1
|
Chang O, Cheon S, Semenova N, Azad N, Iyer AK, Yakisich JS. Prolonged Low-Dose Administration of FDA-Approved Drugs for Non-Cancer Conditions: A Review of Potential Targets in Cancer Cells. Int J Mol Sci 2025; 26:2720. [PMID: 40141362 PMCID: PMC11942989 DOI: 10.3390/ijms26062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Though not specifically designed for cancer therapy, several FDA-approved drugs such as metformin, aspirin, and simvastatin have an effect in lowering the incidence of cancer. However, there is a great discrepancy between in vitro concentrations needed to eliminate cancer cells and the plasma concentration normally tolerated within the body. At present, there is no universal explanation for this discrepancy and several mechanisms have been proposed including targeting cancer stem cells (CSCs) or cellular senescence. CSCs are cells with the ability of self-renewal and differentiation known to be resistant to chemotherapy. Senescence is a response to damage and stress, characterized by permanent cell-cycle arrest and apoptotic resistance. Although, for both situations, there are few examples where low concentrations of the FDA-approved drugs were the most effective, there is no satisfactory data to support that either CSCs or cellular senescence are the target of these drugs. In this review, we concisely summarize the most used FDA-approved drugs for non-cancer conditions as well as their potential mechanisms of action in lowering cancer incidence. In addition, we propose that prolonged low-dose administration (PLDA) of specific FDA-approved drugs can be useful for effectively preventing metastasis formation in selected patients.
Collapse
Affiliation(s)
- Olivia Chang
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Sarah Cheon
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Nina Semenova
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Neelam Azad
- The Office of the Vice President for Research, Hampton University, Hampton, VA 23668, USA;
| | - Anand Krishnan Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| |
Collapse
|
2
|
Alhusain AF, Mahmoud MA, Alhamami HN, Ebrahim Alobid S, Ansari MA, Ahmad SF, Nadeem A, Bakheet SA, Harisa GI, Attia SM. Salubrious effects of proanthocyanidins on behavioral phenotypes and DNA repair deficiency in the BTBR mouse model of autism. Saudi Pharm J 2024; 32:102187. [PMID: 39493830 PMCID: PMC11530837 DOI: 10.1016/j.jsps.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Autism is a neurodevelopmental disorder distinguished by impaired social interaction and repetitive behaviors. Global estimates indicate that autism affects approximately 1.6% of children, with the condition progressively becoming more prevalent over time. Despite noteworthy progress in autism research, the condition remains untreatable. This serves as a driving force for scientists to explore new approaches to disease management. Autism is linked to elevated levels of oxidative stress and disturbances in the DNA repair mechanism, which may potentially play a role in its comorbidities development. The current investigation aimed to evaluate the beneficial effect of the naturally occurring flavonoid proanthocyanidins on the behavioral characteristics and repair efficacy of autistic BTBR mice. Moreover, the mechanisms responsible for these effects were clarified. The present findings indicate that repeated administration of proanthocyanidins effectively reduces altered behavior in BTBR animals without altering motor function. Proanthocyanidins decreased oxidative DNA strand breaks and accelerated the rate of DNA repair in autistic animals, as evaluated by the modified comet test. In addition, proanthocyanidins reduced the elevated oxidative stress and recovered the disrupted DNA repair mechanism in the autistic animals by decreasing the expressions of Gadd45a and Parp1 levels and enhancing the expressions of Ogg1, P53, and Xrcc1 genes. This indicates that proanthocyanidins have significant potential as a new therapeutic strategy for alleviating autistic features.
Collapse
Affiliation(s)
- Abdulelah F. Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saad Ebrahim Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Attia SM, Alshamrani AA, Ahmad SF, Albekairi NA, Nadeem A, Attia MSM, Ansari MA, Almutairi F, Bakheet SA. Dulaglutide reduces oxidative DNA damage and hypermethylation in the somatic cells of mice fed a high-energy diet by restoring redox balance, inflammatory responses, and DNA repair gene expressions. J Biochem Mol Toxicol 2024; 38:e23764. [PMID: 38963172 DOI: 10.1002/jbt.23764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Attia SM, Albekairi NA, Alshamrani AA, Ahmad SF, Almutairi F, Attia MSM, Ansari MA, Bakheet SA, Harisa GI, Nadeem A. Dapagliflozin suppresses diabetes-induced oxidative DNA damage and hypermethylation in mouse somatic cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503765. [PMID: 38821673 DOI: 10.1016/j.mrgentox.2024.503765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Melones-Herrero J, Alcalá S, Ruiz-Cañas L, Benítez-Buelga C, Batres-Ramos S, Calés C, Lorenzo O, Perona R, Quiroga AG, Sainz B, Sánchez-Pérez I. Platinum iodido drugs show potential anti-tumor activity, affecting cancer cell metabolism and inducing ROS and senescence in gastrointestinal cancer cells. Commun Biol 2024; 7:353. [PMID: 38519773 PMCID: PMC10959927 DOI: 10.1038/s42003-024-06052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Cisplatin-based chemotherapy has associated clinical disadvantages, such as high toxicity and resistance. Thus, the development of new antitumor metallodrugs able to overcome different clinical barriers is a public healthcare priority. Here, we studied the mechanism of action of the isomers trans and cis-[PtI2(isopropylamine)2] (I5 and I6, respectively) against gastrointestinal cancer cells. We demonstrate that I5 and I6 modulate mitochondrial metabolism, decreasing OXPHOS activity and negatively affecting ATP-linked oxygen consumption rate. Consequently, I5 and I6 generated Reactive Oxygen Species (ROS), provoking oxidative damage and eventually the induction of senescence. Thus, herein we propose a loop with three interconnected processes modulated by these iodido agents: (i) mitochondrial dysfunction and metabolic disruptions; (ii) ROS generation and oxidative damage; and (iii) cellular senescence. Functionally, I5 reduces cancer cell clonogenicity and tumor growth in a pancreatic xenograft model without systemic toxicity, highlighting a potential anticancer complex that warrants additional pre-clinical studies.
Collapse
Affiliation(s)
- Jorge Melones-Herrero
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Sandra Batres-Ramos
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmela Calés
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, Instituto de Investigaciones Sanitarias-Fundación Jimenez Díaz, CIBERDEM, UAM, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain
- Instituto de Salud Carlos III, Madrid, Spain
| | - Adoración G Quiroga
- Department of Inorganic Chemistry, School of Sciences, IAdChem, UAM, Madrid, Spain
| | - Bruno Sainz
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| | - Isabel Sánchez-Pérez
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain.
- Unidad Asociada de Biomedicina UCLM-CSIC, Madrid, Spain.
