1
|
Gunia-Krzyżak A, Popiół J, Słoczyńska K, Żelaszczyk D, Koczurkiewicz-Adamczyk P, Wójcik-Pszczoła K, Bucki A, Sapa M, Kasza P, Borczuch-Kostańska M, Marona H, Pękala E. Discovery of (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide among N-substituted cinnamamide derivatives as a novel cosmetic ingredient for hyperpigmentation. Bioorg Chem 2024; 150:107533. [PMID: 38878750 DOI: 10.1016/j.bioorg.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
Hyperpigmentation disorders may result from inappropriate melanin deposition and/or excessive melanin synthesis. They are classified mainly as aesthetic problems, but they can significantly affect human health by decreasing self-esteem. There are available only limited treatment options for hyperpigmentation disorder, among others, cosmetic products applied topically. Depigmenting ingredients were found to be ineffective and characterized by various side effects. As a result, many efforts are made to discover novel, potent, and safe melanogenesis inhibitors for possible use in topical cosmetic depigmenting formulations. Cinnamic acid derivatives constitute a widely tested group for that purpose. This article reports research in the group of N-alkyl cinnamamide derivatives (un)substituted in phenyl ring. Among tested series, (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide (compound 21) showed the most promising inhibitory properties in mushroom tyrosinase assay (IC50 = 36.98 ± 1.07 µM for monophenolase activity, IC50 = 146.71 ± 16.82 µM for diphenolase activity) and melanin production inhibition in B16F10 mouse melanoma cell line at concentration 6.25 µM resulting probably from decreasing of Tyr, Mitf, Tyrp-1, and Tyrp-2 genes expression. This compound also showed melanin production inhibitory properties in pigmented reconstructed human epidermis when used in 1 % and 2 % solutions in 50 % PEG400. In vitro evaluation of its safety profile showed no cytotoxicity to human keratinocytes HaCaT, human skin fibroblasts BJ, and human primary epidermal melanocytes HEMa, no mutagenicity in the Ames test, no genotoxicity in micronucleus test, no phototoxicity, as well as no skin irritation potential tested in PEG400 solution. This compound was also shown to penetrate across the epidermis to reach the possible site of action. The performed research led to classify (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide as a novel potential depigmenting cosmetic ingredient.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Michał Sapa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Patryk Kasza
- Department of Organic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magda Borczuch-Kostańska
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
2
|
Do ATN, Hiki K, Watanabe H, Yamamoto H, Endo S. Developing a Passive Dosing Method for Acute Aquatic Toxicity Tests of Cationic Surfactant Benzalkoniums (BACs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13678-13686. [PMID: 39047073 DOI: 10.1021/acs.est.4c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Benzalkonium chlorides (BACs) have been of environmental concern due to their widespread use and potential harm. However, challenges arise in defining and controlling the exposure concentration (Cw) in aquatic toxicity tests involving BACs with a long alkyl chain (i.e., #C > 14). To address this, a novel passive dosing method was introduced in the 48 h-acute ecotoxicity test on Daphnia magna and compared to the conventional solvent-spiking method in terms of Cw stability and toxicity results. Among 13 sorbent materials tested for their sorption capacity, poly(ether sulfone) (PES) membrane was an optimal passive dosing reservoir, with equilibrium desorption of BACs to water achieved within 24 h. The Cw of BACs remained constant in both applied dosing methods during the test period. However, the Cw in solvent-spiking tests was lower than the nominal concentration for long-chain BACs, particularly at low exposure concentrations. Notably, the solvent-spiking tests indicated that the toxicity of BACs increased with alkyl chain length from C6 to 14, followed by a decline in toxicity from C14 to 18. In contrast, the passive dosing method displayed similar or slightly increasing toxicity levels of BACs from C14 to C18, indicating higher toxicity of C16 and C18-BACs than that inferred by the solvent spiking test. These findings emphasize the potential of applying this innovative passive dosing approach in aquatic toxicity tests to generate reliable and accurate toxicity data and support a comprehensive risk assessment of cationic surfactants.
