1
|
Ramón-López AE, Fernández-Collahuazo JP, Samaniego JX, Duma JM, Méndez MS, Soria ME, Galarza-Álvarez L, Muñoz-León E, Galarza DA. L-carnitine supplementation in conventional slow and ultra-rapid freezing media improves motility, membrane integrity, and fertilizing ability of dog epididymal sperm. Anim Reprod Sci 2024; 270:107580. [PMID: 39216207 DOI: 10.1016/j.anireprosci.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to assess the impact of L-carnitine (LC) supplementation in conventional-slow (CS) and ultra-rapid (UR) freezing media on post-thaw quality and fertilizing ability of dog epididymal spermatozoa. Sperm samples were collected from 60 epididymides obtained from 30 adult orchiectomized dogs via retrograde flushing. Twenty pooled sperm samples were then created (3 epididymal samples/pool). Four treatments were established according to the freezing method (CS and UR) and LC supplementation (5 and 0 mM [control, Co]): CS-LC5, CS-Co, UR-LC5, and UR-Co. The CS freezing involved exposing 0.25 mL straw to liquid nitrogen vapors (LN2), while UR freezing submerged 30-µL drops of sperm samples directly into LN2. Sperm kinematics, membrane integrity, and fertilizing ability (by heterologous in vitro fertilization using bovine oocytes) were evaluated for all treatments. Post-thaw results revealed that the CS freezing treatments resulted in significantly higher values (P < 0.05) of curvilinear and average-path velocities, and beat-cross frequency compared to the UR freezing treatments, regardless of LC supplementation. The CS-LC5 and UR-LC5 treatments cryoprotected the sperm by increasing (P < 0.05) the percentage of 'live-sperm/intact-acrosome' compared to their controls treatments CS-Co and UR-Co. Regarding fertilizing ability, the CS-LC5 treatment yielded a higher percentage (P < 0.05) of pronuclei formation compared to both UR treatments. The UR-LC5 treatment, however, obtained greater percentage (P < 0.05) than their control UR-Co. In conclusion, supplementation with L-carnitine in conventional-slow and ultra-rapid freezing improved sperm motility, plasma, and acrosome membranes integrity and fertilizing ability of dog epididymal spermatozoa.
Collapse
Affiliation(s)
- A E Ramón-López
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - J P Fernández-Collahuazo
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - J X Samaniego
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - J M Duma
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - M S Méndez
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador
| | - M E Soria
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - L Galarza-Álvarez
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador.
| | - E Muñoz-León
- Centro Latinoamericano de formación en especies mayores y menores - CLAFEM, Cuenca, Ecuador.
| | - D A Galarza
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca EC010205, Ecuador; Centro Latinoamericano de formación en especies mayores y menores - CLAFEM, Cuenca, Ecuador.
| |
Collapse
|
2
|
Balatsouras DG, Papitsi I, Koukoutsis G, Katotomichelakis M. The effect of MemoVigor 2 on recent-onset idiopathic tinnitus: a randomized double-blind placebo-controlled clinical trial. Front Pharmacol 2024; 15:1252343. [PMID: 38327985 PMCID: PMC10847223 DOI: 10.3389/fphar.2024.1252343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Background: Tinnitus is a common symptom associated with the conscious perception of sound in the absence of a corresponding external or internal sound source, which can severely impact quality of life. Because of the current limited understanding of the precise pathophysiological mechanism of idiopathic tinnitus, no curable treatment has been attained yet. A food supplement trading as MemoVigor 2, which contains a combination of therapeutic ingredients with mainly antioxidant activity, has been used in the treatment of tinnitus. The objective of our study was to evaluate the effectiveness of MemoVigor 2 in the treatment of recent-onset idiopathic tinnitus. Methods: In a prospective single-centre randomized, double-blind, placebo-controlled clinical trial we studied 204 patients with idiopathic tinnitus divided into two groups: 104 patients who received MemoVigor 2 and 100 patients treated with placebo. To evaluate changes in tinnitus we used (1) audiometry/tympanometry; (2) specific measures of tinnitus perception, including tinnitus pitch, loudness at tinnitus pitch, loudness at 1 kHz, minimum masking level, and residual inhibition; (3) questionnaires of tinnitus handicap inventory, mini tinnitus questionnaire and patients' global impression of change. All patients underwent this test battery at the beginning of the study and in a repeat post-3-month session. Results: All tinnitus measures, including pitch, loudness, minimum masking level and residual inhibition improved significantly in the intervention group. Most of these measures improved in the placebo group too, but in a lesser degree. All questionnaire scores diminished significantly in both groups, but the degree of decrease was greater in the intervention group. The participants' tinnitus outcome reported after treatment using the patients' global impression of change score differed significantly between the two groups, with greater improvement observed in the intervention group. Conclusion: We found that the use of MemoVigor 2 improved recent-onset tinnitus, as proved by a set of tests performed for its evaluation, including audiometric measures, specific measures of tinnitus perception and tinnitus questionnaires. Tinnitus in the placebo group improved too, but to a lesser degree. Clinical Trial Registration: isrctn.com, Identifier ISRCTN16025480.