| |
Collapse
|
6
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
7
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Ashour AE, Albekairi NA, Al-Hamamah MA, Alshamrani AA, Bakheet SA. Saxagliptin, a selective dipeptidyl peptidase-4 inhibitor, alleviates somatic cell aneugenicity and clastogenicity in diabetic mice. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503707. [PMID: 37973297 DOI: 10.1016/j.mrgentox.2023.503707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Diabetes-related complications are becoming increasingly common as the global prevalence of diabetes increases. Diabetes is also linked to a high risk of developing cancer. This raises the question of whether cancer vulnerability is caused by diabetes itself or the use of antidiabetic drugs. Chromosomal instability, a source of genetic modification involving either an altered chromosomal number or structure, is a hallmark of cancer. Saxagliptin has been approved by the FDA for diabetes treatment. However, the detailed in vivo effects of prolonged saxagliptin treatment on chromosomal instability have not yet been reported. In this study, streptozotocin was used to induce diabetes in mice, and both diabetic and non-diabetic mice received saxagliptin for five weeks. Fluorescence in situ hybridization was conducted in combination with a bone marrow micronucleus test for measuring chromosomal instability. Our results indicated that saxagliptin is neither mutagenic nor cytotoxic, under the given treatment regimen. Diabetic mice had a much higher incidence of micronuclei formation, and a centromeric DNA probe was present inside the majority of the induced micronuclei, indicating that most of these were caused by chromosome nondisjunction. Conversely, diabetic mice treated with saxagliptin exhibited a significant decrease in micronuclei induction, which were centromeric-positive and centromeric-negative. Diabetes also causes significant biochemical changes indicative of oxidative stress, such as increased lipid peroxidation and decreased reduced/oxidized glutathione ratio, which was reversed by saxagliptin administration. Overall, saxagliptin, the non-mutagenic antidiabetic drug, maintains chromosomal integrity in diabetes and reduces micronuclei formation by restoring redox imbalance, further indicating its usefulness in diabetic patients.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Tagorti G, Yalçın B, Güneş M, Kurşun AY, Kaya B. Genotoxic and genoprotective effects of phytoestrogens: a systematic review. Drug Chem Toxicol 2023; 46:1242-1254. [PMID: 36606318 DOI: 10.1080/01480545.2022.2146134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
Phytoestrogens are xenoestrogens found in plants with a myriad of health benefits. However, various studies reported the genotoxic effects of these substances. Thus, we reviewed in vitro and in vivo studies published in PubMed, Scopus, and Web of Science to evaluate the genotoxic and the genoprotective potential of phytoestrogens. Only studies written in English and intended to study commercially available phytoestrogens were included. The screening was performed manually. Moreover, the underlying mechanism of action of phytoestrogens was described. Around half of those studies (43%) reported genoprotective results. However, several studies revealed positive results for genotoxicity with specific model organisms and with dose/concentration dependence. The assessment of the selected articles showed substantial differences in the used concentrations and a biphasic response was recorded in some phytoestrogens. As far as we know, this is the first study to assess the genotoxic and genoprotective effects of phytoestrogens systematically.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
9
|
Alshamrani AA, Alwetaid MY, Al-Hamamah MA, Attia MSM, Ahmad SF, Algonaiah MA, Nadeem A, Ansari MA, Bakheet SA, Attia SM. Aflatoxin B1 Exacerbates Genomic Instability and Apoptosis in the BTBR Autism Mouse Model via Dysregulating DNA Repair Pathway. TOXICS 2023; 11:636. [PMID: 37505601 PMCID: PMC10384561 DOI: 10.3390/toxics11070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The pathophysiology of autism is influenced by a combination of environmental and genetic factors. Furthermore, individuals with autism appear to be at a higher risk of developing cancer. However, this is not fully understood. Aflatoxin B1 (AFB1) is a potent food pollutant carcinogen. The effects of AFB1 on genomic instability in autism have not yet been investigated. Hence, we have aimed to investigate whether repeated exposure to AFB1 causes alterations in genomic stability, a hallmark of cancer and apoptosis in the BTBR autism mouse model. The data revealed increased micronuclei generation, oxidative DNA strand breaks, and apoptosis in BTBR animals exposed to AFB1 when compared to unexposed animals. Lipid peroxidation in BTBR mice increased with a reduction in glutathione following AFB1 exposure, demonstrating an exacerbated redox imbalance. Furthermore, the expressions of some of DNA damage/repair- and apoptosis-related genes were also significantly dysregulated. Increases in the redox disturbance and dysregulation in the DNA damage/repair pathway are thus important determinants of susceptibility to AFB1-exacerbated genomic instability and apoptosis in BTBR mice. This investigation shows that AFB1-related genomic instability can accelerate the risk of cancer development. Moreover, approaches that ameliorate the redox balance and DNA damage/repair dysregulation may mitigate AFB1-caused genomic instability.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed A Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Attia SM, Al-Hamamah MA, Alotaibi MR, Alasmari AF, Attia MS, Ahmad SF, Mahmoud MA, Nadeem A, Ansari MA, Bakheet SA. Aneugenic and clastogenic alterations in the DBA/IJ mouse model of rheumatoid arthritis treated with rituximab, an anti-CD20 antibody. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503635. [PMID: 37188433 DOI: 10.1016/j.mrgentox.2023.503635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Rheumatoid arthritis (RA), an autoimmune disorder in which the immune system attacks healthy cells, is associated with elevated risk of lymphoma. Rituximab, a treatment for non-Hodgkin's lymphoma, has been approved as a treatment for RA. We studied the effects of rituximab on chromosomal stability in collagen-induced arthritis DBA/1J animal models. Micronucleus levels were increased in the mouse models, mainly due to chromosome loss, as detected by fluorescence in situ hybridization; rituximab-treated arthritic mice had significantly less micronucleus formation. Serum 8-hydroxydeoxyguanosine, a DNA oxidative stress marker, was increased in the mice models but reduced following rituximab administration.
Collapse
|
11
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Recent Overview of Resveratrol's Beneficial Effects and Its Nano-Delivery Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165154. [PMID: 36014390 PMCID: PMC9414442 DOI: 10.3390/molecules27165154] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Highlights Abstract Natural polyphenols have a wide variety of biological activities and are taken into account as healthcare materials. Resveratrol is one such natural polyphenol, belonging to a group known as stilbenoids (STBs). Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is mainly found in grapes, wine, nuts, and berries. A wide range of biological activities has been demonstrated by resveratrol, including antimicrobial, antioxidant, antiviral, antifungal, and antiaging effects, and many more are still under research. However, as with many other plant-based polyphenol products, resveratrol suffers from low bioavailability once administered in vivo due to its susceptibility to rapid enzyme degradation by the body’s innate immune system before it can exercise its therapeutic influence. Therefore, it is of the utmost importance to ensure the best use of resveratrol by creating a proper resveratrol delivery system. Nanomedicine and nanodelivery systems utilize nanoscale materials as diagnostic tools or to deliver therapeutic agents in a controlled manner to specifically targeted locations. After a brief introduction about polyphenols, this review overviews the physicochemical characteristics of resveratrol, its beneficial effects, and recent advances on novel nanotechnological approaches for its delivery according to the type of nanocarrier utilized. Furthermore, the article summarizes the different potential applications of resveratrol as, for example, a therapeutic and disease-preventing anticancer and antiviral agent.
Collapse
|
13
|
Dobrzyńska MM, Gajowik A. Protection and Mitigation by Resveratrol of DNA Damage Induced in Irradiated Human Lymphocytes In Vitro. Radiat Res 2022; 197:149-156. [PMID: 34724059 DOI: 10.1667/rade-20-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/30/2021] [Indexed: 11/03/2022]
Abstract
The aim of this study was to examine the protective and/or mitigative properties of resveratrol (RSV) administered before or after irradiation of human lymphocytes in vitro. The isolated lymphocytes were incubated for 1 h with resveratrol, at doses of 0.1 (lowest), 0.5 (medium) or 1 (highest) mM/ml: 1 h before; immediately before; immediately after irradiation; and 1 h after irradiation with 0.5, 1 and 2 Gy. The degree of DNA damage was evaluated by Comet Assay. Treatment of human lymphocytes with resveratrol 1 h before or immediately after radiation exposure showed protection from radiation-induced DNA damage. However, 1 Gy irradiation + 1 mM/ml RSV, and 2 Gy irradiation + 0.5 and 1 mM/ml RSV 1 h before irradiation did not provide the same protection. Significant dose-dependent reduction of the level of DNA damage was observed after application of RSV immediately postirradiation or 1 h postirradiation. The reduction in DNA damage was the highest at the 0.1 dose of resveratrol. Our results lead to the conclusion that resveratrol may act both as a radioprotector as well as a radiomitigator. Resveratrol at the lowest (0.5 mM/ml) dose was more effective when combined with 0.5 and 1 Gy doses of radiation.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- National Institute of Public Health NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, 00-791 Warsaw, Poland
| | - Aneta Gajowik
- National Institute of Public Health NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, 00-791 Warsaw, Poland
| |
Collapse
|
14
|
Rahimi A, Asadi F, Rezghi M, Kazemi S, Soorani F, Memariani Z. Natural products against cisplatin-induced male reproductive toxicity: A comprehensive review. J Biochem Mol Toxicol 2021; 36:e22970. [PMID: 34820939 DOI: 10.1002/jbt.22970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin is widely used as one of the most effective anticancer agents in the treatment of some neoplasms. Reproductive toxicity is the most common outcome associated with cisplatin testicular damage. Alternative natural medicines for treating male testicular disorders and infertility have received extensive attention in research. Natural products, medicinal herbs, and their secondary metabolites have been shown as promising agents in the management of testicular damage induced by chemotherapy drugs. This study aimed to review the research related to natural substances that are promising in mitigation of the cisplatin-induced toxicity in the reproductive system. PubMed and Scopus were searched for studies on various natural products for their potential protective property against reproductive toxicity induced by cisplatin from 2000 to 2020. Eligibility was checked based on selection criteria. Fifty-nine articles were included in this review. Mainly in animal studies, several natural agents have positively affected cisplatin-reproductive-toxicity factors, including reactive oxygen species, inflammatory mediators, DNA damage, and activation of the mitochondrial apoptotic pathway. Most of the natural agents were investigated in short-term duration and high doses of cisplatin exposure, considering their antioxidant activity against oxidative stress. Considering antioxidant properties, various natural products might be effective for the management of cisplatin reproductive toxicity. However, long-term recovery of spermatogenesis and management of low-dose-cisplatin toxicity should be considered as well as the bioavailability of these agents before and after treatment with cisplatin without affecting its anticancer activity.