Collapse
Affiliation(s)
- Anh T Ngoc Do
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Hu H, Ma P, Li H, You J. Determining buffering capacity of polydimethylsiloxane-based passive dosing for hydrophobic organic compounds in large-volume bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169710. [PMID: 38184249 DOI: 10.1016/j.scitotenv.2023.169710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
Polydimethylsiloxane (PDMS) is the most widely used material for passive dosing. However, the ability of PDMS to maintain constant water concentrations of chemicals in large-volume bioassays was insufficiently investigated. In this study, we proposed a kinetic-based method to determine the buffering capacity of PDMS for maintaining constant water concentrations of hydrophobic organic contaminants (HOCs) in large-volume bioassays. A good correlation between log Kow and PDMS-water partitioning coefficients (log KPW) was observed for HOCs with log Kow values ranging from 3.30 to 7.42. For low-molecular-weight HOCs, volatile loss was identified as the primary cause of unstable water concentrations in passive dosing systems. Slow desorption from PDMS resulted in a reduction of water concentrations for high-molecular-weight HOCs. The volume ratio of PDMS to water (RV) was the key factor controlling buffering capacity. As such, buffering capacity was defined as the minimum RV required to maintain 90% of the initial water concentration and was determined to be 0.0076-0.032 for six representative HOCs. Finally, passive dosing with an RV of 0.014 was validated to effectively maintain water concentrations of phenanthrene in 2-L and 96-h toxicity tests with adult mosquitofish. By determining buffering capacity of PDMS, this study recommended specific RV values for cost-efficient implementation of passive dosing approaches in aquatic toxicology, particularly in large-volume bioassays.
Collapse
Affiliation(s)
- Hao Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ping Ma
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Department of Eco-engineering, Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Popiół J, Gunia-Krzyżak A, Słoczyńska K, Koczurkiewicz-Adamczyk P, Piska K, Wójcik-Pszczoła K, Żelaszczyk D, Krupa A, Żmudzki P, Marona H, Pękala E. The Involvement of Xanthone and ( E)-Cinnamoyl Chromophores for the Design and Synthesis of Novel Sunscreening Agents. Int J Mol Sci 2020; 22:E34. [PMID: 33375127 PMCID: PMC7792956 DOI: 10.3390/ijms22010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023] Open
Abstract
Excessive UV exposure contributes to several pathological conditions like skin burns, erythema, premature skin aging, photodermatoses, immunosuppression, and skin carcinogenesis. Effective protection from UV radiation may be achieved with the use of sunscreens containing UV filters. Currently used UV filters are characterized by some limitations including systemic absorption, endocrine disruption, skin allergy induction, and cytotoxicity. In the research centers all over the world new molecules are developed to improve the safety, photostability, solubility, and absorption profile of new derivatives. In our study, we designed and synthesized seventeen novel molecules by combining in the structures two chromophores: xanthone and (E)-cinnamoyl moiety. The ultraviolet spectroscopic properties of the tested compounds were confirmed in chloroform solutions. They acted as UVB or UVA/UVB absorbers. The most promising compound 9 (6-methoxy-9-oxo-9H-xanthen-2-yl)methyl (E)-3-(2,4-dimethoxyphenyl)acrylate) absorbed UV radiation in the range 290-369 nm. Its photoprotective activity and functional photostability were further evaluated after wet milling and incorporation in the cream base. This tested formulation with compound 9 possessed very beneficial UV protection parameters (SPFin vitro of 19.69 ± 0.46 and UVA PF of 12.64 ± 0.32) which were similar as broad-spectrum UV filter tris-biphenyl triazine. Additionally, compound 9 was characterized by high values of critical wavelength (381 nm) and UVA/UVB ratio (0.830) thus it was a good candidate for broad-spectrum UV filter and it might protect skin against UVA-induced photoaging. Compound 9 were also shown to be photostable, non-cytotoxic at concentrations up to 50 µM when tested on five cell lines, and non-mutagenic in Ames test. It also possessed no estrogenic activity, according to the results of MCF-7 breast cancer model. Additionally, its favorable lipophilicity (miLogP = 5.62) does not predispose it to penetrate across the skin after topical application.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.P.); (K.S.); (P.K.-A.); (K.P.); (K.W.-P.); (E.P.)
| |
Collapse
|
5
|
Chapman FM, Sparham C, Hastie C, Sanders DJ, van Egmond R, Chapman KE, Doak SH, Scott AD, Jenkins GJS. Comparison of passive-dosed and solvent spiked exposures of pro-carcinogen, benzo[a]pyrene, to human lymphoblastoid cell line, MCL-5. Toxicol In Vitro 2020; 67:104905. [PMID: 32497684 DOI: 10.1016/j.tiv.2020.104905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.
Collapse
Affiliation(s)
- Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK.