Collapse
Affiliation(s)
| | - Isidora Papitsi
- Department of Otorhinolaryngology, Tzaneio General Hospital, Piraeus, Greece
| | - George Koukoutsis
- Department of Otorhinolaryngology, Tzaneio General Hospital, Piraeus, Greece
| | - Michael Katotomichelakis
- Department of Otorhinolaryngology, Medical School, Democritus University of Thrace, Komotini, Greece
| |
Collapse
|
3
|
Metabolic rewiring revealed by cell-specific rate analyses from nontargeted exometabolomics during simultaneous consumption of glucose and lactic acid in a CHO fed-batch process. J Biotechnol 2022; 359:161-175. [DOI: 10.1016/j.jbiotec.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022]
|
4
|
Fatahi Dehpahni M, Chehri K, Azadbakht M. Therapeutic effects of silver nanoparticle and L-carnitine on aerobic vaginitis in mice: an experimental study. BIOIMPACTS : BI 2021; 12:33-42. [PMID: 35087714 PMCID: PMC8783078 DOI: 10.34172/bi.2021.22037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 06/14/2023]
Abstract
Introduction: Aerobic vaginitis (AV) is a type of vaginal infection that occurs at the reproductive age of women. In this study, we aimed to study the possible anti-AV therapeutic effects of silver nanoparticles (AgNPs) and L-carnitine (LC) in the mouse model. Methods: AV model was established by intra-vaginal inoculation of 108 CFU/mL Staphylococcus aureus and Escherichia coli (1:1) in adult NMRI mice. Susceptibilities of the bacteria were examined against AgNPs by inhibitory concentration (IC-50 and IC-90) and minimum biofilm inhibitory concentration (MBIC- 90) methods. The regimens therapy was intra-vaginal inoculation of AgNPs at MBIC- 90 and a daily injection of 250 mg/kg LC for two weeks. Mice were classified into healthy (control) and AV groups and then treated by LC, AgNPs, and AgNPs + LC. The vaginal smears were taken daily and tissue sections were prepared using the hematoxylin and eosin (H & E) method. Results: Minimum inhibitory concentrations (MICs) of AgNPs for E. coli, S. aureus, and their mixture were 250, 125, and 500 ppm, and their MBIC-90% were 500, 250, and 1000 ppm, respectively. The estrus cycle of mice treated with co-administration of AgNPs and LC was similar to the control group (P < 0.05). The results of histology also showed that infected mice were treated with AgNPs and LC, simultaneously. Conclusion: Single bacteria are more sensitive than their mixed model to these NPs. Co-administration of AgNPs as an antibacterial agent and LC as an antioxidant agent can treat AV in the infected mice.
Collapse
Affiliation(s)
| | | | - Mehri Azadbakht
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Silva RD, Souza MRFD, Oliveira ASB, Iório MCM. Mitochondrial myopathy and sensorineural hearing loss: case study. Codas 2021; 33:e20200021. [PMID: 34406262 DOI: 10.1590/2317-1782/20202020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial myopathy is caused by the absence and/or insufficiency of L-carnitine, a quaternary enzyme responsible for transporting free fatty acids into the mitochondria. The primary function of the mitochondria is to produce energy, contributing to proper cell functioning. Muscular lipidosis causes abnormalities in enzymes that metabolize fat, resulting in the accumulation of harmful amounts of fats in tissues. The aim of this study was to present the case study of patient B.D., a 37-year-old woman diagnosed with muscular lipidosis with L-carnitine deficiency at 6 years old, and describe the speech-language follow-up performed at a hearing care clinic. The first entry in the patient's medical chart was on 03/05/1989, with continuous use of 2g/day of L-carnitine prescribed by a neurologist. The mother reported that B.D. had difficulty hearing and was inattentive, which became more evident when she started school. In 1988 the patient was diagnosed with moderate bilateral sensorineural hearing loss and began using behind-the-ear (BTE) hearing aids in 1989, after which her academic performance and communication improved. In 1998 she switched to Completely in Canal (CIC) hearing aids, which are more discreet, provided better sound localization and greater high frequency gain, although her hearing thresholds worsened slightly. She completed her graduate studies and currently works at a large financial institution. It was concluded that early neurological diagnosis and speech-language intervention enabled adequate language development in the patient.