Collapse
Affiliation(s)
- Atena Rahimi
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Asadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soharb Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farangiz Soorani
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of traditional Persian Medicine, School of traditional Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Rezaie FS, Hezavehei M, Sharafi M, Shahverdi A. Improving the post-thaw quality of rooster semen using the extender supplemented with resveratrol. Poult Sci 2021; 100:101290. [PMID: 34311322 PMCID: PMC8325101 DOI: 10.1016/j.psj.2021.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Avian spermatozoa are highly susceptible to reactive oxygen species (ROS) produced during the cryopreservation. The aim of the current study was to investigate the antioxidant effects of resveratrol (RSV) during rooster semen cryopreservation. Changes in expression of AMP-activated protein kinase as a possible mechanism behind the beneficial effects of resveratrol were also evaluated. Semen samples were collected from ten Ross broiler breeders (52-wk) using abdominal massage, then divided into 4 equal aliquots and cryopreserved in Beltsville extender that contained different concentrations (0 µM, 0.01µM, 0.1µM, and 1µM) of RSV. higher percentage (P < 0.05) of total motility and membrane integrity was observed in RSV-0.1 compared to the other frozen groups. Moreover, higher percentage of sperm mitochondrial activity was observed in the RSV-0.01 and RSV-0.1 compared to the frozen control (P < 0.05). The lowest percentage of apoptotic like changes was found in the RSV-0.1 in comparison to the other groups (P < 0.05). RSV-0.01 and RSV-1 groups produced the lowest levels of H2O2 and O2- compared to the other frozen groups, respectively. Malondialdehyde (MDA) concentration, velocity average path (VAP), and linearity (LIN) were not affected by different concentrations of RSV (P > 0.05). We observed a dose-dependent increase in AMP-activated protein kinase expression in groups exposed to RSV. Thus, RSV-1 increased AMP-activated protein kinase phosphorylation but had no positive effects on post thaw sperm parameters. Our findings suggest that RSV-0.1 improve thawed sperm functions, and these effects might be mediated through activation of AMP-activated protein kinase.
Collapse
Affiliation(s)
- Fereshteh Sadat Rezaie
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhosein Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Eremina NV, Zhanataev AK, Durnev AD. Induced Cell Death as a Possible Pathway of Antimutagenic Action. Bull Exp Biol Med 2021; 171:1-14. [PMID: 34050413 DOI: 10.1007/s10517-021-05161-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/24/2022]
Abstract
The existing concepts of antimutagenesis are briefly reviewed. Published reports on antimutagenic and proapoptotic properties of some polyphenols and compounds of other chemical groups obtained in representative in vitro and in vivo experiments on eukaryotic test systems are discussed. The relationships between the antimutagenic and proapoptotic properties of the analyzed compounds (naringin, apigenin, resveratrol, curcumin, N-acetylcysteine, etc.) are considered in favor of the hypothesis on induced cell death as an antimutagenic tool.
Collapse
Affiliation(s)
- N V Eremina
- V. V. Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia
| | - A K Zhanataev
- V. V. Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia
| | - A D Durnev
- V. V. Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
17
|
Medrano-Padial C, Puerto M, Prieto AI, Ayala N, Beaumont P, Rouger C, Krisa S, Pichardo S. In Vivo Genotoxicity Evaluation of a Stilbene Extract Prior to Its Use as a Natural Additive: A Combination of the Micronucleus Test and the Comet Assay. Foods 2021; 10:439. [PMID: 33671296 PMCID: PMC7921927 DOI: 10.3390/foods10020439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Genotoxic data of substances that could be used as food additives are required by the European Food Safety Authority. In this sense, the use of an extract from grapevine shoots containing a stilbene richness of 99% (ST-99), due to its antioxidant and antibacterial activities, has been proposed as an alternative to sulfur dioxide in wine. The aim of this work was to study, for the first time, the in vivo genotoxic effects produced in rats orally exposed to 90, 180, or 360 mg ST-99/kg body weight at 0, 24, and 45 h. The combination of micronucleus assay in bone marrow (OECD 474) and standard (OECD 489) and enzyme-modified comet assay was used to determine the genotoxicity on cells isolated from stomach, liver, and blood of exposed animals. The ST-99 revealed no in vivo genotoxicity. These results were corroborated by analytical studies that confirm the presence of stilbenes and their metabolites in plasma and tissues. Moreover, to complete these findings, a histopathological study was performed under light microscopy in liver and stomach showing only slight modifications in both organs at the highest concentration used. The present work confirms that this extract is not genotoxic presenting a good profile for its potential application as a preservative in the wine industry.
Collapse
Affiliation(s)
- Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González n°2, 41012 Seville, Spain; (C.M.-P.); (A.I.P.); (S.P.)
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González n°2, 41012 Seville, Spain; (C.M.-P.); (A.I.P.); (S.P.)
| | - Ana Isabel Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González n°2, 41012 Seville, Spain; (C.M.-P.); (A.I.P.); (S.P.)
| | - Nahúm Ayala
- Veterinary Faculty, Universidad de Córdoba, Campus de Rabanales, Edificio de Sanidad Animal, 14071 Córdoba, Spain;
| | - Pauline Beaumont
- Unité de Recherche Œnologie, Molécules d’Intérêt Biologique, EA4577, USC 1366 INRAE, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France; (P.B.); (C.R.); (S.K.)
| | - Caroline Rouger
- Unité de Recherche Œnologie, Molécules d’Intérêt Biologique, EA4577, USC 1366 INRAE, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France; (P.B.); (C.R.); (S.K.)
| | - Stéphanie Krisa
- Unité de Recherche Œnologie, Molécules d’Intérêt Biologique, EA4577, USC 1366 INRAE, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France; (P.B.); (C.R.); (S.K.)
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González n°2, 41012 Seville, Spain; (C.M.-P.); (A.I.P.); (S.P.)
| |
Collapse
|
18
|
Nazari A, Mirian M, Aghaei M, Aliomrani M. 4-Hydroxyhalcone effects on cisplatin-induced genotoxicity model. Toxicol Res (Camb) 2021; 10:11-17. [PMID: 33613968 PMCID: PMC7885192 DOI: 10.1093/toxres/tfaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The genotoxicity of cisplatin (CP) as a platinum-based antineoplastic agent due to its oxidative stress induction was well known. In this research, we examined 4-hydroxychalcone (4-HCH) as a natural food that presents flavonoid effects on reactive oxygen species (ROS) production and CP-induced in vivo genotoxicity. METHOD AND MATERIALS Cytotoxicity of CP and 4-HCH was measured on human embryonic kidney 293 cells with MTT assay. Then, intracellular ROS content at IC50 concentration of CP was measured with 2',7'-dichlorofluorescein diacetate (DCFDA) dye. Finally, 4-HCH was administered intraperitoneally at 10 and 40 mg/kg/BW doses as a pre and post-treatment schedule in a mice model of CP genotoxicity (7 mg/kg). Acridine-orange-stained bone marrow cells were quantified for micronucleus presence examination. RESULTS The calculated IC50 of CP and 4-HCH were reported around 19.4 and 133.6 μM, respectively, on HEK293 cells. Also, it was observed that 4-HCH at 0.2, 2 and 10 μM concentrations did not show obvious cytotoxicity. The fluorimetry confirmed that pre-treatment with 10 μM and co-treatment with 2 μM of 4-HCH could attenuate the CP-induced ROS production (P < 0.05 and P < 0.01, respectively). Also, the lowest micronucleated cells were seen in 10 mg/kg 4-HCH-treated group after CP exposure (39 ± 7.9, P < 0.0001). DISCUSSION Our results demonstrated the antigenotoxic action of 4-HCH in CP-treated mice bone marrow cells for the first time in both concentrations of 10 and 40 mg/kg especially in the form of co-treatment. Further studies required clinical application of this compound in a combination of CP to attenuate the normal cells' genotoxicity side effects.