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Colin Hastie
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - David J Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Roger van Egmond
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Andrew D Scott
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| |
Collapse
|
6
|
Gunia-Krzyżak A, Żesławska E, Słoczyńska K, Żelaszczyk D, Sowa A, Koczurkiewicz-Adamczyk P, Popiół J, Nitek W, Pękala E, Marona H. S(+)-(2 E)- N-(2-Hydroxypropyl)-3-Phenylprop-2-Enamide (KM-568): A Novel Cinnamamide Derivative with Anticonvulsant Activity in Animal Models of Seizures and Epilepsy. Int J Mol Sci 2020; 21:ijms21124372. [PMID: 32575479 PMCID: PMC7352759 DOI: 10.3390/ijms21124372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/03/2022] Open
Abstract
Epilepsy is one of the most frequent neurological disorders affecting about 1% of the world’s human population. Despite availability of multiple treatment options including antiseizure drugs, it is estimated that about 30% of seizures still remain resistant to pharmacotherapy. Searching for new antiseizure and antiepileptic agents constitutes an important issue within modern medicinal chemistry. Cinnamamide derivatives were identified in preclinical as well as clinical studies as important drug candidates for the treatment of epilepsy. The cinnamamide derivative presented here: S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide (S(+)-N-(2-hydroxypropyl)cinnamamide, compound KM-568) showed anticonvulsant activity in several models of epilepsy and seizures in mice and rats. It was active in a genetic animal model of epilepsy (Frings audiogenic seizure-susceptible mouse model, ED50 = 13.21 mg/kg, i.p.), acute seizures induced electrically (maximal electroshock test ED50 = 44.46 mg/kg mice i.p., ED50 = 86.6 mg/kg mice p.o., ED50 = 27.58 mg/kg rats i.p., ED50 = 30.81 mg/kg rats p.o., 6-Hz psychomotor seizure model 32 mA ED50 = 71.55 mg/kg mice i.p., 44 mA ED50 = 114.4 mg/kg mice i.p.), chronic seizures induced electrically (corneal kindled mouse model ED50 = 79.17 mg/kg i.p., hippocampal kindled rat model ED50 = 24.21 mg/kg i.p., lamotrigine-resistant amygdala kindled seizure model in rats ED50 = 58.59 mg/kg i.p.), acute seizures induced chemically (subcutaneous metrazol seizure threshold test ED50 = 104.29 mg/kg mice i.p., ED50 = 107.27 mg/kg mice p.o., ED50 = 41.72 mg/kg rats i.p., seizures induced by picrotoxin in mice ED50 = 94.11 mg/kg i.p.) and the pilocarpine-induced status epilepticus model in rats (ED50 = 279.45 mg/kg i.p., ED97 = 498.2 mg/kg i.p.). The chemical structure of the compound including configuration of the chiral center was confirmed by NMR spectroscopy, LC/MS spectroscopy, elemental analysis, and crystallography. Compound KM-568 was identified as a moderately stable derivative in an in vitro mouse liver microsome system. According to the Ames microplate format mutagenicity assay performed, KM-568 was not a base substitution or frameshift mutagen. Cytotoxicity evaluation in two cell lines (HepG2 and H9c2) proved the safety of the compound in concentrations up to 100 µM. Based on the results of anticonvulsant activity and safety profile, S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide could be proposed as a new lead compound for further preclinical studies on novel treatment options for epilepsy.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair of Organic Chemistry, Department of Bioorganic Chemistry, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
- Correspondence:
| | - Ewa Żesławska
- Pedagogical University, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland;
| | - Karolina Słoczyńska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Dorota Żelaszczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair of Organic Chemistry, Department of Bioorganic Chemistry, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| | - Aleksandra Sowa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Justyna Popiół
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Wojciech Nitek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (A.S.); (P.K.-A.); (J.P.); (E.P.)
| | - Henryk Marona
- Jagiellonian University Medical College, Faculty of Pharmacy, Chair of Organic Chemistry, Department of Bioorganic Chemistry, Medyczna 9, 30-688 Kraków, Poland; (D.Ż.); (H.M.)