Collapse
Affiliation(s)
- Renata da Silva
- Departamento de Fonoaudiologia, Universidade Federal de São Paulo - UNIFESP - São Paulo (SP), Brasil
| | | | - Acary Souza Bulle Oliveira
- Departamento de Neurologia, Neurocirurgia, Universidade Federal de São Paulo - UNIFESP - São Paulo (SP), Brasil
| | | |
Collapse
|
6
|
Ezati D, Vardiyan R, Talebi AR, Anvari M, Pourentezari M. L-Carnitine reduces the negative effects of formalin on sperm parameters, chromatin condensation and apoptosis in mice: An experimental study. Int J Reprod Biomed 2020; 18:837-846. [PMID: 33134796 PMCID: PMC7569719 DOI: 10.18502/ijrm.v13i10.7768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/26/2019] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
Background Formalin is commonly applied as an antiseptic and tissue fixative. It has reactive molecules that lead to its cytotoxic effects. According to recent studies, formalin causes a change in the testicular and sperm structure and L-carnitine (LC) acts as an antioxidant to counteract its effects. Objective This study aimed to investigate the protective effects of LC on the parameters, chromatin condensation and apoptosis of mice sperm exposed to formalin. Materials and Methods In this experimental study, 24 balb/c mice (25-40 gr,10-12 wk) were divided into three groups (n = 8/each): group I without any injections or gavage; group II, received 10 mg/ kg formalin intraperitoneally (I.P); and group III was exposed to formalin and LC, where a dose of 10 mg/kg formalin was injected I.P daily and LC the dose of 100 mg/kg was kept in a solvent solution. After 31 days, the sperm examination was performed as follows: to evaluate chromatin and DNA quality of the sperm, we applied aniline blue (AB), toluidine blue (TB), chromomycin A3 (CMA3), and terminal transferase-mediated deoxy uridine triphosphate biotin end labeling (TUNEL) tests. Results Sperm parameters such as count, motility, morphology, and viability displayed a significant decrease in the formalin group. While the data exhibited a considerable augment in sperm parameters in the formalin + LC than the formalin and control groups (p < 0.001), significant differences were detected between groups with respect to TB staining, TUNEL test, CMA3 test and AB staining in the formalin and formalin + LC groups. Conclusion LC can reduce the negative effects of formalin on sperm parameters, chromatin stability, and percentage of apoptosis in an animal model.
Collapse
Affiliation(s)
- Daniyal Ezati
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reyhane Vardiyan
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Pourentezari
- Department of Biology and Anatomy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Alharthi WA, Hamza RZ, Elmahdi MM, Abuelzahab HSH, Saleh H. Selenium and L-Carnitine Ameliorate Reproductive Toxicity Induced by Cadmium in Male Mice. Biol Trace Elem Res 2020; 197:619-627. [PMID: 31863275 DOI: 10.1007/s12011-019-02016-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) has been reported to reduce male fertility, impair reproductive capacity, and play a major role in the pathogenesis of infertility. This study was conducted to investigate the possible protective role of Selenium (Se) and L-carnitine (LC) against the adverse effects induced by Cd on the male reproductive system in mice. Animals were randomly divided into seven groups (n = 10); control group and six treated groups, as follows: Cd (0.35 mg/kg), Se (0.87 mg/kg), LC (10 mg/kg), and a combination of either Se or LC and then a combination of both with Cd, and all animals were injected for a period of 30 days. Exposure of Cd showed a significant decrease in enzymatic antioxidant activities, deficiency in reproductive performance, decrease serum testosterone level, severe changes in the histopathological architecture, and higher degree of damages and appearance of unblemished DNA strands. Treatment with Se and LC has the highly synergistic and ameliorates the damaging effect of Cd on the testis through the elevation of the enzymatic antioxidant and diminish histopathological abnormalities and DNA damage.