Collapse
Affiliation(s)
- Aref Nazari
- Toxicology M.SC Candidate, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 83714, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| |
Collapse
|
19
|
Salehcheh M, Safari O, Khodayar MJ, Mojiri-Forushani H, Cheki M. The protective effect of herniarin on genotoxicity and apoptosis induced by cisplatin in bone marrow cells of rats. Drug Chem Toxicol 2020; 45:1470-1475. [PMID: 33143479 DOI: 10.1080/01480545.2020.1842883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herniarin is a member of simple coumarins, which are a group of common secondary metabolites in plants. The aim of the present study was to investigate the effects of herniarin on genotoxicity and apoptosis induced by cisplatin in rat bone marrow cells. The experimental rats were treated with four different doses of herniarin (50, 100, 200, and 400 mg/kg.) for seven consecutive days. The cisplatin (5 mg/kg, i.p.) was injected into mice 1 h after the last oral herniarin administration on the seventh day. The protective effects of herniarin were investigated by hematological test, flow cytometry, micronucleus assay, and reactive oxygen species (ROS) level analysis. Herniarin caused a marked reduction in the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs) 24 h after exposure to cisplatin at doses of 200 and 400 mg/kg. Furthermore, herniarin significantly increased the levels of both red and white blood cells in peripheral blood. Treatment of rats with herniarin before cisplatin, significantly decreased the percentage of apoptotic and necrotic cells and the ROS level in bone marrow cells. This study indicated that herniarin can be introduced as a new chemoprotective agent against cisplatin-induced genotoxicity in the future.
Collapse
Affiliation(s)
- Maryam Salehcheh
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omran Safari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohsen Cheki
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, As Sobeai HM, Al-Mazroua HA, Alasmari AF, Bakheet SA. 3-Aminobenzamide alleviates elevated DNA damage and DNA methylation in a BTBR T +Itpr3 tf/J mouse model of autism by enhancing repair gene expression. Pharmacol Biochem Behav 2020; 199:173057. [PMID: 33069747 DOI: 10.1016/j.pbb.2020.173057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Little is known about genetic and epigenetic alterations in autism spectrum disorder. Moreover, the efficiency of DNA repair in autism must be improved to correct these alterations. We examined whether 3-aminobenzamide (3-AB) could reverse these alterations. We conducted experiments to clarify the molecular mechanism underlying these ameliorations. An assessment of genetic and epigenetic alterations by a modified comet assay showed elevated levels of oxidative DNA strand breaks and DNA hypermethylation in BTBR T+Itpr3tf/J (BTBR) mice used as a model of autism. Oxidative DNA strand breaks and DNA methylation were further quantified fluorometrically, and the results showed similar changes. Conversely, 3-AB treated BTBR mice showed a significant reduction in these alterations compared with untreated mice. The expressions of 43 genes involved in DNA repair were altered in BTBR mice. RT2 Profiler PCR Array revealed significantly altered expression of seven genes, which was confirmed by RT-PCR analyses. 3-AB treatment relieved these disturbances and significantly improved Ogg1 and Rad1 up-regulation. Moreover, autism-like behaviors were also mitigated in BTBR animals by 3-AB treatment without alterations in locomotor activities. The simultaneous effects of reduced DNA damage and DNA methylation levels as well as the regulation of repair gene expression indicate the potential of 3-AB as a therapeutic agent to decrease the levels of DNA damage and DNA methylation in autistic patients. The current data may help in the development of therapies that ultimately provide a better quality of life for individuals suffering from autism.
Collapse
Affiliation(s)
- Sabry M Attia
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Attia SM, Al-Khalifa MK, Al-Hamamah MA, Alotaibi MR, Attia MSM, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Vorinostat is genotoxic and epigenotoxic in the mouse bone marrow cells at the human equivalent doses. Toxicology 2020; 441:152507. [PMID: 32512035 DOI: 10.1016/j.tox.2020.152507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Vorinostat was approved as the first histone deacetylase inhibitor for the management of cutaneous T cell lymphoma. However, it's in vivo genetic and epigenetic effects on non-cancerous cells remain poorly understood. As genetic and epigenetic changes play a critical role in the pathogenesis of carcinogenesis, we investigated whether vorinostat induces genetic and epigenetic alterations in mouse bone marrow cells. Bone marrow cells were isolated 24 h following the last oral administration of vorinostat at the doses of 25, 50, or 100 mg/kg/day for five days (approximately equal to the recommended human doses). The cells were then used to assess clastogenicity and aneugenicity by the micronucleus test complemented by fluorescence in situ hybridization assay; DNA strand breaks, oxidative DNA strand breaks, and DNA methylation by the modified comet assay; apoptosis by annexin V/PI staining analysis and the occurrence of the hypodiploid DNA content; and DNA damage/repair gene expression by polymerase chain reaction (PCR) Array. The expression of the mRNA transcripts were also confirmed by real-time PCR and western blot analysis. Vorinostat caused structural chromosomal damage, numerical chromosomal abnormalities, DNA strand breaks, oxidative DNA strand breaks, DNA hypomethylation, and programed cell death in a dose-dependent manner. Furthermore, the expression of numerous genes implicated in DNA damage/repair were altered after vorinostat treatment. Accordingly, the genetic/epigenetic mechanism(s) of action of vorinostat may play a role in its carcinogenicity and support the continued study and development of new compounds with lower toxicity.
Collapse
Affiliation(s)
- Sabry M Attia
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed K Al-Khalifa
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Al-Eitan LN, Alzoubi KH, Al-Smadi LI, Khabour OF. Vitamin E protects against cisplatin-induced genotoxicity in human lymphocytes. Toxicol In Vitro 2019; 62:104672. [PMID: 31629897 DOI: 10.1016/j.tiv.2019.104672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/01/2023]
Abstract
Cisplatin is an anticancer drug that is widely used in treatments of human malignancies such as ovaries,' testes,' and solid tumors of the head and neck. However, the use of cisplatin in the treatments can be associated with DNA damage and high risk to the development of secondary malignancies. Vitamin E is a strong lipophilic antioxidant that has the ability to protect normal cells from chromosomal damage and promote the repair of the damaged DNA. In the current study, the possible protective effect of vitamin E on DNA damage induced by cisplatin was investigated. For that, chromosomal aberrations (CAs) frequency and the number of sister chromatid exchanges (SCEs) were measured in cultured human lymphocytes. Results showed that cisplatin statistically significant increases in the number of cells with CAs (P < 0.05) and in the frequency of SCEs (P < 0.05) as compared to the control group. These increases were significantly lowered by pretreatment of cells with vitamin E. Additionally, cisplatin reduced mitotic index at used concentrations (P < 0.05), which was normalized by vitamin E. Therefore, we conclude that vitamin E can prevent the genotoxicity of cisplatin on cultured human lymphocyte.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, 22110 Irbid, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, 22110 Irbid, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, 22110 Irbid, Jordan.
| | - Lara I Al-Smadi
- Department of Applied Biological Sciences, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, 22110 Irbid, Jordan.
| |
Collapse
|
23
|
Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403065. [DOI: 10.1016/j.mrgentox.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022]
|
24
|
Cheki M, Jafari S, Najafi M, Mahmoudzadeh A. Glucosamine Protects Rat Bone Marrow Cells Against Cisplatin-induced Genotoxicity and Cytotoxicity. Anticancer Agents Med Chem 2019; 19:1695-1702. [PMID: 31272360 DOI: 10.2174/1871520619666190704164126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Glucosamine is a widely prescribed dietary supplement used in the treatment of osteoarthritis. In the present study, the chemoprotectant ability of glucosamine was evaluated against cisplatin-induced genotoxicity and cytotoxicity in rat bone marrow cells. METHODS Glucosamine was orally administrated to rats at doses of 75 and 150 mg/kg body weight for seven consecutive days. On the seventh day, the rats were treated with a single injection of cisplatin (5 mg/kg, i.p.) at 1h after the last oral administration. The cisplatin antagonistic potential of glucosamine was assessed by micronucleus assay, Reactive Oxygen Species (ROS) level analysis, hematological analysis, and flow cytometry. RESULTS Glucosamine administration to cisplatin-treated rats significantly decreased the frequencies of Micronucleated Polychromatic Erythrocytes (MnPCEs) and Micronucleated Normchromatic Erythrocytes (MnNCEs), and also increased PCE/(PCE+NCE) ratio in bone marrow cells. Furthermore, treatment of rats with glucosamine before cisplatin significantly inhibited apoptosis, necrosis and ROS generation in bone marrow cells, and also increased red blood cells count in peripheral blood. CONCLUSION This study shows glucosamine to be a new effective chemoprotector against cisplatin-induced DNA damage and apoptosis in rat bone marrow cells. The results of this study may be helpful in reducing the harmful effects of cisplatin-based chemotherapy in the future.
