1
|
Allegra A, Mirabile G, Caserta S, Stagno F, Russo S, Pioggia G, Gangemi S. Oxidative Stress and Chronic Myeloid Leukemia: A Balance between ROS-Mediated Pro- and Anti-Apoptotic Effects of Tyrosine Kinase Inhibitors. Antioxidants (Basel) 2024; 13:461. [PMID: 38671909 PMCID: PMC11047441 DOI: 10.3390/antiox13040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The balanced reciprocal translocation t (9; 22) (q34; q11) and the BCR-ABL fusion gene, which produce p210 bcr-abl protein production with high tyrosine kinase activity, are characteristics of chronic myeloid leukemia, a myeloproliferative neoplasm. This aberrant protein affects several signaling pathways connected to both apoptosis and cell proliferation. It has been demonstrated that tyrosine kinase inhibitor treatment in chronic myeloid leukemia acts by inducing oxidative stress and, depending on its level, can activate signaling pathways responsible for either apoptosis or survival in leukemic cells. Additionally, oxidative stress and reactive oxygen species generation also mediate apoptosis through genomic activation. Furthermore, it was shown that oxidative stress has a role in both BCR-ABL-independent and BCR-ABL-dependent resistance pathways to tyrosine kinases, while patients with chronic myeloid leukemia were found to have a significantly reduced antioxidant level. The ideal environment for tyrosine kinase inhibitor therapy is produced by a favorable oxidative status. We discuss the latest studies that aim to manipulate the redox system to alter the apoptosis of cancerous cells.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Fabio Stagno
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Sabina Russo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
2
|
Yuan M, Wang Y, Qin M, Zhao X, Chen X, Li D, Miao Y, Otieno Odhiambo W, Liu H, Ma Y, Ji Y. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci 2021; 112:2679-2691. [PMID: 33949040 PMCID: PMC8253288 DOI: 10.1111/cas.14939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Animals
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Endonucleases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Heterografts
- Histones/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MRE11 Homologue Protein/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Dandan Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Department of Clinical laboratoryXi’an No. 3 HospitalThe Affiliated Hospital of Northwest UniversityXi’anChina
| | - Wood Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Huasheng Liu
- Department of HematologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| |
Collapse
|
3
|
An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc 2020; 15:3844-3878. [PMID: 33199871 DOI: 10.1038/s41596-020-0401-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.
Collapse
|
4
|
Mišík M, Filipic M, Nersesyan A, Mišíková K, Knasmueller S, Kundi M. Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14762-14770. [PMID: 26620864 DOI: 10.1007/s11356-015-5837-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Recent experiments showed that 5-fluorouracil (5FU), cisplatin (CDDP), etoposide (ET), and imatinib mesylate (IM), which are currently among the most widely used anticancer drugs, cause damage of the genetic material in higher plants. The aim of the present study was to determine whether mixtures of these drugs cause synergistic or antagonistic effects which may have an impact on their environmental safety. Therefore, the effects of binary mixtures of these anticancer drugs on the induction of micronuclei (MN) which reflect structural and numerical chromosomal aberrations were assessed in Tradescantia tetrads. Synergistic/antagonistic effects were determined by comparison with single exposures that would be equally effective in a reference model of independent action. This comparison was performed at two distinct effect sizes. We found clear evidence for synergisms in combination experiments with IM and antagonism in a high-dose experiment with ET and 5FU. Our findings indicate that IM increases the genotoxic effects of other anticancer drugs. The maximal effects which we found were in the range between 19 and 38 % in the excess of effect sizes predicted under independent action. These effects may have an impact on the overall genotoxic activities of untreated hospital waste waters but not on the environment in general as the predicted environmental concentrations of the studied drugs are several orders of magnitude lower as the levels which are required to cause induction of MN in higher plants.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Metka Filipic
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Katarína Mišíková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Siegfried Knasmueller
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.
| | - Michael Kundi
- Medical University of Vienna, Institute of Environmental Health, Medical University of Vienna, Wien, Austria
| |
Collapse
|
5
|
Synowiec E, Hoser G, Wojcik K, Pawlowska E, Skorski T, Błasiak J. UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib. Int J Mol Sci 2015; 16:18111-28. [PMID: 26251899 PMCID: PMC4581238 DOI: 10.3390/ijms160818111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 02/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2·s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/radiation effects
- DNA Damage/drug effects
- DNA Damage/radiation effects
- Drug Resistance, Neoplasm/radiation effects
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/radiation effects
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/radiation effects
- Mice
- Oxidative Stress/drug effects
- Oxidative Stress/radiation effects
- Point Mutation
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Grazyna Hoser
- Department of Clinical Cytobiology, Medical Center for Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland.