Collapse
Affiliation(s)
- Wed A Alharthi
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Zoology Department, Faculty of Science, Zagzig University, Zagazig, Egypt
| | - Magda M Elmahdi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt
| | | | - Hanan Saleh
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt.
| |
Collapse
|
8
|
Sherif NA, El-Banna AS, ElBourini MM, Khalil NO. Efficacy of L-carnitine and propranolol in the management of acute theophylline toxicity. Toxicol Res (Camb) 2020; 9:45-54. [PMID: 32440337 DOI: 10.1093/toxres/tfaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
Theophylline toxicity results in substantial morbidity and mortality particularly due to its narrow therapeutic index. The development of new treatments for acute theophylline toxicity is a point of research interest. The aim of the present work was to assess the efficacy of L-carnitine (LC) and propranolol in the management of patients with acute theophylline toxicity. The study was conducted on 60 patients with acute theophylline toxicity admitted to the Poison Control Center or Intensive Care Unit at Alexandria Main University Hospital. The studied patients were equally classified into four groups (GPs, 15 patients each): the first group was the control group who received standard treatment protocol for theophylline toxicity. The other three GPs also received standard treatment protocol for theophylline toxicity in addition. The second group (LC group) received LC with a loading dose of 100 mg/kg IV over 30-60 min (maximum 6 g) and the maintenance dose was 50 mg/kg IV every 8 h. The third group (propranolol group) received propranolol, administered slowly intravenous 0.5-1 mg over 1 min; it may be repeated if necessary up to a total maximum dose of 0.1 mg/kg. The fourth group (propranolol and LC) received both IV propranolol and LC in the same doses as previous. Treatment with LC alone or in combination with propranolol resulted in a significant improvement of both clinical and laboratory findings. Although combined therapy yields the best results and outcome, LC can serve as an antidote for acute theophylline toxicity if there is any contraindication to propranolol administration.
Collapse
Affiliation(s)
- Naima A Sherif
- Department of Forensic Medicine& Clinical Toxicology-Faculty of Medicine, Alexandria University, Egypt
| | - Asmaa S El-Banna
- Department of Forensic Medicine& Clinical Toxicology-Faculty of Medicine, Alexandria University, Egypt
| | - Marwan M ElBourini
- Critical Care Medicine, Faculty of Medicine, Alexandria University, Egypt
| | - Nancy O Khalil
- Department of Forensic Medicine& Clinical Toxicology-Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
9
|
Oney-Birol S. Exogenous L-Carnitine Promotes Plant Growth and Cell Division by Mitigating Genotoxic Damage of Salt Stress. Sci Rep 2019; 9:17229. [PMID: 31754247 PMCID: PMC6872569 DOI: 10.1038/s41598-019-53542-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
L-carnitine is a fundamental ammonium compound responsible for energy metabolism in all living organisms. It is an oxidative stress regulator, especially in bacteria and yeast and lipid metabolism in plants. Besides its metabolic functions, l-carnitine has detoxification and antioxidant roles in the cells. Due to the complex interrelationship of l-carnitine between lipid metabolism and salinity dependent oxidative stress, this study investigates the exogenous l-carnitine (1 mM) function on seed germination, cell division and chromosome behaviour in barley seeds (Hordeum vulgare L. cv. Bulbul-89) under different salt stress concentrations (0, 0.25, 0.30 and 0.35 M). The present work showed that l-carnitine pretreatment could not be successful to stimulate cell division on barley seeds under non-stressed conditions compared to stressed conditions. Depending on increasing salinity without pretreatment with l-carnitine, the mitotic index significantly decreased in barley seeds. Pretreatment of barley seeds with l-carnitine under salt stress conditions was found promising as a plant growth promoter and stimulator of mitosis. In addition, pretreatment of barley seeds with l-carnitine alleviated detrimental effects of salt stress on chromosome structure and it protected cells from the genotoxic effects of salt. This may be caused by the antioxidant and protective action of the l-carnitine. Consequently, this study demonstrated that the exogenous application of 1 mM l-carnitine mitigates the harmful effects of salt stress by increasing mitosis and decreasing DNA damage caused by oxidative stress on barley seedlings.
Collapse
Affiliation(s)
- Signem Oney-Birol
- Department of Molecular Biology & Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Turkey.
| |
Collapse
|
10
|
Molino C, Filippi S, Stoppiello GA, Meschini R, Angeletti D. In vitro evaluation of cytotoxic and genotoxic effects of Di(2-ethylhexyl)-phthalate (DEHP) on European sea bass (Dicentrarchus labrax) embryonic cell line. Toxicol In Vitro 2019; 56:118-125. [PMID: 30685479 DOI: 10.1016/j.tiv.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Marine litter is extensively distributed in the marine environment, and plastic debris, of which litter is mostly composed, can be a major source of pollutants. Among them, Di(2-ethylhexyl)-phthalate (DEHP) is the most abundantly used plastic additive, and it has been reported to affect biochemical processes both in humans and wildlife; however, studies on its toxicological effects on marine organisms are still scarce. In this survey, we studied the cytotoxic, genotoxic, and mutagenic effects of DEHP in European sea bass embryonic cell line (DLEC) by applying specific in vitro tests. Results showed a significant decrease in cell viability starting at 0.01 mM of DEHP after 24 h together with a significant increase in apoptosis and necrosis, morphological changes and cell detachment. Consistently, we detected a moderate increase in DNA strand breaks from 0.02 mM, and a dose-dependent increase in of micronucleus frequency from 0.01 mM, accompanied by a significant inhibition of cell proliferation, which suggested a possible aneugenic effect of this phthalate. Our results demonstrate that in vitro exposure to DEHP had a dose-dependent cytotoxic and genotoxic effects in DLEC cell line, encouraging further investigation into its effects in in vivo and/or ex vivo cell systems of marine organisms.