Collapse
Affiliation(s)
- Mohsen Cheki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Salman Jafari
- Department of Radiology Technology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aziz Mahmoudzadeh
- Department of Biosciences and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Cheki M, Ghasemi MS, Rezaei Rashnoudi A, Erfani Majd N. Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Drug Chem Toxicol 2019; 44:386-393. [PMID: 31072151 DOI: 10.1080/01480545.2019.1609024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metformin is widely used as an oral hypoglycemic drug in the management of type 2 diabetes mellitus. This study evaluated the possible protective effects of metformin against cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Two different doses of metformin (50 and 100 mg/kg b.w.) were administered orally to experimental animals for seven consecutive days. On the seventh day, the rats were exposed to cisplatin (5 mg/kg, i.p.) 1 h after the last oral metformin administration. Rats in the control group were treated orally with 10 ml/kg PBS for 7 consecutive days and a single intraperitoneal injection of saline (0.9%) on the 7th day. The antagonistic effects of metformin against cisplatin were evaluated using micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis, and flow cytometry. Treatment with 50 and 100 mg/kg metformin before cisplatin injection produced a significant reduction in the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs) 24 h after cisplatin treatment with a corresponding increase in the PCE/(PCE + NCE) ratio. Moreover, metformin markedly elevated the levels of both red and white blood cells in peripheral blood and decreased the percentage of apoptotic cells and the ROS level in bone marrow cells of rats treated with cisplatin. The data suggest that metformin has potential chemoprotective properties in rat bone marrow after cisplatin treatment, which support its candidature as a potential chemoprotective agent for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Mohsen Cheki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Ghasemi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Naeem Erfani Majd
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
26
|
Rašić D, Želježić D, Kopjar N, Kifer D, Klarić MŠ, Peraica M. DNA damage in rat kidneys and liver upon subchronic exposure to single and combined ochratoxin A and citrinin. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study aimed to check whether ochratoxin A (OTA) and citrinin (CIT) increase DNA damage in the kidney and liver of male Wistar rats (alkaline comet assay), clarify the oxidative nature of DNA damage (hOGG1-modified comet assay), and verify whether resveratrol (RSV) could ameliorate OTA+CIT-induced genotoxicity. Rats were treated orally with OTA (0.125 and 0.250 mg/kg bodyweight (bw)) and CIT (2 mg/kg bw), OTA+CIT combinations and OTA+CIT+RSV (0.250+2+20 mg/kg bw) for 21 days. Both alkaline and hOGG1-modified comet assay showed that DNA damage was more severe in rat kidneys than in liver following mycotoxin treatment. Alkaline comet assay revealed a higher intensity of DNA damage, particularly as measured by tail intensity in the kidneys. Both tail length and tail intensity were OTA dose-dependent, but in combined OTA+CIT treatment these values were similar to CIT alone and lower than in animals treated with single OTA, possibly due to induction of apoptosis. hOGG1-modified comet showed that OTA+CIT evoked greater oxidative DNA damage than single mycotoxins. RSV did not reduce DNA damage measured by alkaline comet assay, but hOGG1-modified comet showed that RSV ameliorated OTA+CIT genotoxicity in the kidneys. Apart from oxidative stress, other mechanisms of DNA damage are involved in OTA and CIT genotoxicity. In rat kidneys RSV can reduce but not overcome oxidative DNA damage induced by combined OTA and CIT.
Collapse
Affiliation(s)
- D. Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - D. Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - N. Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - D. Kifer
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - M. Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia
| | - M. Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Ganaie MA, Jan BL, Khan TH, Alharthy KM, Sheikh IA. The Protective Effect of Naringenin on Oxaliplatin-Induced Genotoxicity in Mice. Chem Pharm Bull (Tokyo) 2019; 67:433-438. [PMID: 30787216 DOI: 10.1248/cpb.c18-00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxaliplatin is a third generation platinum based anti-cancer drug used against various human malignancies but displays genotoxic properties against normal cells. Naringenin is a naturally occurring bioflavonoid that possesses anti-oxidant properties and has protective effects against DNA damage. The aim of this study is to examine the protective effects of naringenin on oxaliplatin-induced DNA damage in mice. A total of 50, male BALB/c mice were randomly divided equally into five groups. Oxaliplatin toxicity was induced by a single dose (7 mg/kg body weight (b.w.)) injection (intraperitoneally (i.p.)) of oxaliplatin. Naringenin was given orally for ten consecutive days at two doses, 20 mg/kg b.w. (dose I) and 40 mg/kg b.w. (dose II), to group I and group II, respectively. On the tenth day of the experiment, animals in groups III, IV, and V were given a single i.p. injection of oxaliplatin (7 mg/kg b.w.). All the animals were sacrificed 24 h after oxaliplatin treatment. The extent of genotoxicity was assessed by multiple genotoxicity assays (8-hydroxydeoxy-guanosine marker, comet, micronucleus and chromosomal aberration assays, oxidative stress-marker Glutathione evaluation) in order to determine diverse kinds of DNA damage. The results indicated that naringenin administration significantly reduced the DNA damage induced by oxaliplatin possibly due to its strong anti-oxidant properties. The results suggest that naringenin is a potential candidate for future development as a chemoprotective agent against chemotherapy associated complications.
Collapse
Affiliation(s)
- Majid A Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University
| | - Basit L Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University
| | - Tajdar H Khan
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University
| | - Khalid M Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University
| | - Ishfaq A Sheikh
- King Fahd Medical Research Center, King Abdulaziz University
| |
Collapse
|
28
|
Najafi A, Daghigh Kia H, Hamishehkar H, Moghaddam G, Alijani S. Effect of resveratrol-loaded nanostructured lipid carriers supplementation in cryopreservation medium on post-thawed sperm quality and fertility of roosters. Anim Reprod Sci 2019; 201:32-40. [DOI: 10.1016/j.anireprosci.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023]
|
29
|
Akbel E, Arslan-Acaroz D, Demirel HH, Kucukkurt I, Ince S. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicol Res (Camb) 2018; 7:503-512. [PMID: 30090600 PMCID: PMC6062150 DOI: 10.1039/c8tx00030a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 01/18/2023] Open
Abstract
The present study was planned to evaluate the protective role of resveratrol (Res) against subchronic malathion exposure in rats over four weeks. In total, 48 Wistar rats were used and divided equally into six groups. The groups were designed as the control group (received only a rodent diet and tap water), the corn oil group (0.5 ml corn oil by the oral route), and the malathion group (100 mg kg-1 day-1 by the oral route). Other three groups received malathion (100 mg kg-1 day-1) plus Res (5, 10, and 20 mg kg-1 day-1, respectively) by the oral route. Malathion increased malondialdehyde and 8-OHdG levels, whereas it decreased glutathione levels. Also, acetylcholinesterase, superoxide dismutase, and catalase activities were found to be low in the blood, liver, kidney, heart, and brain tissues. Biochemical parameters were not notably changed in all groups. In contrast, Res treatment inverted malathion-induced oxidative stress, lipid peroxidation, and activity of enzymes. Additionally, malathion-induced histopathological changes in the liver, kidney, heart, and brain were ameliorated by Res treatment. These results demonstrate that malathion increases oxidative stress and decreases the antioxidant status while Res has a protective function against malathion toxicity in rats.
