1
|
Sivaram AK, Logeshwaran P, Abinandan S, Mukunthan K, Megharaj M. Cyto-genotoxicity evaluation of pyroligneous acid using Allium cepa assay. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:852-857. [PMID: 36093751 DOI: 10.1080/10934529.2022.2119741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pyroligneous acid (PA) is a highly oxygenated organic condensate obtained by cooling the gases generated from the pyrolysis process. PA has been used in agriculture for several years with multiple beneficial effects, including plant health and yields, pest resilience, and seed germination. It is generally applied to agricultural soils in the dilution of 1:1000 to 1:100, corresponding to 0.1-1% PA concentration. In this study, the cyto-genotoxic potential of PA to Allium cepa meristematic root-tips (where all cells undergo repeated division and form primary root tissues) was examined. Exposure to PA concentrations of 0.1% and above showed a reduction in the mitotic index percentage, and at 5%, a complete arrest in the cell division was recorded. However, chromosomal aberrations at 0.5, 1, and 3% PA were reversible types such as bridges, vagrants, laggards, and multipolar anaphase, with a maximum of only 5.8% chromosomal aberration observed at 3% PA. Comet assay (single-cell gel electrophoresis) for genotoxicity assessment determined using PA exposed A. cepa root tips showed that it was not genotoxic. The absence of cyto-genotoxicity in A. cepa, even at concentrations far above what would be typically encountered in agricultural applications, strongly suggests that PA is unlikely to cause adverse effects on crops and ultimately on the biota and human health.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, Australia
| | | | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
2
|
Su K, Wu Z, Liu Y, Jiang S, Ma D, Wang Y, Fu C. Highly efficient detoxification of dinitrotoluene by transgenic switchgrass overexpressing bacterial nitroreductase. PLANT, CELL & ENVIRONMENT 2021; 44:3173-3183. [PMID: 34008171 DOI: 10.1111/pce.14099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Dinitrotoluene (DNT) has been extensively used in manufacturing munitions, polyurethane foams and other important chemical products. However, it is highly toxic and mutagenic to most organisms. Here, we synthesized a codon-optimized bacterial nitroreductase gene, NfsI, for plant expression. The kinetic analysis indicates that the recombinant NfsI can detoxify both 2,4-DNT and its sulfonate (DNTS), while it has a 97.6-fold higher catalytic efficiency for 2,4-DNT than DNTS. Furthermore, we overexpressed NfsI in switchgrass (Panicum virgatum L.), which is a multiple-purpose crop used for fodder and biofuel production as well as phytoremediation. The 2,4-DNT treatment inhibited root elongation of wild-type switchgrass plants and promoted reactive oxygen species (ROS) accumulation in roots. In contrast, overexpression of NfsI in switchgrass significantly alleviated 2,4-DNT-induced root growth inhibition and ROS overproduction. Thus, the NfsI overexpressing transgenic switchgrass plant removed 94.1% 2,4-DNT after 6 days, whose efficiency was 1.7-fold higher than control plants. Moreover, the comparative transcriptome analysis suggests that 22.9% of differentially expressed genes induced by 2,4-DNT may participate in NfsI-mediated 2,4-DNT detoxification in switchgrass. Our work sheds light on the function of NfsI during DNT phytoremediation for the first time, revealing the application potential of switchgrass plants engineered with NfsI.
Collapse
Affiliation(s)
- Kunlong Su
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yuchen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shanshan Jiang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dongmei Ma
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- School of ecology environment, Ningxia University, Yinchuan, China
| | - Yan Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wu L, Zhang H, Xu Z, Wang C, Chen W, Ni J, Wei R. Biochar-mediated reduction of m-nitrotoluene: Interaction between reduction of m-nitrotoluene and sequestration of contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145662. [PMID: 33940750 DOI: 10.1016/j.scitotenv.2021.145662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Biochar is a highly effective adsorbent for nitroaromatic compounds (NACs), and acts as an electron shuttle that mediates the reduction of NACs. Hence, when biochar is used to mediate NAC reduction, adsorption and reduction will occur simultaneously and affect each other. However, the effect of biochar-mediated NAC reduction on sorption remains unknown. Eight biochars with different physicochemical properties were used to adsorb m-nitrotoluene and mediate its reduction. The results showed that the adsorption of m-nitrotoluene onto the various biochars facilitated its reduction, whereas biochar-mediated reduction retarded and weakened contaminant adsorption, which increased the environmental risk posed by m-nitrotoluene. Nevertheless, biochars with a high graphitization degree and developed porosity not only had a great catalytic ability, but also significantly alleviated the negative effect of reduction on adsorption. This was ascribed to the π-π interaction and pore-filling effect, which played more important roles than the hydrophobic effect in adsorbing the reduction product (m-toluidine) onto the studied biochars during reduction. Furthermore, the methanol extraction results indicated that the eight biochars presented significantly stronger sequestration abilities for adsorbed m-toluidine than for adsorbed m-nitrotoluene. This resulted from the hydrogen bonding and the Lewis acid-base effect between m-toluidine and each biochar, which were absent for m-nitrotoluene. These results suggest that biochars with a high graphitization degree and developed porosity are applicable for mediating reduction-enhancing sequestration of NACs, which could be a novel strategy for NAC remediation.