| | - Katarzyna Wojcik
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Tomasz Skorski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
6
|
Azqueta A, Slyskova J, Langie SAS, O'Neill Gaivão I, Collins A. Comet assay to measure DNA repair: approach and applications. Front Genet 2014; 5:288. [PMID: 25202323 PMCID: PMC4142706 DOI: 10.3389/fgene.2014.00288] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023] Open
Abstract
Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra Pamplona, Spain
| | - Jana Slyskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of the Czech Republic Prague, Czech Republic
| | - Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute of Technological Research Mol, Belgium
| | - Isabel O'Neill Gaivão
- Department of Genetics and Biotechnology, Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Andrew Collins
- Department of Nutrition, University of Oslo Oslo, Norway
| |
Collapse
|
7
|
Farooqi AA, Nawaz A, Javed Z, Bhatti S, Ismail M. While at Rome miRNA and TRAIL do whatever BCR-ABL commands to do. Arch Immunol Ther Exp (Warsz) 2012; 61:59-74. [PMID: 23229677 DOI: 10.1007/s00005-012-0204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
It is a well-acclaimed fact that proteins expressed as a consequence of oncogenic fusions, mutations or amplifications can facilitate ectopic protein-protein interactions that re-wire signal dissemination pathways, in a manner that escalates malignancy. BCR-ABL-mediated signal transduction cascades in leukemic cells are assembled and modulated by a finely controlled network of protein-protein interactions, mediated by characteristic signaling domains and their respective binding motifs. BCR-ABL functions in a cell context-specific and cell type-specific manner to integrate signals that affect uncontrolled cellular proliferation. In this review, we draw attention to the recent progress made in outlining resistance against TRAIL-mediated apoptosis and diametrically opposed roles of miRNAs in BCR-ABL-positive leukemic cells. BCR-ABL governs carcinogenesis through well-organized web of antiapoptotic proteins and over-expressed oncomirs which target death receptors and pro-apoptotic genes. Set of oncomirs which inversely correlate with expression of TRAIL via suppression of SMAD is an important dimension which is gradually gaining attention of the researchers. Contrary to this, some current findings show a new role of BCR-ABL in nucleus with spotlight on apoptosis. It seems obvious that genetic heterogeneity of leukemias poses therapeutic challenges, and pharmacological agents that target components of the cancer promoting nano-machinery still need broad experimental validation to be considered competent as a component of the therapeutic arsenal for this group of diseases. Rapidly developing technologies are empowering us to explain the molecular "nature" of a patient and/or tumor and with this integration of personalized medicine, with maximized efficacy, cost effectiveness will hopefully improve survival chances of the patient.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
8
|
Polymorphisms of ERCC1 genotype associated with response to imatinib therapy in chronic phase chronic myeloid leukemia. Int J Hematol 2012; 96:327-33. [PMID: 22821389 DOI: 10.1007/s12185-012-1142-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 02/01/2023]
Abstract
DNA repair machinery may contribute to the mechanism of the action in imatinib. We examined the association between the single nucleotide polymorphism (SNP) markers involved in the DNA repair enzyme pathway (ERCC1/2/4/5, XRCC1/2/4/5) and the clinical outcomes following an imatinib therapy in chronic phase chronic myeloid leukemia (CML) patients. A total of 169 Korean patients were included. Of the 19 SNPs from these patients, those with the TT genotype of ERCC1 (rs11615) showed a higher probability of achieving major cytogenetic response [P = 0.002, HR 5.14 (95 % CI 1.83-14.43)], complete cytogenetic response [P = 0.012, HR 3.47 (95 % CI 1.31-9.17)], and major molecular response [P = 0.001, HR 5.71 (95 % CI 2.13-15.30)] than those with CC or CT genotypes. This suggests that SNP markers on ERCC1 may predict the response to imatinib therapy, which proposes the potential involvement of the DNA repair machinery in the mechanism of imatinib action in chronic phase CML.
Collapse
|
9
|
Muvarak N, Nagaria P, Rassool FV. Genomic instability in chronic myeloid leukemia: targets for therapy? Curr Hematol Malig Rep 2012; 7:94-102. [PMID: 22427031 DOI: 10.1007/s11899-012-0119-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Philadelphia positive (Ph+) chronic myeloid leukemia (CML) is characterized by the occurrence of nonrandom genetic and cytogenetic abnormalities during disease progression. Many of these abnormalities are markers for genes which, when altered, can drive the blastic transformation process. Thus, such genetic alterations may be manifestations of an underlying genomic instability resulting from a compromised DNA damage and repair response, leading to advanced stages of CML and resistance to therapy. This article examines the molecular pathways that may lead to genomic instability in CML and the potential of these pathway constituents to be therapeutic targets.