| |
Collapse
|
7
|
Hammershøj R, Birch H, Sjøholm KK, Mayer P. Accelerated Passive Dosing of Hydrophobic Complex Mixtures-Controlling the Level and Composition in Aquatic Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4974-4983. [PMID: 32142613 DOI: 10.1021/acs.est.9b06062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Petroleum products and essential oils are complex mixtures of hydrophobic and volatile chemicals and are categorized as substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). In aquatic testing and research of such mixtures, it is challenging to establish initial concentrations without the addition of cosolvents, to maintain constant concentrations during the test, and to keep a constant mixture composition in dilution series and throughout test duration. Passive dosing was here designed to meet these challenges by maximizing the surface area (Adonor/Vmedium = 3.8 cm2/mL) and volume (Vdonor/Vmedium > 0.1 L/L) of the passive dosing donor in order to ensure rapid mass transfer and avoid donor depletion for all mixture constituents. Cracked gas oil, cedarwood Virginia oil, and lavender oil served as model mixtures. This study advances the field by (i) showing accelerated passive dosing kinetics for 68 cracked gas oil constituents with typical equilibration times of 5-10 min and for 21 cederwood Virginia oil constituents with typical equilibration times < 1 h, (ii) demonstrating how to control mixture concentration and composition in aquatic tests, and (iii) discussing the fundamental differences between solvent spiking, water-accommodated fractions, and passive dosing.
Collapse
Affiliation(s)
- Rikke Hammershøj
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Karina K Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Kwon HA, Jeong Y, Jeon HP, Kim S. Comparing passive dosing and solvent spiking methods to determine the acute toxic effect of pentachlorophenol on Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:286-294. [PMID: 32124145 DOI: 10.1007/s10646-020-02172-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Pentachlorophenol (PCP) is a widespread and persistent hydrophobic organic pollutant in the environment despite its restricted public use. Risk assessment of such hydrophobic organic compounds (HOCs) is challenging because sorption and volatilization issues during toxicity test often lead to inconsistent exposure concentration. Considering the hydrophobicity of the PCP, in this study, a passive dosing format was applied by adopting a silicone O-ring as a reservoir and evaluated its applicability on the determination of PCP on Daphnia magna. Results obtained with passive dosing method were compared with that of solvent spiking method. We hypothesized that the passive dosing method may provide more reliable and accurate toxicity results than conventional solvent spiking approach. As a result, the partition coefficient of PCP between methanol and a test medium (log KMeOH:ISO) was 2.1, which enabled the maintenance of reliable exposure concentration throughout the experiment. In the acute toxicity tests, passive dosing and solvent spiking showed similar EC50 values of 576 and 485 µg/L for 24 h, and 362 and 374 µg/L for 48 h, respectively, which overlap with EC50 values of previous studies. Altogether, both methods were suitable for the acute toxicity assessment of hydrophobic PCP.
Collapse
Affiliation(s)
- Hyun-Ah Kwon
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany
- Division of Energy & Environment Technology, University of Science and Technology, Daejeon, 34113, Korea
| | - Yoonah Jeong
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52076, Aachen, Germany
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, Daehwa-Dong 283, Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Korea
| | - Hyun Pyo Jeon
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany
| | - Sanghun Kim
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany.
- Division of Energy & Environment Technology, University of Science and Technology, Daejeon, 34113, Korea.
- Department of Pharmaceutical Science and Technology, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Korea.
| |
Collapse
|
9
|
Maner J, Burkard M, Cassano JC, Nash SMB, Schirmer K, Suter MJF. Hexachlorobenzene exerts genotoxic effects in a humpback whale cell line under stable exposure conditions. RSC Adv 2019; 9:39447-39457. [PMID: 35540658 PMCID: PMC9076109 DOI: 10.1039/c9ra05352b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Humpback whales, like other polar wildlife, accumulate persistent organic pollutants. In Southern hemisphere populations, hexachlorobenzene (HCB) dominates the contaminant profiles. HCB is linked to a variety of health effects and is classified as a group 2B carcinogen, but the mechanism of action is a matter of contention. Potential toxicological effects to humpback whales remain entirely unknown. The recently established humpback whale fibroblast cell line (HuWa) offers an in vitro model for toxicological investigations. We here combine this novel cell line with a passive dosing strategy to investigate whale-specific toxicity of HCB. The relevant partitioning coefficients were determined to produce stable and predictable exposure concentrations in small-scale bioassays. The system was used to assess acute toxicity as well as genotoxicity of HCB to the HuWa cell line. While we found some transient reductions in metabolic activity, measured with the indicator dye alamarBlue, no clear acute toxic effects were discernible. Yet, a significant increase in DNA damage, detected in the alkaline comet assay, was found in HuWa cells exposed to 10 μg L-1 HCB during the sensitive phase of cell attachment. Collectively, this work provides a ready-to-use passive dosing system and delivers evidence that HCB elicits genotoxicity in humpback whale cells.