Collapse
Affiliation(s)
- Chiara Molino
- Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Center (CISMAR), University of Tuscia, Borgo Le Saline, 01016 Tarquinia, VT, Italy; Department of Ecological and Biological Sciences, Laboratory of Molecular Cytogenetic and Mutagenesis, University of Tuscia, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, Laboratory of Molecular Cytogenetic and Mutagenesis, University of Tuscia, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy
| | - Gerardo Antonio Stoppiello
- Department of Ecological and Biological Sciences, Laboratory of Molecular Cytogenetic and Mutagenesis, University of Tuscia, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy
| | - Roberta Meschini
- Department of Ecological and Biological Sciences, Laboratory of Molecular Cytogenetic and Mutagenesis, University of Tuscia, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
| | - Dario Angeletti
- Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Center (CISMAR), University of Tuscia, Borgo Le Saline, 01016 Tarquinia, VT, Italy
| |
Collapse
|
11
|
Modulation of chromatin conformation by the histone deacetylase inhibitor trichostatin A promotes the removal of radiation-induced lesions in ataxia telangiectasia cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:109-116. [DOI: 10.1016/j.mrgentox.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022]
|
12
|
Palazzo RP, Jardim LB, Bacellar A, de Oliveira FR, Maraslis FT, Pereira CHJ, da Silva J, Maluf SW. DNA damage and repair in individuals with ataxia-telangiectasia and their parents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:122-126. [DOI: 10.1016/j.mrgentox.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
13
|
Meschini R, D'Eliseo D, Filippi S, Bertini L, Bizzarri BM, Botta L, Saladino R, Velotti F. Tyrosinase-Treated Hydroxytyrosol-Enriched Olive Vegetation Waste with Increased Antioxidant Activity Promotes Autophagy and Inhibits the Inflammatory Response in Human THP-1 Monocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12274-12284. [PMID: 30350961 DOI: 10.1021/acs.jafc.8b03630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Treatment of olive vegetation waste with tyrosinase immobilized on multiwalled carbon nanotubes increased the antioxidant activity as a consequence of the conversion of phenols to corresponding catechol derivatives, as evaluated by DPPH, Comet assay, and micronucleus analyses. During this transformation, 4-hydroxyphenethyl alcohol (tyrosol) was quantitatively converted to bioactive 3,4-dihydroxyphenethyl alcohol (hydroxytyrosol). The hydroxytyrosol-enriched olive vegetation waste also promoted autophagy and inhibited the inflammatory response in human THP-1 monocytes.
Collapse
Affiliation(s)
- Roberta Meschini
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Donatella D'Eliseo
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
- Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - Silvia Filippi
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| |
Collapse
|
14
|
Anichini C, Lotti F, Longini M, Felici C, Proietti F, Buonocore G. Antioxidant Strategies in Genetic Syndromes with High Neoplastic Risk in Infant Age. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Anichini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federica Lotti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cosetta Felici
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabrizio Proietti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, Coon JJ, Paull TT. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal 2018; 11:eaan5598. [PMID: 29317520 PMCID: PMC5898228 DOI: 10.1126/scisignal.aan5598] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Mand
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chung-Hsuan Kao
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Zhou
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seung W Ryu
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alicia L Richards
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Botta L, Brunori F, Tulimieri A, Piccinino D, Meschini R, Saladino R. Laccase-Mediated Enhancement of the Antioxidant Activity of Propolis and Poplar Bud Exudates. ACS OMEGA 2017; 2:2515-2523. [PMID: 30023668 PMCID: PMC6044900 DOI: 10.1021/acsomega.7b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 05/08/2023]
Abstract
The treatment of propolis and poplar bud exudates with laccase from Trametes versicolor and 2,2,6,6-tetramethyl-1-piperidinyloxy free radical increased the antioxidant activity, as evaluated by the 2,2'-diphenyl picrylhydrazyl (DPPH)- and t-butyl-OOH-induced DNA breakage comet assay analyses. The effect was highest for shorter reaction times. Propolis showed the highest antioxidant activity in the DPPH test, whereas poplar bud exudates were more active in reducing the t-butyl-OOH-induced lesions in the Chinese hamster ovary cell line. Even if the concentration of polyphenols decreased during the oxidation, the formation of low-molecular-weight phenols phloroglucinol 4 (1,3,5-trihydroxy benzene), hydroquinone 5 (1,4-dihydroxy benzene), and catechol 6 (1,2-dihydroxy benzene), characterized by the radical-scavenging activity, can account for the observed increase in the antioxidant activity.