Collapse
Affiliation(s)
- Liang Wu
- College of geographical Science, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- College of geographical Science, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhu Xu
- Yangzhou Haitong Electronic Co. Ltd, Yangzhou, Jiangsu 225001, China
| | - Caiting Wang
- College of geographical Science, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- College of geographical Science, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Jinzhi Ni
- College of geographical Science, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- College of geographical Science, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|
4
|
Logeshwaran P, Sivaram AK, Surapaneni A, Kannan K, Naidu R, Megharaj M. Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144577. [PMID: 33482550 DOI: 10.1016/j.scitotenv.2020.144577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 05/27/2023]
Abstract
Widespread environmental contamination of per- and polyfluoroalkyl substances (PFAS) is well established. Nevertheless, few studies have reported on the aquatic toxicity of PFAS, especially in indicator species such as Daphnia. In this study, the toxicity of two major PFAS, namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), was investigated on water flea (Daphnia carinata) using a battery of comprehensive toxicity tests, including a 48 h acute and a 21-day chronic assays. The survival, growth, and reproduction of D. carinata were monitored over a 21-day life cycle. PFOS exhibited higher toxicity than PFOA. The 48 h LC50 values (confidence interval) based on acute toxicity for PFOA and PFOS were 78.2 (54.9-105) mg L-1 and 8.8 (6.4-11.6) mg L-1, respectively. Chronic exposure to PFOS for 21 days displayed mortality and reproductive defects in D. carinata at a concentration as low as 0.001 mg L-1. Genotoxicity assessment using comet assay revealed that exposure for 96 h to PFOS at 1 and 10.0 mg L-1 significantly damaged the organism's genetic makeup. The results of this study have great implications for risk assessment of PFOS and PFOA in aquatic ecosystems, given the potential of PFOS to pose a risk to Daphnia even at lower concentrations (1 μg L-1).
Collapse
Affiliation(s)
- Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aravind Surapaneni
- South East Water, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, Bundoora, Victoria, Australia
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Akkaya Ö. Nicotiana tabacum-associated bioengineered Pseudomonas putida can enhance rhizoremediation of soil containing 2,4-dinitrotoluene. 3 Biotech 2020; 10:398. [PMID: 32864284 PMCID: PMC7438454 DOI: 10.1007/s13205-020-02395-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rhizoremediation processes are based on plant-bacteria interactions and can be effectively used for cleaning many pollutants from the environment to overcome the constraints of individual phytoremediation. Here, 1 mM and 1.5 mM concentrations of 2,4-dinitrotoluene (2,4-DNT) degrading Pseudomonas putida (P. putida) strain KT.DNT and various growth stages of Nicotiana tabacum (N. tabacum) were initially assayed in in vitro tissue culture system and the best conditions for the association of plant-rhizobacterium were ascertained to remediation of the soil contaminated with 2,4-DNT. 5-days old N. tabacum plants inoculated with 2 × 106 cfu/mL bacterial inoculum for 3 weeks were preferred for rhizoremediation experiments as they showed a nearly threefold increase in the fresh and dry biomass in comparison to noninoculated ones. When these seedlings were planted either alone or together with P. putida KT2440 or P. putida KT.DNT in soils contaminated with 1 mM and 1.5 mM of 2,4-DNT, the maximum degradation rate of 98% and ~ 93% were determined at the end of 14 days by KT.DNT inoculated tobacco plants. Our results indicate that it would be advantageous to use the 2,4-DNT-degrading bacterium inoculated with N. tabacum plants to accelerate and enhance the cleanup of soil contaminated with 2,4-DNT.