Collapse
Affiliation(s)
- N Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21230, USA
| | | | | |
Collapse
|
10
|
Sliwinski T, Markiewicz L, Rusin P, Kabzinski J, Dziki L, Milonski J, Olszewski J, Blaszczyk J, Szemraj J, Majsterek I. Impaired nucleotide excision repair pathway as a possible factor in pathogenesis of head and neck cancer. Mutat Res 2011; 716:51-58. [PMID: 21875606 DOI: 10.1016/j.mrfmmm.2011.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 07/14/2011] [Accepted: 08/12/2011] [Indexed: 05/31/2023]
Abstract
Tobacco smoking is one of the major risk factors in pathogenesis of head and neck squamous cell carcinomas (HNSCC). Many of the chemical compounds present in tobacco are well-known carcinogens which form adducts with DNA. Cells remove these adducts mainly by the nucleotide excision repair pathway (NER). NER also eliminates a broad spectrum of pyrimidine dimers (CPD) and photo-products (6-4PP) induced by UV-radiation or DNA cross-links after cisplatin anti-cancer treatment. In this study DNA damage and repair was examined in peripheral blood lymphocytes obtained from 20 HNSCC patients and 20 healthy controls as well as HTB-43 larynx and SSC-25 tongue cancer cell lines. DNA repair kinetics in the examined cells after cisplatin or UV-radiation treatment were investigated using alkaline comet assay during 240min of post-treatment incubation. MTT assay was used to analyse cell viability and the Annexin V-FITC kit specific for kinase-3 was employed to determine apoptosis after treating the cells with UV-radiation at dose range from 0.5 to 60J/m(2). NER capability was assessed in vitro with cell extracts by the use of a bacterial plasmid irradiated with UV-light as a substrate for the repair. The results show that lymphocytes from HNSCC patients and HTB-43 or SSC-25 cancer cells were more sensitive to genotoxic treatment with UV-radiation and displayed impaired DNA repair. Also evidenced was a higher rate of apoptosis induction after UV-radiation treatment of lymphocytes from the HNSCC patients and the HTB-43 cancer cells than after treatment of those from healthy donors. Finally, our results showed that there was a significant decrease in NER capacity in HTB-43 or SSC-25 cancer cells as well as in peripheral blood lymphocytes of HNSCC patients compared to controls. In conclusion, we suggest that the impaired NER pathway might be a critical factor in pathogenesis of head and neck cancer.
Collapse
Affiliation(s)
- T Sliwinski
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
With an understanding of the molecular changes that accompany cell transformation, cancer drug discovery has undergone a dramatic change in the past few years. Whereas most of the emphasis in the past has been placed on developing drugs that induce cell death based on mechanisms that do not discriminate between normal and tumor cells, recent strategies have emphasized targeting specific mechanisms that have gone awry in tumor cells. However, the identification of cancer-associated mutations in oncogenes and their amplification in tumors has suggested that inhibitors against such proteins might represent attractive substrates for targeted therapy. In the clinic, the success of imatinib (Gleevec®, STI571) and trastuzumab (Herceptin®), both firsts of their kind, spurred further development of new, second-generation drugs that target kinases in cancer. This review highlights a few important examples each of these types of therapies, along with some newer agents that are in various stages of development. Second-generation kinase inhibitors aimed at overriding emerging resistance to these therapies are also discussed.
Collapse
|
12
|
Nguyen T, Dai Y, Attkisson E, Kramer L, Jordan N, Nguyen N, Kolluri N, Muschen M, Grant S. HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res 2011; 17:3219-3232. [PMID: 21474579 PMCID: PMC3096723 DOI: 10.1158/1078-0432.ccr-11-0234] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE The purpose of this study was to determine whether histone deacetylase (HDAC) inhibitors (HDACI) such as vorinostat or entinostat (SNDX-275) could increase the lethality of the dual Bcr/Abl-Aurora kinase inhibitor KW-2449 in various Bcr/Abl(+) human leukemia cells, including those resistant to imatinib mesylate (IM). EXPERIMENTAL DESIGN Bcr/Abl(+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) cells, including those resistant to IM (T315I, E255K), were exposed to KW-2449 in the presence or absence of vorinostat or SNDX-275, after which apoptosis and effects on signaling pathways were examined. In vivo studies combining HDACIs and KW2449 were carried out by using a systemic IM-resistant ALL xenograft model. RESULTS Coadministration of HDACIs synergistically increased KW-2449 lethality in vitro in multiple CML and Ph(+) ALL cell types including human IM resistant cells (e.g., BV-173/E255K and Adult/T315I). Combined treatment resulted in inactivation of Bcr/Abl and downstream targets (e.g., STAT5 and CRKL), as well as increased reactive oxygen species (ROS) generation and DNA damage (γH2A.X). The latter events and cell death were significantly attenuated by free radical scavengers (TBAP). Increased lethality was also observed in primary CD34(+) cells from patients with CML, but not in normal CD34(+) cells. Finally, minimally active vorinostat or SNDX275 doses markedly increased KW2449 antitumor effects and significantly prolonged the survival of murine xenografts bearing IM-resistant ALL cells (BV173/E255K). CONCLUSIONS HDACIs increase KW-2449 lethality in Bcr/Abl(+) cells in association with inhibition of Bcr/Abl, generation of ROS, and induction of DNA damage. This strategy preferentially targets primary Bcr/Abl(+) hematopoietic cells and exhibits enhanced in vivo activity. Combining KW-2449 with HDACIs warrants attention in IM-resistant Bcr/Abl(+) leukemias.