Collapse
|
17
|
Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol 2016; 11:375-383. [PMID: 28063379 PMCID: PMC5219618 DOI: 10.1016/j.redox.2016.12.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T), Bloom syndrome (BS) and Nijmegen breakage syndrome (NBS) are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4), oxidised low-density lipoprotein (ox-LDL) or Poly (ADP-ribose) polymerases (PARP). Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS), and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.
Collapse
|
18
|
Oxidative Stress in Cancer-Prone Genetic Diseases in Pediatric Age: The Role of Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4782426. [PMID: 27239251 PMCID: PMC4863121 DOI: 10.1155/2016/4782426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, and Costello syndrome. Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with particular regard to mitochondrial dysfunction. Since mitochondria are one of the major sites of ROS production as well as one of the major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients.
Collapse
|
19
|
Zhang Q, Wang SM, Yao PB, Zhang L, Zhang YJ, Chen RX, Fu Y, Zhang JM. Effects of L-carnitine on follicular survival and graft function following autotransplantation of cryopreserved-thawed ovarian tissues. Cryobiology 2015; 71:135-40. [PMID: 25956417 DOI: 10.1016/j.cryobiol.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the effects of L-carnitine (LC) on follicular survival and ovarian function following cryopreservation-thawing and autotransplantation of ovarian tissues. ICR mice were divided into three groups: control; saline group (cryopreservation+autograft+saline); and LC group (cryopreservation+autograft+L-carnitine). The ovarian tissues from control group, saline group, and LC group were histological assessed. There were no significant differences in the percentage of morphologically normal primordial follicles between the LC group and the saline group. After 28 days of autotransplantation, apoptosis rates, plasma malondialdehyde (MDA), progesterone (P4) and estradiol (E2) concentrations, and follicular densities of grafts were evaluated. Apoptosis rate and the concentration of MDA in the LC group were significantly lower than those in the saline group. The concentration of E2 and follicular densities of grafts in LC group were significantly higher than that in saline group. LC inhibits follicle apoptosis and increases follicular survival and function of ovarian graft.
Collapse
Affiliation(s)
- Qing Zhang
- Radiology Department, Jinan Central Hospital Affiliated to Shandong University, China
| | - Shao-Mei Wang
- Department of Nephrology, Jinan Central Hospital Affiliated to Shandong University, China
| | - Ping-Bao Yao
- Outpatient Surgery, Jinan Central Hospital Affiliated to Shandong University, China
| | - Ling Zhang
- Department of Reproductive Medicine, Hospital for Maternity and Child Care of Jinan City, China
| | - Ya-Jie Zhang
- Department of Reproductive Medicine, Hospital for Maternity and Child Care of Jinan City, China
| | - Ru-Xin Chen
- Department of Reproductive Medicine, Hospital for Maternity and Child Care of Jinan City, China
| | - Yang Fu
- Department of Reproductive Medicine, Hospital for Maternity and Child Care of Jinan City, China
| | - Jian-Min Zhang
- Department of Reproductive Medicine, Hospital for Maternity and Child Care of Jinan City, China.