Collapse
Affiliation(s)
- Özlem Akkaya
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
6
|
Tiwari J, Tarale P, Sivanesan S, Bafana A. Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28650-28667. [PMID: 31388957 DOI: 10.1007/s11356-019-06043-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/22/2019] [Indexed: 05/15/2023]
Abstract
Nitroaromatic compounds (NACs) are extensively used in different industries and are synthesized in large quantity due to their heavy demand worldwide. The broad use of NACs poses a serious pollution threat. The treatment processes used for the removal of NACs are not effective and sustainable, leading to their release into the environment. The nitro group attached to benzene ring makes the compounds recalcitrant due to which they persist in the environment. Being hazardous to human as well as other living organisms, NACs are listed in the USEPA's priority pollutant group. This review provides updated information on the sources of NACs, prevalence in different environmental matrices, and recent developments in methods of their detection, with emphasis on current trends as well as future prospects. The harmful effects of NACs due to exposure through different routes are also highlighted. Further, the technologies reported for the treatment of NACs, including physico-chemical and biological methods, and the challenges faced for their effective implementation are discussed. Thus, the review discusses relevant issues in detail making suitable recommendations, which can be helpful in guiding further research in this subject.
Collapse
Affiliation(s)
- Jyoti Tiwari
- AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute) Campus, Nagpur, 440020, India
- Director's Research Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, Maharashtra, India
| | - Prashant Tarale
- Health and Toxicity Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, India
- Blood Research Institute, Versiti Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI, 53213, USA
| | - Saravanadevi Sivanesan
- AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute) Campus, Nagpur, 440020, India
- Health and Toxicity Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, India
| | - Amit Bafana
- AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute) Campus, Nagpur, 440020, India.
- Director's Research Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
7
|
Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida). CHEMOSPHERE 2019; 229:227-235. [PMID: 31078879 DOI: 10.1016/j.chemosphere.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Endpoint assessment using biological systems in combination with the chemical analysis is important for evaluating the residual effect of contaminants following remediation. In this study, the level of residual toxicity of polycyclic aromatic hydrocarbons (PAHs) after 120 days of phytoremediation with five different plant species:- maize (Zea mays), Sudan grass (Sorghum sudanense), vetiver (Vetiveria zizanioides), sunflower (Helianthus annuus) and wallaby grass (Austrodanthonia sp.) has been evaluated by ecotoxicological tests such as root nodulation and leghaemoglobin assay using garden pea (Pisum sativum) and acute, chronic and genotoxicity assays using earthworm (Eisenia fetida). The phytoremediated soil exhibited lesser toxicity supporting improved root nodulation and leghaemoglobin content in P. sativum and reducing DNA damage in E. fetida when compared to contaminated soil before remediation. Also, the results of the ecotoxicological assays with the legume and earthworm performed in this study complemented the results obtained by the chemical analysis of PAHs in phytoremediated soil. Therefore, these findings provide a basis for a framework in which remediation efficacy of PAHs-contaminated sites can be evaluated effectively with simple ecotoxicological bioassays using legumes and earthworms.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Adelaide, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia.
| |
Collapse
|
8
|
Dai J, Fidalgo de Cortalezzi M. Influence of pH, ionic strength and natural organic matter concentration on a MIP-Fluorescent sensor for the quantification of DNT in water. Heliyon 2019; 5:e01922. [PMID: 31245645 PMCID: PMC6582050 DOI: 10.1016/j.heliyon.2019.e01922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 11/05/2022] Open
Abstract
The effect of sample water chemistry on a carbon dot labeled molecularly imprinted polymer (AC-MIP) sensor for the detection of 2,4-dinitrotoluene (DNT) was investigated. Hydrogel MIP films were fabricated and tested in DNT solutions in various matrices, representative of natural water conditions, to assess applicability of the sensors to real water samples. The effect of pH, natural organic matter (NOM), ionic strength and cation type on the swelling of the hydrogel and fluorescence quenching was investigated. An increase in ionic strength from 1 mM to 100 mM produced a quenching amount of MIPs decreased of about 19% and 30% with NaCl and CaCl2 respectively. In the range of pH tested, from 4 to 9, quenching was higher at basic environment for both MIPs and non-imprinted polymers (NIPs) due to increased hydrogel swelling. NOM contributed to the background quenching, but the effect could be addressed by an adjusted calibration equation. In both lake and tap water, DNT concentrations read by the sensors were close to the values measured by HPLC, within 72%–105% of true values. The AC-MIP films fabricated in this work are promising materials for the detection of water contamination in the field and the quantitative analysis of DNT concentration.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO, 65211, USA
