generation of γ-H2AX is also considered to occur in association with secondarily formed DSBs by cellular processing such as DNA replication and repair at the site of the initial damage, including DNA adducts, crosslinks, and UV-induced photolesions. Therefore, γ-H2AX is currently attracting attention as a new biomarker for detecting various genotoxic insults. We have determined the toxic impact of various environmental stresses such as chemicals, light and/or their coexposure using γ-H2AX, and found that the γ-H2AX assay exhibited high sensitivity and a low false-positive rate as a detection system of genotoxic potential. In this review, we introduced our recent findings concerning the evaluation of chemical phototoxicity, focusing on γ-H2AX.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsushi Toyooka
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
14
|
Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:223-230. [PMID: 25506637 DOI: 10.1016/j.ecoenv.2014.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs), widely used in paints, pharmaceutical preparations and in many consumer products, have been shown to induce cytotoxicity, genotoxicity and carcinogenic responses both in vitro and in vivo. Numerous studies have shown the potential impact of nanoparticles on a series of aquatic organisms and their toxicity has been linked to their dissolution, surface properties and size. In vitro studies have raised concerns about the toxicity of TiO2 NPs, but there are very limited data on ecotoxicity to aquatic life. This in vivo study aimed to describe the genotoxicity of TiO2 NPs in the zebrafish Danio rerio. After 2 weeks of adaptation, groups of zebrafish were exposed to TiO2 NPs (1 and 10μg/L) for 5, 7, 14, 21 and 28 days. The genotoxic potential of TiO2 NPs was assessed by the Comet assay, the Diffusion assay and RAPD-PCR technique. The use of multi-biomarkers has become an important aspect of ecotoxicology to evaluate environmental quality through a wide panel of biological responses triggered by contaminants. The highest genotoxic effect was observed at the maximum concentrations of nanoparticles (10μg/L) with all three tests at 14 and 21 days of exposure. The results suggests the presence of mechanisms that can reduce the n-TiO2 genotoxicity. Future studies are necessary to analyze the DNA repairing capacity in zebrafish cells and so verify the role of the antioxidant defence system in modulating the response to exposure to n-TiO2 in fish.
Collapse
Affiliation(s)
- Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy.
| | - Marianna Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Domenico Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Teresa Suero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Vincenzo Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| |
Collapse
|
15
|
Impact of sparfloxacin on melanogenesis and antioxidant defense system in normal human melanocytes HEMa-LP – An in vitro study. Pharmacol Rep 2015; 67:38-43. [DOI: 10.1016/j.pharep.2014.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022]
|
16
|
Snegin EA. Analysis of cytogenetic stability in natural populations of terrestrial mollusks (based on DNA comet assay). Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Beberok A, Zdybel M, Pilawa B, Buszman E, Wrześniok D. EPR characteristics of free radicals in DOPA–melanin–moxifloxacin complexes at ambient level of UVA radiation. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Fernandes P, Sousa I, Cunha-Silva L, Ferreira M, de Castro B, Pereira EF, Feio MJ, Gameiro P. Synthesis, characterization and antibacterial studies of a copper(II) lomefloxacin ternary complex. J Inorg Biochem 2013; 131:21-9. [PMID: 24239909 DOI: 10.1016/j.jinorgbio.2013.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
Solution behavior of lomefloxacin (lmx) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry. The results obtained showed that under physiological conditions (micromolar concentration range and pH7.4) only copper(II):lmx:phen ternary complexes are stable. Hence, a novel copper(II) ternary complex of lomefloxacin with the nitrogen donor heterocyclic ligand phen was synthesized and characterized by means of UV-visible and IR spectroscopy, elemental analysis and X-ray crystallography. In the synthesized complex (1), [Cu(lmx)(phen)(NO3)]·5H2O, lmx acts as a bidentate ligand coordinating the metal cation, in its anionic form, through the carbonyl and carboxyl oxygens and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth ligand of the penta-coordinated Cu(II) center is occupied axially by an oxygen atom from the nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complex and comparison with free lomefloxacin in various E. coli strains indicated that the Cu-complex is an antimicrobial which is as efficient as the free antibiotic but strongly suggest that the cell intake route of both species is different. Moreover, spectrophotometric stability studies suggest that the solution of the complex synthesized is considerably more photostable than the free fluoroquinolone supporting, therefore, the complex's suitability as a candidate for further biological testing in fluoroquinolone-resistant microorganisms with possible reduced side-effects.
