1
|
Kyoya T, Iwamoto R, Shimanura Y, Terada M, Masuda S. The effect of different methods and image analyzers on the results of the in vivo comet assay. Genes Environ 2018; 40:4. [PMID: 29445426 PMCID: PMC5801904 DOI: 10.1186/s41021-017-0092-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/21/2017] [Indexed: 11/27/2022] Open
Abstract
Introduction The in vivo comet assay is a widely used genotoxicity test that can detect DNA damage in a range of organs. It is included in the Organisation for Economic Co-operation and Development Guidelines for the Testing of Chemicals. However, various protocols are still used for this assay, and several different image analyzers are used routinely to evaluate the results. Here, we verified a protocol that largely contributes to the equivalence of results, and we assessed the effect on the results when slides made from the same sample were analyzed using two different image analyzers (Comet Assay IV vs Comet Analyzer). Findings Standardizing the agarose concentrations and DNA unwinding and electrophoresis times had a large impact on the equivalence of the results between the different methods used for the in vivo comet assay. In addition, there was some variation in the sensitivity of the two different image analyzers tested; however this variation was considered to be minor and became negligible when the test conditions were standardized between the two different methods. Conclusion By standardizing the concentrations of low melting agarose and DNA unwinding and electrophoresis times between both methods used in the current study, the sensitivity to detect the genotoxicity of a positive control substance in the in vivo comet assay became generally comparable, independently of the image analyzer used. However, there may still be the possibility that other conditions, except for the three described here, could affect the reproducibility of the in vivo comet assay.
Collapse
Affiliation(s)
- Takahiro Kyoya
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd, 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031 Japan
| | - Rika Iwamoto
- 2School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Yuko Shimanura
- 2School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Megumi Terada
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd, 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031 Japan
| | - Shuichi Masuda
- 2School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| |
Collapse
|
2
|
2-Nitroanisole-induced oxidative DNA damage in Salmonella typhimurium and in rat urinary bladder cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 816-817:18-23. [PMID: 28464992 DOI: 10.1016/j.mrgentox.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022]
Abstract
2-Nitroanisole (2-NA) is used in the manufacturing of azo dyes and causes cancer, mainly in the urinary bladder. Previous in vivo genotoxic data seems to be insufficient to explain the mechanism through which 2-NA induces carcinogenesis, and several bladder carcinogens were reported to induce oxidative DNA damage. Thus, we examined the potential induction of oxidative DNA damage by 2-NA using bacterial strain YG3008, a mutMST-deficient derivative of strain TA100. Consequently, strain YG3008, when compared with strain TA100, was found to be more sensitive to 2-NA, indicating oxidative DNA damage in bacterial cells. For further investigation, we performed the comet assay using the urinary bladder and liver of rats, with and without human 8-oxoguanine DNA-glycosylase 1 (hOGG1), to confirm the potential of 2-NA for inducing oxidative DNA damage. Simultaneously, we conducted a micronucleus test using bone marrow from rats to assess the genotoxicity of 2-NA in vivo. 2-NA was administered orally to male Fischer 344 rats for 3 consecutive days. The rats were divided into 6 treatment groups: 3 groups treated with 2-NA at doses of 125, 250, and 500mg/kg; a group treated with the combination of 2-NA and glutathione-SH (GSH); a negative control group; and a positive control group. The comet assay without hOGG1 detected no DNA damage in the liver or urinary bladder, and the micronucleus test did not show clastogenic effects in bone marrow cells. However, the comet assay with hOGG1 was positive in the urinary bladder samples, indicating the induction of oxidative DNA damage in the urinary bladder for the group treated with 2-NA at 500mg/kg. Moreover, an antioxidant of GSH significantly reduced oxidative DNA damage caused by 2-NA. These results indicate that oxidative DNA damage is a possible mode of action for carcinogenesis in the urinary bladder of rats treated with 2-NA.