Collapse
MESH Headings
- Adult
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Histone Deacetylase Inhibitors/administration & dosage
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Imatinib Mesylate
- Indazoles/administration & dosage
- Indazoles/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Tri Nguyen
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Yun Dai
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Elisa Attkisson
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Lora Kramer
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Nicholas Jordan
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Nguyen Nguyen
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Nikhil Kolluri
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
| | - Markus Muschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond VA
- Department of Biochemistry, Virginia Commonwealth University Health Sciences Center, Richmond VA
- Department of Pharmacology, Virginia Commonwealth University Health Sciences Center, Richmond VA
- Department of Human and Molecular Genetics, Virginia Commonwealth University Health Sciences Center, Richmond VA
- Department of Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond VA
| |
Collapse
|
13
|
Guillem VM, Cervantes F, Martínez J, Alvarez-Larrán A, Collado M, Camós M, Sureda A, Maffioli M, Marugán I, Hernández-Boluda JC. XPC genetic polymorphisms correlate with the response to imatinib treatment in patients with chronic phase chronic myeloid leukemia. Am J Hematol 2010; 85:482-6. [PMID: 20575039 DOI: 10.1002/ajh.21726] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic myeloid leukemia (CML) is driven by the BCR-ABL protein, which promotes the proliferation and viability of the leukemic cells. Moreover, BCR-ABL induces genomic instability that can contribute to the emergence of resistant clones to the ABL kinase inhibitors. It is currently unknown whether the inherited individual capability to repair DNA damage could affect the treatment results. To address this, a comprehensive analysis of single nucleotide polymorphisms (SNPs) on the nucleotide excision repair (NER) genes (ERCC2-ERCC8, RPA1-RPA3, LIG1, RAD23B, XPA, XPC) was performed in 92 chronic phase CML patients treated with imatinib upfront. ERCC5 and XPC SNPs correlated with the response to imatinib. Haplotype analysis of XPC showed that the wild-type haplotype (499C-939A) was associated with a better response to imatinib. Moreover, the 5-year failure free survival for CA carriers was significantly better than that of the non-CA carriers (98% vs. 73%; P = 0.02). In the multivariate logistic model with genetic data and clinical covariates, the hemoglobin (Hb) level and the XPC haplotype were independently associated with the treatment response, with patients having a Hb < or =11 g/dl (Odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.5-16.1) or a non-CA XPC haplotype (OR = 4.1, 95% CI = 1.6-10.6) being at higher risk of suboptimal response/treatment failure. Our findings suggest that genetic polymorphisms in the NER pathway may influence the results to imatinib treatment in CML.
Collapse
Affiliation(s)
- Vicent M Guillem
- Hematology and Medical Oncology Department, Hospital Clínico Universitario, Avd. Blasco Ibáñez 17, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Burke BA, Carroll M. BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 2010; 24:1105-12. [PMID: 20445577 DOI: 10.1038/leu.2010.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the BCR-ABL oncogene in the progression of chronic myeloid leukemia (CML) to blast crisis (BC) is unknown. The appearance of chromosomal aberrations in patients with CML BC has led to many attempts to elucidate a mechanism whereby BCR-ABL affects DNA damage and repair. BCR-ABL-expressing cells have been found to accumulate genetic abnormalities, but the mechanism leading to this genomic instability is controversial. In this study, we review the effects of BCR-ABL on DNA repair mechanisms, centrosomes, checkpoint activation and apoptosis. BCR-ABL has diverse effects on these mechanisms, but which of these effects are necessary for the progression of CML to BC is still unresolved.
Collapse
Affiliation(s)
- B A Burke
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|