| |
Collapse
|
20
|
Moraes e Luz EW, Vieira LR, Semedo JG, Bona SR, Forgiarini LF, Pereira P, Cavalcante AAM, Marroni NAP, Picada JN. Neurobehavioral effects of l-carnitine and its ability to modulate genotoxicity and oxidative stress biomarkers in mice. Pharmacol Biochem Behav 2013; 110:40-5. [DOI: 10.1016/j.pbb.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/15/2013] [Accepted: 06/01/2013] [Indexed: 12/30/2022]
|
21
|
Shadboorestan A, Shokrzadeh M, Ahangar N, Abdollahi M, Omidi M, Payam SSH. The chemoprotective effects of l-carnitine against genotoxicity induced by diazinon in rat blood lymphocyte. Toxicol Ind Health 2013; 31:1334-40. [DOI: 10.1177/0748233713491811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to assess the preventive effects of l-carnitine (LC) against DNA damage induced by diazinon (DZN) in rat blood lymphocytes. Animals were concurrently administered intraperitoneally with DZN in proper solvent (20 mg/kg body weight (b.w.)) and LC at three different doses (50, 100, and 150 mg/kg b.w.) for 30 consecutive days. The positive control group received DZN at the same dose without LC. Twenty-four hour after last injection, 0.5 ml blood of each rat was received and cultured in culture medium for 44 h. The lymphocyte cultures were mitogenically stimulated with cytochalasin B for the evaluation of the number of micronuclei (MNs) in cytokinesis-blocked binucleated cells. Incubation of lymphocytes with DZN induced additional genotoxicity and was shown by increase in MNs frequency in rat lymphocytes. LC at all doses had a protective effect and significantly reduced the MNs frequency in cultured lymphocytes ( p < 0.0001– p < 0.05). The maximum effect was observed at 150 mg/kg that reduced the frequency of MN from 12.78 ± 0.24% for DZN group to 5.61 ± 0.17%. Our study revealed that LC has a potent antigenotoxic effect against DZN-induced toxicity in rats, which may be due to the scavenging of free radicals and increased antioxidant status. Since LC is a natural compound and is being safe, it is recommended as a daily supplement for body defense against side effects induced by chemical hazardous agents.
Collapse
Affiliation(s)
- Amir Shadboorestan
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Nematollah Ahangar
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahmood Omidi
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Sakine Sadat Hosseini Payam
- Department of Occupational Health, Faculty of Health, North Khorasan University of Medical Sciences, Bojnurd, Islamic Republic of Iran
| |
Collapse
|
22
|
Banihani S, Agarwal A, Sharma R, Bayachou M. Cryoprotective effect ofl-carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia 2013; 46:637-41. [DOI: 10.1111/and.12130] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- S. Banihani
- Department of Medical Laboratory Sciences; Jordan University of Science and Technology; Irbid Jordan
| | - A. Agarwal
- Center for Reproductive Medicine; Glickman Urological & Kidney Institute; Cleveland Clinic; Cleveland OH USA
| | - R. Sharma
- Center for Reproductive Medicine; Glickman Urological & Kidney Institute; Cleveland Clinic; Cleveland OH USA
| | - M. Bayachou
- Department of Chemistry; Cleveland State University; Cleveland OH USA
| |
Collapse
|
23
|
Kovacic P, Somanathan R. Redox processes in neurodegenerative disease involving reactive oxygen species. Curr Neuropharmacol 2013; 10:289-302. [PMID: 23730253 PMCID: PMC3520039 DOI: 10.2174/157015912804143487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022] Open
Abstract
Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego CA 92182 USA
| | | |
Collapse
|
24
|
Lavin MF. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair (Amst) 2013; 12:612-9. [PMID: 23731731 DOI: 10.1016/j.dnarep.2013.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients with ataxia-telangiectasia (A-T) are characterised by genome instability, cancer predisposition and a progressive neurodegeneration. A number of model systems have been developed for A-T but none recapitulate all the phenotype. The majority of these models have been generated in mice. While Atm deficient mouse models exhibit much of the phenotype described in patients with A-T, the broad consensus is that they do not display the most debilitating aspect of A-T, i.e. neurodegeneration. Cerebellar atrophy is one of the neuronal characteristics of A-T patients due to defects in neuronal development and progressive loss of Purkinje and granule cells. This is not evident in Atm-deficient mutants but there are multiple reports on neurological abnormalities in these mice. The focus of this review is to evaluate the appropriateness of Atm mutant mouse models for A-T, particularly with reference to neurological abnormalities and how they might relate to neurodegeneration.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia.