Collapse
Affiliation(s)
- Erten Akbel
- Usak University , Usak Health Training School , 64100 Usak , Turkey
| | - Damla Arslan-Acaroz
- Afyon Kocatepe University , Faculty of Veterinary Medicine , Department of Biochemistry , 03200 Afyonkarahisar , Turkey . ; ; Tel: +90272281312 - 16130
| | | | - Ismail Kucukkurt
- Afyon Kocatepe University , Faculty of Veterinary Medicine , Department of Biochemistry , 03200 Afyonkarahisar , Turkey . ; ; Tel: +90272281312 - 16130
| | - Sinan Ince
- Afyon Kocatepe University , Faculty of Veterinary Medicine , Department of Pharmacology and Toxicology , 03200 Afyonkarahisar , Turkey
| |
Collapse
|
30
|
Truong VL, Jun M, Jeong WS. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors 2018; 44:36-49. [PMID: 29193412 DOI: 10.1002/biof.1399] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018.
Collapse
Affiliation(s)
- Van-Long Truong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
| | - Woo-Sik Jeong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea
| |
Collapse
|
31
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
32
|
Attia SM, Alshahrani AY, Al-Hamamah MA, Attia MM, Saquib Q, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Dexrazoxane Averts Idarubicin-Evoked Genomic Damage by Regulating Gene Expression Profiling Associated With the DNA Damage-Signaling Pathway in BALB/c Mice. Toxicol Sci 2017; 160:161-172. [DOI: 10.1093/toxsci/kfx161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5′ AMP-activated protein kinase activation. Cell Tissue Bank 2017; 19:87-95. [DOI: 10.1007/s10561-017-9642-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/15/2017] [Indexed: 12/30/2022]
|
34
|
Dueñas-García IE, Heres-Pulido ME, Arellano-Llamas MR, De la Cruz-Núñez J, Cisneros-Carrillo V, Palacios-López CS, Acosta-Anaya L, Santos-Cruz LF, Castañeda-Partida L, Durán-Díaz A. Lycopene, resveratrol, vitamin C and FeSO 4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications. Food Chem Toxicol 2017; 103:233-245. [PMID: 28202360 DOI: 10.1016/j.fct.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022]
Abstract
4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.
Collapse
Affiliation(s)
- I E Dueñas-García
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| | - M R Arellano-Llamas
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J De la Cruz-Núñez
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - V Cisneros-Carrillo
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - C S Palacios-López
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Acosta-Anaya
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
35
|
Shabani Nashtaei M, Amidi F, Sedighi Gilani MA, Aleyasin A, Bakhshalizadeh S, Naji M, Nekoonam S. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5’ AMP-activated protein kinase activation. Andrology 2016; 5:313-326. [DOI: 10.1111/andr.12306] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
Affiliation(s)
- M. Shabani Nashtaei
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - F. Amidi
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Infertility; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - M. A. Sedighi Gilani
- Department of Urology; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - A. Aleyasin
- Department of Infertility; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Sh. Bakhshalizadeh
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - M. Naji
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - S. Nekoonam
- Department of Anatomy; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
36
|
Aydın S, Şahin TT, Bacanlı M, Taner G, Başaran AA, Aydın M, Başaran N. Resveratrol Protects Sepsis-Induced Oxidative DNA Damage in Liver and Kidney of Rats. Balkan Med J 2016; 33:594-601. [PMID: 27994910 PMCID: PMC5156458 DOI: 10.5152/balkanmedj.2016.15516] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/31/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The increases of free radicals have been proposed to be involved in the pathogenesis of sepsis, which leads to multiple-organ dysfunction syndromes. The uses of antioxidants as a complementary tool in the medical care of oxidative stress-related diseases have attracted attention of researchers. Resveratrol (RV) has suggested being antioxidant, anti-proliferative, and anti-inflammatory effects in various experimental models and clinical settings. AIMS This study was undertaken to evaluate the protective effects of RV on oxidative DNA damage induced by sepsis in the liver and kidney tissues of Wistar albino rats. STUDY DESIGN Animal experimentation. METHODS Four experimental groups consisting of eight animals for each was created using a total of thirty-two male Wistar albino rats. Sham group was given 0.5 mL of saline intra-peritoneal (ip) only following laparatomy. Sepsis group was given 0.5 mL saline ip only following the induction of sepsis. RV-treated group was given a dose of 100 mg/kg ip RV in 0.5 mL saline following laparatomy. RV-treated sepsis group was given 100 mg/kg ip RV in 0.5 mL saline following the induction of sepsis. A model of sepsis was created by cecal ligation and puncture technique. In the liver and kidney tissues, oxidative stress parameters (malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPX)) and a proinflammatory cytokine (tumor necrosis factor alpha (TNF-alpha)), were evaluated spectrophotometrically and DNA damage was determined by the alkaline single cell gel electrophoresis (comet assay) technique using formamidopyrimidine DNA glycosylase protein. RESULTS In the RV-treated sepsis group, the levels of MDA and TNF-alpha were lower and GSH levels, SOD and GPX activities were higher than in the septic rats (p<0.05). RV treatment significantly reduced the sepsis-induced oxidative DNA damage in the liver and kidney cells (p<0.05). CONCLUSION It is suggested that RV treatment might reduce the sepsis-induced oxidative DNA damages in sepsis-related diseases; however, there is a need for more studies to clear up the protective mechanisms of RV against sepsis.
Collapse
Affiliation(s)
- Sevtap Aydın
- Department of Pharmaceutical Toxicology, Hacettepe University School of Pharmacy, Ankara, Turkey
| | - Tevfik Tolga Şahin
- Department of Surgery, Kastamonu University School of Medicine, Kastamonu, Turkey
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, Hacettepe University School of Pharmacy, Ankara, Turkey
| | - Gökçe Taner
- Department of Bioengineering, Bursa Technical University School of Natural Sciences, Architecture and Engineering, Bursa, Turkey
| | - Arif Ahmet Başaran
- Department of Pharmacognosy, Hacettepe University School of Pharmacy, Ankara, Turkey
| | - Mehtap Aydın
- Department of Infectious Diseases and Clinical Microbiology, Başkent University School of Medicine, İstanbul Hospital, İstanbul, Turkey
| | - Nurşen Başaran
- Department of Pharmaceutical Toxicology, Hacettepe University School of Pharmacy, Ankara, Turkey
| |
Collapse
|
37
|
Utility of Dexrazoxane for the Attenuation of Epirubicin-Induced Genetic Alterations in Mouse Germ Cells. PLoS One 2016; 11:e0163703. [PMID: 27690233 PMCID: PMC5045162 DOI: 10.1371/journal.pone.0163703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Dexrazoxane has been approved to treat anthracycline-induced cardiomyopathy and extravasation. However, the effect of dexrazoxane on epirubicin-induced genetic alterations in germ cells has not yet been reported. Thus, the aim of this study was to determine whether dexrazoxane modulates epirubicin-induced genetic damage in the germ cells of male mice. Our results show that dexrazoxane was not genotoxic at the tested doses. Furthermore, it protected mouse germ cells against epirubicin-induced genetic alterations as detected by the reduction in disomic and diploid sperm, spermatogonial chromosomal aberrations, and abnormal sperm heads. The attenuating effect of dexrazoxane was greater at higher dose, indicating a dose-dependent effect. Moreover, sperm motility and count were ameliorated by dexrazoxane pretreatment. Epirubicin induced marked biochemical changes characteristic of oxidative DNA damage including elevated 8-hydroxy-2'-deoxyguanosine levels and reduction in reduced glutathione. Pretreatment of mice with dexrazoxane before epirubicin challenge restored these altered endpoints. We conclude that dexrazoxane may efficiently mitigate the epirubicin insult in male germ cells, and prevent the enhanced risk of abnormal reproductive outcomes and associated health risks. Thus, pretreating patients with dexrazoxane prior to epirubicin may efficiently preserve not only sperm quality but also prevent the transmission of genetic damage to future generations.