Collapse
|
3
|
Suzuki I, Cho YM, Hirata T, Toyoda T, Akagi JI, Nakamura Y, Sasaki A, Nakamura T, Okamoto S, Shirota K, Suetome N, Nishikawa A, Ogawa K. Toxic effects of 4-methylthio-3-butenyl isothiocyanate (Raphasatin) in the rat urinary bladder without genotoxicity. J Appl Toxicol 2016; 37:485-494. [DOI: 10.1002/jat.3384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Isamu Suzuki
- Division of Pathology; National Institute of Health Sciences; Tokyo 158-8501 Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences; Gifu University; Gifu 501-1193 Japan
| | - Young-Man Cho
- Division of Pathology; National Institute of Health Sciences; Tokyo 158-8501 Japan
| | - Tadashi Hirata
- Division of Pathology; National Institute of Health Sciences; Tokyo 158-8501 Japan
- Department of Pharmacology, School of Pharmacy; Showa University; Tokyo 142-8555 Japan
| | - Takeshi Toyoda
- Division of Pathology; National Institute of Health Sciences; Tokyo 158-8501 Japan
| | - Jun-ichi Akagi
- Division of Pathology; National Institute of Health Sciences; Tokyo 158-8501 Japan
| | - Yasushi Nakamura
- Faculty of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto 606-8522 Japan
- Kyoto Prefectural Agriculture; Forestry & Fisheries Technology Center; Kyoto 621-0806 Japan
| | - Azusa Sasaki
- Faculty of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto 606-8522 Japan
| | - Takako Nakamura
- Faculty of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto 606-8522 Japan
| | - Shigehisa Okamoto
- Department of Food Science and Biotechnology; Kagoshima University; Kagoshima Kagoshima 890-0065 Japan
| | - Koji Shirota
- Kyoto Prefectural Agriculture; Forestry & Fisheries Technology Center; Kyoto 621-0806 Japan
| | - Noboru Suetome
- Kyoto Prefectural Agriculture; Forestry & Fisheries Technology Center; Kyoto 621-0806 Japan
| | - Akiyoshi Nishikawa
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences; Gifu University; Gifu 501-1193 Japan
- Biological Safety Research Center; National Institute of Health Sciences; Tokyo 158-8501 Japan
| | - Kumiko Ogawa
- Division of Pathology; National Institute of Health Sciences; Tokyo 158-8501 Japan
| |
Collapse
|
4
|
Kitamoto S, Matsuyama R, Uematsu Y, Ogata K, Ota M, Yamada T, Miyata K, Funabashi H, Saito K. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [PMID: 26212303 DOI: 10.1016/j.mrgentox.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The in vivo rodent alkaline comet assay (comet assay) is a promising technique to evaluate DNA damage in vivo. However, there is no agreement on a method to evaluate DNA damage in organs where cytotoxicity is observed. As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the comet assay, we examined DNA damage in the liver, stomach, and bone marrow of rats given three oral doses of N-methyl-N-nitrosourea (MNU) up to the maximum tolerated dose based on systemic toxicity. MNU significantly increased the % tail DNA in all the organs. Histopathological analysis showed no cytotoxic effect on the liver, indicating clearly that MNU has a genotoxic potential in the liver. In the stomach, however, the cytotoxic effects were very severe at systemically non-toxic doses. Low-dose MNU significantly increased the % tail DNA even at a non-cytotoxic dose, indicating that MNU has a genotoxic potential also in the stomach. Part of the DNA damage at cytotoxic doses was considered to be a secondary effect of severe cell damage. In the bone marrow, both the % tail DNA and incidence of micronucleated polychromatic erythrocytes significantly increased at non-hematotoxic doses, which were different from the non-cytotoxic doses for liver and stomach. These findings indicate that an optimal dose for detecting DNA damage may vary among organs and that careful attention is required to select an optimum dose for the comet assay based on systemic toxicity such as mortality and clinical observations. The present study shows that when serious cytotoxicity is suggested by increased % hedgehogs in the comet assay, histopathological examination should be included for the evaluation of a positive response.
Collapse
Affiliation(s)
- Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan.
| | - Ryoko Matsuyama
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Yasuaki Uematsu
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Mika Ota
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Toru Yamada
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Hitoshi Funabashi
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
5
|
Critical issues with the in vivo comet assay: A report of the comet assay working group in the 6th International Workshop on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:6-12. [DOI: 10.1016/j.mrgentox.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023]
|
6
|
Wada K, Fukuyama T, Nakashima N, Matsumoto K. Assessment of the in vivo genotoxicity of cadmium chloride, chloroform, and D,L-menthol as coded test chemicals using the alkaline comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [PMID: 26212300 DOI: 10.1016/j.mrgentox.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) international validation study of in vivo rat alkaline comet assays, we examined cadmium chloride, chloroform, and D,L-menthol under blind conditions as coded chemicals in the liver and stomach of Sprague-Dawley rats after 3 days of administration. Cadmium chloride showed equivocal responses in the liver and stomach, supporting previous reports of its poor mutagenic potential and non-carcinogenic effects in these organs. Treatment with chloroform, which is a non-genotoxic carcinogen, did not induce DNA damage in the liver or stomach. Some histopathological changes, such as necrosis and degeneration, were observed in the liver; however, they did not affect the comet assay results. D,L-Menthol, a non-genotoxic non-carcinogen, did not induce liver or stomach DNA damage. These results indicate that the comet assay can reflect genotoxic properties under blind conditions.
Collapse
Affiliation(s)
- Kunio Wada
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan.
| | - Tomoki Fukuyama
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Nobuaki Nakashima
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| |
Collapse
|
7
|
Wada K, Yoshida T, Takahashi N, Matsumoto K. Effects of seven chemicals on DNA damage in the rat urinary bladder: A comet assay study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 769:1-6. [DOI: 10.1016/j.mrgentox.2014.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 11/25/2022]
|