| | - Maria Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO, 65211, USA
| |
Collapse
|
9
|
Takdastan A, Ravanbakhsh M, Hazrati M, Safapour S. Removal of dinitrotoluene from petrochemical wastewater by Fenton oxidation, kinetics and the optimum experiment conditions. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0812-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
10
|
Doherty SJ, Messan KS, Busby RR, Barbato RA. Ecotoxicity of 2,4-dinitrotoluene to cold tolerant plant species in a sub-Arctic soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:958-968. [PMID: 31016985 DOI: 10.1080/15226514.2019.1583720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Decades of live-fire training exercises have left millions of acres of military training lands contaminated with various munitions constituents such as dinitrotoluene. Those that pose a threat to higher organisms due to their toxicity and mobility in the soil are of particular concern. Plants aid in the biodegradation and phytoextraction of contaminants, and site-specific ecotoxicity determinations are critical to inform effective remediation strategy. These ecotoxicity determinations are lacking in cold-adapted plants and would be very informative for contaminated training lands in cold regions. Therefore, we conducted a phytotoxicity study to determine the median effective concentration (EC50) of 2,4-dinitrotoluene (2,4-DNT) to four native Alaskan plant species in a sub-Arctic soil at two different temperatures. Plant species investigated were white spruce (Picea glauca), field locoweed (Oxytropis campestris), bluejoint grass (Calamagrostis canadensis), and Jacob's ladder (Polemonium pulcherrimum). Seedling emergence, fresh plant mass, and dry plant mass were used to model plant response to 2,4-DNT contamination. White spruce was most tolerant to 2,4-DNT contamination (EC50 = 130.8 mg kg-1) and field locoweed was least tolerant (EC50 = 0.38 mg kg-1). In general, Arctic plant species were more vulnerable to 2,4-DNT when compared to plant types native to temperate or tropical regions.
Collapse
Affiliation(s)
- Stacey J Doherty
- a a Cold Regions Research and Engineering Laboratory, Biogeochemical Sciences Branch, U.S. Army Engineer Research and Development Center , Hanover , NH , USA
| | - Komi S Messan
- a a Cold Regions Research and Engineering Laboratory, Biogeochemical Sciences Branch, U.S. Army Engineer Research and Development Center , Hanover , NH , USA
| | - Ryan R Busby
- b b Construction Engineering Research Laboratory, U.S. Army Research and Development Center , Champaign , IL , USA
| | - Robyn A Barbato
- a a Cold Regions Research and Engineering Laboratory, Biogeochemical Sciences Branch, U.S. Army Engineer Research and Development Center , Hanover , NH , USA
| |
Collapse
|
11
|
Prasath A, Panneerselvan L, Provatas A, Naidu R, Megharaj M. Genotoxicity assessment of acute exposure of 2, 4-dinitroanisole, its metabolites and 2, 4, 6-trinitrotoluene to Daphnia carinata. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1873-1879. [PMID: 27650370 DOI: 10.1007/s10646-016-1709-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The insensitive munition ingredient, 2, 4-dinitroanisole has emerged as an alternative ingredient to 2, 4, 6-trinitro toluene in melt pourable high explosive formulations mainly due to its improved insensitiveness properties. As a result, production of 2, 4-dinitroanisole has increased and as a consequence 2, 4-dinitroanisole has emerged as a potential ingredient to enter the environment and possibly persist in water and soil ecosystems. The present study showed that 2, 4-dinitroanisole, its metabolites (2-amino 4-nitroanisole and 2,4-dinitroanisole) and 2, 4, 6-trinitro toluene were found to induce DNA damages in a freshwater crustacean Daphnia carinata exposed for 48 h and which was investigated by the alkaline single-cell gel electrophoresis (comet assay) method. The value of LC50-48 h of 2, 4-dinitroanisole was determined as 14.87 ± 1.70 (mg L-1) and its metabolites exhibited the similar toxic range although the toxicity of 2, 4, 6-trinitro toluene was seven-fold more toxic (2.32 ± 0.29 mg L-1) than 2, 4-dinitroanisole and its metabolites. Exposure to sub-acute toxicity concentration ranges of 2, 4-dinitroanisole and its metabolites and 2, 4, 6-trinitro toluene showed significant (P < 0.01) DNA damage. The higher concentration of each test chemical exhibited higher tail DNA per cent and increased olive tail moment. The results from this study can be used to identify genotoxic biomarkers for the risk assessment of insensitive munitions exposure in aquatic invertebrates.
Collapse
Affiliation(s)
- Annamalai Prasath
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Arthur Provatas
- Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh, SA 5111, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia.