Collapse
Affiliation(s)
- Patrícia Fernandes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Isabel Sousa
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luís Cunha-Silva
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Mariana Ferreira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Baltazar de Castro
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Eulália F Pereira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria J Feio
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Paula Gameiro
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Paim CS, Nogueira DR, Mitjans M, Ramos Lopez D, de Lapuente Perez J, Steppe M, Schapoval EES, Vinardell MP. Biological safety studies of gemifloxacin mesylate and related substances. Photochem Photobiol Sci 2013; 12:805-12. [DOI: 10.1039/c3pp25369d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Reus AA, Usta M, Kenny JD, Clements PJ, Pruimboom-Brees I, Aylott M, Lynch AM, Krul CA. The in vivo rat skin photomicronucleus assay: phototoxicity and photogenotoxicity evaluation of six fluoroquinolones. Mutagenesis 2012; 27:721-9. [DOI: 10.1093/mutage/ges038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Guérard M, Zeller A, Singer T, Gocke E. In vitro genotoxicity of neutral red after photo-activation and metabolic activation in the Ames test, the micronucleus test and the comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 746:15-20. [DOI: 10.1016/j.mrgentox.2012.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 01/07/2012] [Indexed: 10/28/2022]
|
22
|
Naya M, Kobayashi N, Ema M, Kasamoto S, Fukumuro M, Takami S, Nakajima M, Hayashi M, Nakanishi J. In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol 2012; 62:1-6. [DOI: 10.1016/j.yrtph.2011.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/18/2022]
|
23
|
Toyoizumi T, Watanabe M, Sui H, Nakagawa Y, Ohta R, Yamakage K. Evaluation of effect during cell isolation process in alkaline comet assay using epidermal skin cells. J Toxicol Sci 2012. [DOI: 10.2131/jts.37.1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Mika Watanabe
- Hatano Research Institute, Food and Drug Safety Center (FDSC)
| | - Hajime Sui
- Hatano Research Institute, Food and Drug Safety Center (FDSC)
| | - Yuzuki Nakagawa
- Hatano Research Institute, Food and Drug Safety Center (FDSC)
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center (FDSC)
| | - Kohji Yamakage
- Hatano Research Institute, Food and Drug Safety Center (FDSC)
| |
Collapse
|
24
|
Toyoizumi T, Ohta R, Nakagawa Y, Tazura Y, Kuwagata M, Noguchi S, Yamakage K. Use of the in vivo skin comet assay to evaluate the DNA-damaging potential of chemicals applied to the skin. Mutat Res 2011; 726:175-80. [PMID: 21944904 DOI: 10.1016/j.mrgentox.2011.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/05/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to evaluate both sensitivity and specificity of an in vivo skin comet assay using chemically treated, hairless mouse dorsal skin as a model. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.0125-0.2%), 4-nitroquinoline-1-oxide (4NQO, 0.01-0.25%), mitomycin C (MMC, 0.0125-0.05%), benzo[a]pyrene (B[a]P, 0.25-2%), and 7,12-dimethylbenz[a]anthracene (DMBA, 0.25-1%) were each applied once to the dorsal skin of hairless male mice; after 3h, epidermal skin cells were isolated, and the alkaline comet assay was performed. The assay was performed after 24h for only the B[a]P and DMBA. Furthermore, B[a]P and DMBA were evaluated by alkaline comet assay using liver cells after both 3 and 24h. The mean percent of DNA (%DNA) in tail in the 0.05-0.2% MNNG and 0.1-0.25% 4NQO treatment groups was markedly higher than in the control group at 3h post-application. Although the mean %DNA values in the tail in the B[a]P and DMBA groups were the same as the controls at 3h post-application, the 2% B[a]P and 1% DMBA groups showed significantly higher values versus controls 24h after application. No significant increases in the mean %DNA in the tail were observed in the MMC group. No clear increases in %DNA in the tail were observed in the B[a]P and DMBA groups at 3 or 24h after application in the liver. These results suggest that the in vivo skin comet assay is able to accurately identify DNA-damaging potential with a skin-specific response and is a useful method to detect the DNA-damaging potential of genotoxic chemicals on the skin.