Collapse
|
38
|
Trombini C, Garcia da Fonseca T, Morais M, Rocha TL, Blasco J, Bebianno MJ. Toxic effects of cisplatin cytostatic drug in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2016; 119:12-21. [PMID: 27183200 DOI: 10.1016/j.marenvres.2016.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Antineoplastic drugs used in chemotherapy were detected in aquatic environment: despite the very low concentrations (ng L(-1) to ug L(-1)), due to their potent mechanism of action they could have adverse effects on non-target aquatic organisms particularly under chronic exposure. Cisplatin (CDDP) is one of the most effective anticancer drug currently in use but information on its ecotoxicological effects is very limited. In this study, Mytilus galloprovincialis was used to investigate the toxic effects related to CDDP exposure. Mussels were exposed to cisplatin (100 ng L(-1)) for 14 days: antioxidant (superoxide dismutase, catalase, total and selenium-dependent glutathione peroxidase) and phase II (glutathione-S-transferase) enzymes activities, oxidative damage (lipid peroxidation), genotoxicity (DNA damage) and neurotoxicity (acetylcholinesterase) was evaluated. Results indicate that CDDP at tested concentration induce changes in the antioxidant capacity, oxidative stress in target organs (digestive gland and gills) as well as DNA damage in mussel hemocytes and neurotoxicity representing a risk for non-target organisms.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Taina Garcia da Fonseca
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Matilde Morais
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Thiago Lopes Rocha
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Maria João Bebianno
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| |
Collapse
|
39
|
Basso E, Regazzo G, Fiore M, Palma V, Traversi G, Testa A, Degrassi F, Cozzi R. Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:40-6. [PMID: 27476334 DOI: 10.1016/j.mrgentox.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022]
Abstract
Resveratrol (3,4',5-trihydroxystilbene; RSV) acts on cancer cells in several ways, inducing cell cycle delay and apoptotic death, and enhancing ionizing radiation (IR)-mediated responses. However, fewer studies have examined RSV effects on normal cells. We have treated human lymphocytes in vitro with RSV, either alone or combined with IR, to evaluate its potential use as a radioprotector. We measured the effects of RSV on induction of DNA damage, repair kinetics, and modulation of histone deacetylase activity.
Collapse
Affiliation(s)
- Emiliano Basso
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy
| | - Giulia Regazzo
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy
| | - Mario Fiore
- Istituto di Biologia Molecolare e Patologia, CNR, Roma, Italy
| | - Valentina Palma
- Sezione di Tossicologia e Scienze Biomediche, ENEA, Casaccia Roma, Italy
| | | | - Antonella Testa
- Sezione di Tossicologia e Scienze Biomediche, ENEA, Casaccia Roma, Italy
| | | | - Renata Cozzi
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy.
| |
Collapse
|
40
|
Bakheet SA, Alhuraishi AM, Al-Harbi NO, Al-Hosaini KA, Al-Sharary SD, Attia MM, Alhoshani AR, Al-Shabanah OA, Al-Harbi MM, Imam F, Ahmad SF, Attia SM. Alleviation of Aflatoxin B1-Induced Genomic Damage by ProanthocyanidinsviaModulation of DNA Repair. J Biochem Mol Toxicol 2016; 30:559-566. [DOI: 10.1002/jbt.21823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Saleh A. Bakheet
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Ahmed M. Alhuraishi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Khaled A. Al-Hosaini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Shakir D. Al-Sharary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Mohammed M. Attia
- Department of Plant Protection, Faculty of Agriculture; Damanhour University; Damanhour Egypt
| | - Ali R. Alhoshani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Othman A. Al-Shabanah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Mohammed M. Al-Harbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; King Saud University; PO Box 11451 Riyadh Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| |
Collapse
|
41
|
Attia SM, Ahmad SF, Bakheet SA. Impact of dexrazoxane on doxorubicin-induced aneuploidy in somatic and germinal cells of male mice. Cancer Chemother Pharmacol 2015; 77:27-33. [PMID: 26645402 DOI: 10.1007/s00280-015-2925-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Despite dexrazoxane's increasing use in mitigating doxorubicin-induced cardiotoxicity, no data are available in the literature on the potential aneugenicity of drug combination. Therefore, detailed evaluation of aneugenic potential of this combination is essential to provide more insights into aneuploidy induction that may play a role in the development of secondary malignancies and reproductive toxicity after treatment with doxorubicin. Thus, our aim was to determine whether dexrazoxane has influence on the aneuploidy induced by doxorubicin in germinal and somatic cells of male mice. METHODS Sperm BrdU-incorporation assay, sperm FISH assay and the bone marrow micronucleus test complemented by FISH assay were used to determine aneuoploidy. Moreover, the formation of 8-OHdG, one of the oxidative DNA damage by-products, has been evaluated. RESULTS Dexrazoxane was not aneugenic at the doses tested. Pre-treatment of mice with dexrazoxane significantly reduced doxorubicin-induced aneuploidy in a dose-dependent manner. Doxorubicin induced marked biochemical alterations characteristic of oxidative DNA damage, and prior administration of dexrazoxane before doxorubicin challenge ameliorated this biochemical marker. CONCLUSION This study provides evidence that dexrazoxane has a protective role in the abatement of doxorubicin-induced aneuploidy. This activity resides, at least in part, in its radical scavenger activity. Thus, dexrazoxane can avert secondary malignancies and abnormal reproductive outcomes in cured cancer patients exposed to doxorubicin.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Attia SM, Ahmad SF, Saquib Q, Harisa GI, Al-Khedhairy AA, Bakheet SA. Dexrazoxane mitigates epirubicin-induced genotoxicity in mice bone marrow cells. Mutagenesis 2015; 31:137-45. [DOI: 10.1093/mutage/gev065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Abraham SK, Khandelwal N, Hintzsche H, Stopper H. Antigenotoxic effects of resveratrol: assessment of in vitro and in vivo response. Mutagenesis 2015; 31:27-33. [PMID: 26152226 DOI: 10.1093/mutage/gev048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experiments were performed to evaluate the in vitro and in vivo dose response for antigenotoxic effects of resveratrol (RES). For the in vitro study, HL-60 cells were co-treated with the test genotoxin and three concentrations of RES. Thereafter, genotoxic effects were assessed in the cytokinesis-block micronucleus test. Results of the in vitro experiments using genotoxins nitroquinoline-1-oxide (NQO) and mitomycin C (MMC) showed maximum inhibition of genotoxicity with the lowest test concentration of RES. The mouse bone marrow micronucleus assay was used for evaluating the in vivo antigenotoxic effects of RES against genotoxins diepoxybutane (DEB), MMC, methyl methanesulfonate and procarbazine (PCB). The experimental animals received RES pre-treatment by gavage 30min, 24 and 48h before injecting the genotoxin intraperitoneally. The in vivo studies demonstrated efficacy of the lowest test dose of RES for exerting maximum protection against chromosomal damage induced by all four genotoxins. The antigenotoxic effect observed with 6.25mg/kg RES was significantly higher than that of 100mg/kg RES against PCB and DEB. In conclusion, the findings from the present study indicate that lower test concentrations/doses of RES are more effective in exerting antigenotoxic effects.
Collapse
Affiliation(s)
| | | | - Henning Hintzsche
- Institut für Pharmakologie und Toxikologie, Universität Würzburg 97078, Würzburg, Germany
| | - Helga Stopper
- Institut für Pharmakologie und Toxikologie, Universität Würzburg 97078, Würzburg, Germany
| |
Collapse
|
44
|
Basu A, Ghosh P, Bhattacharjee A, Patra AR, Bhattacharya S. Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium compound vanadium(III)-l-cysteine. Mutagenesis 2015; 30:509-17. [PMID: 25778689 DOI: 10.1093/mutage/gev011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cisplatin (CDDP) is one of the first-line anticancer drugs indicated for use against various form of human malignancies; but, the therapeutic outcome of CDDP chemotherapy is limited due to the development of myelosuppression and genotoxicity which may lead to secondary cancer. Induction of oxidative stress in normal host cells is thought to be responsible for these adverse effects. Therefore, in search of a potential chemoprotectant, an oraganovanadium compound, viz., vanadium(III)-l-cysteine (VC-III) was evaluated against CDDP-induced clastogenicity and cytotoxicity in bone marrow cells of Swiss albino mice. CDDP was administered intraperitoneally (5mg/kg body weight [b.w.]) and VC-III was given by oral gavage (1mg/kg b.w.) in concomitant and pretreatment schedule. The results showed that VC-III administration significantly (P < 0.001) enhanced cell proliferation and inhibited apoptosis in the bone marrow niche indicating recovery of CDDP-induced myelosuppression. VC-III also significantly (P < 0.001) decreased the percentage of chromosomal aberrations, the frequency of micronuclei formation and the extent of DNA damage. The observed antigenotoxic and cytoprotective effect of VC-III was attributed to its attenuation of free radicals status and restoration of oxidised and reduced glutathione levels. These results suggest that VC-III is a potential candidate for future development as a chemoprotective agent against chemotherapy-associated primary and secondary complications.