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA5095, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Maeda A, Tsuchiyama H, Asaoka Y, Hirakata M, Miyoshi T, Oshida K, Miyamoto Y. Evaluation of the repeated-dose liver micronucleus assay using 2,4-dinitrotoluene: a report of a collaborative study by CSGMT/JEMS.MMS. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:41-5. [PMID: 26065309 DOI: 10.1016/j.mrgentox.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The liver micronucleus assay using young adult rats has the potential to detect liver carcinogens by repeated dosing, and could be expected to be integrated into repeated-dose toxicity studies using a hepatocyte isolation method without the traditional in situ collagenase perfusion. In this study, to assess the performance of the repeated-dose liver micronucleus assay, 2,4-dinitrotoluene (DNT), which is a rodent liver carcinogen, was administered orally to male rats at doses of 50, 100 and 200 mg/kg/day once daily for 14 or 28 consecutive days, and the frequencies of micronucleated hepatocytes (MNHEPs) and micronucleated immature erythrocytes (MNIMEs) were examined. Significant increases in the MNHEPs were observed at 50 mg/kg/day or more in the 14-day treatment, and 50 and 100 mg/kg/day in the 28-day treatment. These increases were dependent on both the dose and the number of administrations, which indicates the possibility that the MNHEPs accumulate as a result of repeated dosing. In contrast, no increase in the MNIMEs was observed. In conclusion, the repeated-dose liver micronucleus assay using young adult rats is sufficiently sensitive to detect the genotoxicity of 2,4-DNT at a low dose.
Collapse
|
13
|
Araldi RP, de Melo TC, Mendes TB, de Sá Júnior PL, Nozima BHN, Ito ET, de Carvalho RF, de Souza EB, de Cassia Stocco R. Using the comet and micronucleus assays for genotoxicity studies: A review. Biomed Pharmacother 2015; 72:74-82. [DOI: 10.1016/j.biopha.2015.04.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022] Open
|
14
|
Imamura T, Koeda A, Morimoto K, Hatakeyama H, Suzuki H, Wako Y, Kawasako K, Otabe K, Sato SI. Evaluation of a repeated-dose liver micronucleus assay with 2,6-dinitrotoluene using young adult rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:46-50. [DOI: 10.1016/j.mrgentox.2014.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/01/2022]
|
15
|
Podlipná R, Pospíšilová B, Vaněk T. Biodegradation of 2,4-dinitrotoluene by different plant species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:54-59. [PMID: 25463853 DOI: 10.1016/j.ecoenv.2014.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 06/04/2023]
Abstract
Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l).
Collapse
Affiliation(s)
- Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Blanka Pospíšilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic.
| |
Collapse
|
16
|
Lent EM, Crouse LCB, Quinn MJ, Wallace SM. Comparison of the Repeated Dose Toxicity of Isomers of Dinitrotoluene. Int J Toxicol 2012; 31:143-57. [DOI: 10.1177/1091581811434645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dinitrotoluene (DNT) is a nitroaromatic explosive used in propellant mixtures and in the production of plastics. Isomers of DNT were administered daily via oral gavage to male Sprague-Dawley rats for 14 days to determine the subacute toxicity of individual isomers of DNT. The 3,5-DNT isomer was the most toxic isomer, inducing weight loss and mortality within 3 days. Cyanosis and anemia were observed for all isomers. Exposure to 2,4-, 2,6-, and 3,5-DNT resulted in decreased testes mass and degenerative histopathological changes. Increased splenic mass was observed for 2,4-, 2,6-, and 2,5-DNT. Extramedullary hematopoiesis of the spleen was noted for all isomers, while lymphoid hyperplasia of the spleen was noted for all isomers except 2,5-DNT. Increased liver mass was observed for 2,3-DNT and 3,4-DNT. Hepatocellular lesions were observed for 2,6-DNT and 2,4-DNT. Neurotoxic effects were noted for 3,4-DNT, 2,4-DNT, and 3,5-DNT.
Collapse
Affiliation(s)
- Emily May Lent
- US Army Public Health Command, Toxicology Portfolio, Aberdeen Proving Ground, MD, USA
| | - Lee C. B. Crouse
- US Army Public Health Command, Toxicology Portfolio, Aberdeen Proving Ground, MD, USA
| | - Michael J. Quinn
- US Army Public Health Command, Toxicology Portfolio, Aberdeen Proving Ground, MD, USA
| | - Shannon M. Wallace
- US Army Public Health Command, Toxicology Portfolio, Aberdeen Proving Ground, MD, USA
| |
Collapse
|