Collapse
|
25
|
de Guidi G, Bracchitta G, Catalfo A. Photosensitization Reactions of Fluoroquinolones and Their Biological Consequences. Photochem Photobiol 2011; 87:1214-29. [DOI: 10.1111/j.1751-1097.2011.00978.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Struwe M, Csato M, Singer T, Gocke E. Comprehensive assessment of the photomutagenicity, photogenotoxicity and photo(cyto)toxicity of azulene. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:129-33. [DOI: 10.1016/j.mrgentox.2011.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/02/2011] [Accepted: 03/17/2011] [Indexed: 11/25/2022]
|
27
|
Horinouchi M, Arimoto-Kobayashi S. Photomicronucleus assay of phototoxic and pseudophotoclastogenic chemicals in human keratinocyte NCTC2544 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:43-50. [DOI: 10.1016/j.mrgentox.2011.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/15/2011] [Accepted: 04/10/2011] [Indexed: 12/31/2022]
|
28
|
In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:72-85. [DOI: 10.1016/j.mrrev.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/18/2022]
|
29
|
Takamura-Enya T, Ishii R, Oda Y. Evaluation of photo-genotoxicity using the umu test in strains with a high sensitivity to oxidative DNA damage. Mutagenesis 2011; 26:499-505. [DOI: 10.1093/mutage/ger008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Busto N, García B, Leal JM, Gaspar JF, Martins C, Boggioni A, Secco F. ACMA (9-amino-6-chloro-2-methoxy acridine) forms three complexes in the presence of DNA. Phys Chem Chem Phys 2011; 13:19534-45. [DOI: 10.1039/c1cp22158b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Falck GCM, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 2009; 28:339-52. [PMID: 19755445 DOI: 10.1177/0960327109105163] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The in-vitro genotoxicity of nanosized TiO(2) rutile and anatase was assessed in comparison with fine TiO(2) rutile in human bronchial epithelial BEAS 2B cells using the single-cell gel electrophoresis (comet) assay and the cytokinesis-block micronucleus test. BEAS 2B cells were exposed to eight doses (1-100 microg/cm(2)) of titanium(IV) oxide nanosized rutile (>95%, <5% amorphous SiO(2) coating; 10 x 40 nm), nanosized anatase (99.7%; <25 nm), or fine rutile (99.9%; <5 microm) for 24, 48, and 72 h. Fine rutile reduced cell viability at lower doses than nanosized anatase, which was more cytotoxic than nanosized rutile. In the comet assay, nanosized anatase and fine rutile induced DNA damage at several doses with all treatment times. Dose-dependent effects were seen after the 48- and 72-h treatments with nanosized anatase and after the 24-, 48- (in one out of two experiments), and 72-h treatments (one experiment) with fine rutile. The lowest doses inducing DNA damage were 1 microg/cm(2) for fine rutile and 10 microg/cm( 2) for nanosized anatase. Nanosized rutile showed a significant induction in DNA damage only at 80 microg/cm(2) in the 24-h treatment and at 80 and 100 microg/ cm(2) in the 72-h treatment (with a dose-dependent effect). Only nanosized anatase could elevate the frequency of micronucleated BEAS 2B cells, producing a significant increase at 10 and 60 microg/cm( 2) after the 72-h treatment (no dose-dependency). At increasing doses of all the particles, MN analysis became difficult due to the presence of TiO(2) on the microscopic slides. In conclusion, our studies in human bronchial epithelial BEAS 2B cells showed that uncoated nanosized anatase TiO(2) and fine rutile TiO(2) are more efficient than SiO( 2)-coated nanosized rutile TiO(2) in inducing DNA damage, whereas only nanosized anatase is able to slightly induce micronuclei.