Collapse
Affiliation(s)
- Abhishek Basu
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Prosenjit Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Arin Bhattacharjee
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Arup Ranjan Patra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Sudin Bhattacharya
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, West Bengal, India
| |
Collapse
|
45
|
Zhang QH, Gong C, Yang H, Wei H, Zhou WB, Qi C, Wang CH. Pharmacokinetics of cisplatin in the absence or presence of zengmian yiliu granules (a traditional Chinese medicine compound) in rats determined via ICP-MS: an investigation on drug-herb interactions. PHARMACEUTICAL BIOLOGY 2015; 53:159-166. [PMID: 25339463 DOI: 10.3109/13880209.2014.912241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Cisplatin is a highly effective chemotherapeutic agent against many tumors; however, it has potent adverse effects. Zengmian Yiliu granule (ZMYL), a traditional Chinese medicine (TCM) compound, has been clinically used against platinum (Pt)-induced toxicity and to enhance the efficacy of cisplatin. OBJECTIVE The study was conducted to investigate the likelihood of potential pharmacokinetics drug-herbs interaction (DHI) between cisplatin and ZMYL. MATERIALS AND METHODS An improved ICP-MS method combined with ultrafiltration and microwave-assisted digestion was performed to determine the total and free Pt concentrations in rat plasma after intraperitoneal administration of cisplatin (9 mg/kg) or a combined administration with ZMYL (1 g/kg) by gavage. RESULTS ZMYL produced a potential DHI on the pharmacokinetic parameters of cisplatin, calculated from the total Pt concentration. The clearance rate decreased from 110.52 to 66.12 mLh(-1 )kg(-1), the mean residence time extended from 63.1 to 164.54 h, the area under the plasma concentration-time curve increased from 86.58 to 152.93 µg h mL(-1), the elimination half-life extended from 48.38 to 126.4 h, and the elimination rate constant decreased from 0.017 to 0.006 h, in the ZMYL combination group (p < 0.05). In terms of free Pt concentration, the apparent volume of distribution and clearance rate was statistically different (p < 0.05). The Pt plasma protein binding ratios in the early dose stages were significantly boosted by the co-administration of ZMYL (p < 0.01). DISCUSSION AND CONCLUSION ZMYL is a potential complementary and alternative medicine for cisplatin chemotherapy. The therapeutic benefits of ZMYL-cisplatin chemotherapy derived from pharmacokinetic interaction needs further investigation.
Collapse
Affiliation(s)
- Qin-Hua Zhang
- Department of Gynaecology, Shanghai Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine , Shanghai , PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Gu S, Chen C, Jiang X, Zhang Z. Resveratrol synergistically triggers apoptotic cell death with arsenic trioxide via oxidative stress in human lung adenocarcinoma A549 cells. Biol Trace Elem Res 2015; 163:112-23. [PMID: 25431299 DOI: 10.1007/s12011-014-0186-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Arsenic trioxide (As2O3) is a potent anticancer drug for the treatment of acute promyelocytic leukemia. However, the clinical applications of the agent to treat solid tumors are largely compromised by the drug resistance. Our previous study demonstrated that resveratrol, a plant-derived natural product, could potentiate the toxicity of arsenite in lung adenocarcinoma A549 cells at relatively high concentration, indicating that combination of resveratrol and As2O3 may be a helpful strategy to solve the drug resistance of As2O3 in tumor cells. To test this possibility, in the present study, we determined the combined effects of resveratrol and As2O3 in cultured A549 cells. Our results showed that co-treatment of resveratrol with As2O3 resulted in a synergistic augmentation of cytotoxicity and apoptosis in cells at the tested concentration. To further reveal the detailed mechanism of this synergistic effect on cytotoxicity and apoptosis, apoptosis-related proteins, DNA and chromosomal damage, and the level of oxidative stress were also evaluated. Our data revealed that co-treatment with resveratrol and As2O3 caused more genotoxicity and serious oxidative stress in A549 cells than that of single agent treatment. Moreover, resveratrol and As2O3 could also corporately enhance the release of cytochrome c and the expressions of death receptor Fas and FasL. Together, our results suggest that resveratrol and As2O3 synergistically increase the apoptotic cell death in A549 cells through induction of oxidative stress, indicating that the combination of resveratrol with As2O3 may be a promising strategy to increase the clinical efficacy of As2O3 in the treatment of lung tumor.
Collapse
Affiliation(s)
- Shiyan Gu
- Department of Environmental Health, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Pandir D, Kara O, Kara M. Protective effect of bilberry (Vaccinium myrtillus L.) on cisplatin induced ovarian damage in rat. Cytotechnology 2014; 66:677-85. [PMID: 23959170 PMCID: PMC4082771 DOI: 10.1007/s10616-013-9621-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 07/17/2013] [Indexed: 01/24/2023] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic agents but injury may occur at higher doses. The aim of this study was to investigate the effect of bilberry on cisplatin induced toxic effects in rat ovary. Twenty-one female Wistar-Albino rats were utilized to form three groups: In group 1 (control group), each rat received intraperitoneal injection of 1 mL of 0.9 % NaCl saline solution during 10-days. In group 2 (cisplatin group), a single dose of 7.5 mg/kg b.w. cisplatin was given. In group 3 (cisplatin + bilberry group), a single dose of 7.5 mg/kg cisplatin and bilberry at 200 mg/kg b.w. were given for 10 days. Ovaries were surgically removed in all groups and prepared for biochemical and light microscopic investigations at the examination times. Malondialdehyde (MDA) levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) of tissue samples were measured. Histopathological damages in cisplatin administrated rats were seen such as severe edema, vascular congestion, hemorrhage and follicular degeneration in the ovary tissue. Moderate pathological alterations were observed in rats treated with bilberry plus cisplatin. Cisplatin administration significantly increased MDA production and decreased SOD, CAT, GPx and GST activities in the ovarian tissue when compared to the control group (p < 0.05). Cisplatin + bilberry administration increased antioxidant enzymes activities and reduced MDA levels. Bilberry administration seems to reduce the cisplatin induced ovarian toxicity thus it alleviates free radical damage. But it dose not protect completely rat ovary tissues.
Collapse
Affiliation(s)
- Dilek Pandir
- Department of Biology, Faculty of Arts and Science, Bozok University, 66100, Divanliyolu, Yozgat, Turkey,
| | | | | |
Collapse
|
48
|
Effect of resveratrol on chromosomal aberrations induced by doxorubicin in rat bone marrow cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 766:1-4. [DOI: 10.1016/j.mrgentox.2014.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022]
|
49
|
Serpeloni JM, Almeida MR, Mercadante AZ, Bianchi MLP, Antunes LMG. Effects of lutein and chlorophyll b on GSH depletion and DNA damage induced by cisplatin in vivo. Hum Exp Toxicol 2014; 32:828-36. [PMID: 23821640 DOI: 10.1177/0960327112468911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have proposed the use of low concentrations of phytochemicals and combinations of phytochemicals in chemoprevention to reduce cytotoxicity and simulate normal ingestion through diet. The purpose of the present study was to evaluate whether the DNA damage, chromosome instability, and oxidative stress induced by cisplatin (cDDP) are modulated by a combination of the natural pigments lutein (LT) and chlorophyll b (CLb). The protective effects observed for synergism between phytochemicals have not been completely investigated. The comet assay and micronucleus test were performed and the catalase activities and glutathione (GSH) concentrations were measured in the peripheral blood, bone marrow, liver, and kidney cells of mice. The comet assay and micronucleus test results revealed that the pigments LT and CLb were not genotoxic or mutagenic and that the pigments presented antigenotoxic and antimutagenic effects in the different cell types evaluated. This protective effect is likely related to antioxidant properties in peripheral blood cells through the prevention of cDDP-induced GSH depletion. Altogether our results show that the combination of LT and CLb, which are both usually present in the same foods, such as leafy green vegetables, can be used safely.
Collapse
Affiliation(s)
- J M Serpeloni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo. Avenida do Café, s/n, Ribeirão Preto, São Paulo, Brasil.
| | | | | | | | | |
Collapse
|
50
|
Attia S, Ahmad S, Abd-Ellah M, Hamada F, Bakheet S. Germ cell mutagenicity of topoisomerase I inhibitor topotecan detected in the male mouse-dominant lethal study. Food Chem Toxicol 2013; 62:470-4. [DOI: 10.1016/j.fct.2013.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|