| |
Collapse
|
25
|
Yuan Y, Guo H, Zhang Y, Zhou D, Gan P, Liang DM, Chen JY. Protective effects of L-carnitine on intestinal ischemia/reperfusion injury in a rat model. J Clin Med Res 2011; 3:78-84. [PMID: 21811534 PMCID: PMC3140927 DOI: 10.4021/jocmr540w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Ischemia/reperfusion (IR) injury of the intestine is a major problem in abdominal pathological condition and is associated with a high morbidity and mortality. The purpose of the study is to determine whether the L-carnitine can prevent the harmful effects of small intestinal IR injury in rats. METHODS Thirty Sprague-Dawley rats were randomly divided into three groups. Sham operated group (S), for shamoperated, the IR group for rats submitted to 45-minute of intestinal ischemia and 2-hour reperfusion, and IR+L group for those IR group treated with L-carnitine before reperfusion. All the rats were given EmGFP labelled E. coli DH5α through gavage 2-hour before the operative procedure. Afterwards the bacterial translocation (BT) from mesenteric lymph nodes (MLN), liver, spleen, lung and portal vein blood were detected. And the colony forming units/g (CFU/g) were counted. The TNF-α, IL-1β, IL-6, and IL-10 in serum were measured by ELISA. The morphometric study was measured by Chius classification. RESULTS The levels of BT were higher in the IR group than IR+L group (P < 0.05). The E. coli DH5α was hardly detected in the S group. The IR+L rats had enhancement of IL-10 and suppressed production of serum TNF-α, IL-1β and IL-6, compared to IR group rats (P < 0.05). The degree of pathological impairment in small intestine was lighter in IR+L than IR group (P < 0.05). CONCLUSIONS The L-carnitine pretreatment has a positive effect on reducing levels of BT, on inhibiting secretion of proinflammatory cytokines, and on lessening intestinal mucosa injury during small intestinal IR injury. KEYWORDS L-carnitine; Ischemia/reperfusion injury; Intestine.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650101, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Banihani S, Sharma R, Bayachou M, Sabanegh E, Agarwal A. Human sperm DNA oxidation, motility and viability in the presence of l-carnitine during in vitro incubation and centrifugation. Andrologia 2011; 44 Suppl 1:505-12. [DOI: 10.1111/j.1439-0272.2011.01216.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Wu C, Gopal K, Gross GW, Lukas TJ, Moore EJ. An in vitro model for testing drugs to treat tinnitus. Eur J Pharmacol 2011; 667:188-94. [DOI: 10.1016/j.ejphar.2011.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 10/18/2022]
|
28
|
Alzahrani HAS. Protective effect of l-carnitine against acrylamide-induced DNA damage in somatic and germ cells of mice. Saudi J Biol Sci 2010; 18:29-36. [PMID: 23961101 DOI: 10.1016/j.sjbs.2010.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/18/2010] [Accepted: 07/23/2010] [Indexed: 02/05/2023] Open
Abstract
Recent findings of acrylamide (AA) in many common foods have sparked renewed interest in assessing human health hazards. AA was evaluated by the International Agency for Research on Cancer as probably carcinogenic to humans. For this reason, the aim of this study is to evaluate the potential genotoxic effect of AA using chromosomal aberration analysis and micronucleus (MN) test in mouse bone-marrow cells and morphological sperm abnormalities. The result of the present work indicated that treatment with a single dose of 10, 20, or 30 mg/kg b.wt. of AA for 24 h and the repeated dose of 10 mg/kg b.wt. for 1and 2 weeks induced a statistically significant increase in the percentage of chromosomal aberrations and micronuclei in bone- marrow cells. These percentages reduced significantly in all groups treated with AA and the protective agent l-carnitine. Also the results indicated that the dose 10, 20 and 30 mg/kg b.wt. of AA induced a statistically significant percentage of morphological sperm abnormalities compared with the control group. Such effect reached its maximum (7.24 ± 0.61) with the highest tested dose which reduced to (4.02 ± 0.58) in the group treated with the same dose of AA and l-carnitine. In conclusion, the results confirm the protective role of LC against the mutagenicity of AA.
Collapse
|
29
|
Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 2008; 7:1028-38. [PMID: 18456574 DOI: 10.1016/j.dnarep.2008.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human genomic instability syndromes affect the nervous system to different degrees of severity, attesting to the vulnerability of the CNS to perturbations of genomic integrity and the DNA damage response (DDR). Ataxia-telangiectasia (A-T) is a typical genomic instability syndrome whose major characteristic is progressive neuronal degeneration but is also associated with immunodeficiency, cancer predisposition and acute sensitivity to ionizing radiation and radiomimetic chemicals. A-T is caused by loss or inactivation of the ATM protein kinase, which mobilizes the complex, multi-branched cellular response to double strand breaks in the DNA by phosphorylating numerous DDR players. The link between ATM's function in the DDR and the neuronal demise in A-T has been questioned in the past. However, recent studies of the ATM-mediated DDR in neurons suggest that the neurological phenotype in A-T is indeed caused by deficiency in this function, similar to other features of the disease. Still, major issues concerning this phenotype remain open, including the presumed differences between the DDR in post-mitotic neurons and proliferating cells, the nature of the damage that accumulates in the DNA of ATM-deficient neurons under normal life conditions, the mode of death of ATM-deficient neurons, and the lack of a major neuronal phenotype in the mouse model of A-T. A-T remains a prototype disease for the study of the DDR's role in CNS development and maintenance.
Collapse
Affiliation(s)
- Sharon Biton
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|