Collapse
Affiliation(s)
- G C M Falck
- New Technologies and Risks, Work Environment Development Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dhawan A, Bajpayee M, Parmar D. The Comet Assay: A Versatile Tool for Assessing DNA Damage. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Mahima Bajpayee
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Devendra Parmar
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| |
Collapse
|
33
|
Genotoxic and carcinogenic effects of antipsychotics and antidepressants. Toxicology 2009; 261:77-88. [DOI: 10.1016/j.tox.2009.04.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 04/24/2009] [Accepted: 04/24/2009] [Indexed: 11/23/2022]
|
34
|
|
35
|
Genotoxicity evaluation of locally produced dental porcelain--an in vitro study using the Ames and Comet assays. Toxicol In Vitro 2009; 23:1145-50. [PMID: 19505568 DOI: 10.1016/j.tiv.2009.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/27/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022]
Abstract
The aim of this study was to determine the genotoxicity of a locally produced dental porcelain (Universiti Sains Malaysia, Malaysia) using the Ames and Comet assays. In the Ames assay, four genotypic variants of the Salmonella strains (TA98, TA100, TA1537 and TA1535) carrying mutations in several genes were used. The dental porcelain was incubated with these four strains in five different doses both in the presence and absence of metabolic activation (S9) and the result was assessed based on the number of revertant colonies. Concurrently, appropriate positive controls were used so as to validate the test. The average number of revertant colonies per plate treated with locally produced dental porcelain was less than double as compared to that of negative control. In the Comet assay, L929 (CCL-1 ATCC, USA) mouse fibroblast cells were treated with the dental porcelain in three different concentrations along with concurrent negative and positive controls. The tail moment which was used as a measurement of DNA damage was almost equal to that of the negative control, suggesting that the locally produced dental porcelain did not induce any DNA damage. The results indicated that the locally produced dental porcelain is non-genotoxic under the present test conditions.
Collapse
|
36
|
Lhiaubet-Vallet V, Bosca F, Miranda MA. Photosensitized DNA damage: the case of fluoroquinolones. Photochem Photobiol 2009; 85:861-8. [PMID: 19320842 DOI: 10.1111/j.1751-1097.2009.00548.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on DNA damage photosensitized by the fluoroquinolone (FQ) antibacterial drugs. The in vivo evidence for photocarcinogenesis mediated by FQs is presented in the introduction. The different methods employed for detection of DNA-photodamage mediated by FQs are then summarized, including gel electrophoresis (with whole cells, with isolated DNA and with oligonucleotides) and chromatographic analysis (especially HPLC with electrochemical and MS/MS detection). The chemical mechanisms involved in the formation of the reported lesions are discussed on the basis of product studies and transient spectroscopic evidence. In general, the literature coverage is limited to the last decade, although some earlier citations are also included.
Collapse
|
37
|
|
38
|
Dufour EK, Whitwell J, Nohynek GJ, Kirkland D, Toutain H. Retinyl palmitate is non-genotoxic in Chinese hamster ovary cells in the dark or after pre-irradiation or simultaneous irradiation with UV light. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 672:21-6. [DOI: 10.1016/j.mrgentox.2008.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/29/2008] [Accepted: 09/21/2008] [Indexed: 11/16/2022]
|
39
|
Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 2008; 25:5-32. [PMID: 18427939 DOI: 10.1007/s10565-008-9072-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.
Collapse
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division, Indian Institute of Toxicology Research (formerly Industrial Toxicology Research Centre), PO Box 80, M.G. Marg, Lucknow, 226 001, India.
| | | | | |
Collapse
|
40
|
Struwe M, Greulich KO, Junker U, Jean C, Zimmer D, Suter W, Plappert-Helbig U. Detection of photogenotoxicity in skin and eye in rat with the photo comet assay. Photochem Photobiol Sci 2008; 7:240-9. [DOI: 10.1039/b715756h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|