Collapse
Affiliation(s)
- Jenny Maner
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| | - Michael Burkard
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Juan Carlos Cassano
- Empa, Swiss Laboratories for Material Science and Technology, Particle-Biology Interactions Laboratory 9014 St Gallen Switzerland
| | - Susan M Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Kristin Schirmer
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne 1015 Lausanne Switzerland
| | - Marc J-F Suter
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| |
Collapse
|
10
|
Modrzyński JJ, Christensen JH, Brandt KK. Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1136-1141. [PMID: 31559559 DOI: 10.1007/s10646-019-02107-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Toxicity testing of hydrophobic compounds with low aqueous solubility remains challenging. Dimethyl sulfoxide (DMSO) is widely used as a co-solvent for toxicity testing of hydrophobic chemicals, but it may modulate chemical toxicity patterns. In this study, we critically evaluated the suitability of DMSO as a co-solvent for toxicity testing of hydrophobic organic compounds in aqueous solutions. As the toxicity measure, we used growth inhibition of a natural bacterial community, and the test toxicants included phenol, BTEX (benzene, toluene, ethylbenzene and xylene) and transformation products of polycyclic aromatic hydrocarbons (PAHs). We found that dose-response curves for phenol were unaffected by DMSO concentrations up to 10% (v/v) and that DMSO (5% v/v) did not affect the degree of bacterial growth inhibition for any of the other test compounds in short-term experiments (3.5 h). By contrast, marked co-solvent effects of DMSO were observed in the long-term assay (25 and 27 h). We therefore conclude that DMSO has excellent co-solvent properties for short-term (≤3.5 h) toxicity testing of sparingly water-soluble compounds and its application provides a simple, inexpensive approach for screening of various environmentally relevant hydrophobic chemicals. Importantly, the use of DMSO allows for generation of full dose-responses that may otherwise not be attained.
Collapse
Affiliation(s)
- Jakub J Modrzyński
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350, Copenhagen, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
11
|
Schilter B, Burnett K, Eskes C, Geurts L, Jacquet M, Kirchnawy C, Oldring P, Pieper G, Pinter E, Tacker M, Traussnig H, Van Herwijnen P, Boobis A. Value and limitation of in vitro bioassays to support the application of the threshold of toxicological concern to prioritise unidentified chemicals in food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1903-1936. [PMID: 31550212 DOI: 10.1080/19440049.2019.1664772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some of the chemicals in materials used for packaging food may leak into the food, resulting in human exposure. These include so-called Non-intentionally Added Substances (NIAS), many of them being unidentified and toxicologically uncharacterized. This raises the question of how to address their safety. An approach consisting of identification and toxicologically testing all of them appears neither feasible nor necessary. Instead, it has been proposed to use the threshold of toxicological concern (TTC) Cramer class III to prioritise unknown NIAS on which further safety investigations should focus. Use of the Cramer class III TTC for this purpose would be appropriate if amongst others sufficient evidence were available that the unknown chemicals were not acetylcholinesterase inhibitors or direct DNA-reactive mutagens. While knowledge of the material and analytical chemistry may efficiently address the first concern, the second could not be addressed in this way. An alternative would be use of a bioassay capable of detecting DNA-reactive mutagens at very low levels. No fully satisfactory bioassay was identified. The Ames test appeared the most suitable since it specifically detects DNA-reactive mutagens and the limit of biological detection of highly potent genotoxic carcinogens is low. It is proposed that for a specific migrate, the evidence for absence of mutagenicity based on the Ames test, together with analytical chemistry and information on packaging manufacture could allow application of the Cramer class III TTC to prioritise unknown NIAS. Recommendations, as well as research proposals, have been developed on sample preparation and bioassay improvement with the ultimate aim of improving limits of biological detection of mutagens. Although research is still necessary, the proposed approach should bring significant benefits over the current practices used for safety evaluation of food contact materials.
Collapse
Affiliation(s)
- Benoit Schilter
- Food Safety Research Department, Nestlé Research, Vers-chez-les-Blanc, Switzerland
| | | | - Chantra Eskes
- Services & Consultations on Alternative Methods (SeCAM), Magliaso, Switzerland and Swiss 3R Competence Centre (3RCC), Bern, Switzerland
| | - Lucie Geurts
- International Life Sciences Institute Europe, Brussels, Belgium
| | - Mélanie Jacquet
- Danone Food Safety Center, Danone S.A., Danone Food Safety Center, Palaiseau, France
| | - Christian Kirchnawy
- Technical Competence Center, OFI - Austrian Research Institute for Chemistry and Technology, Vienna, Austria
| | | | | | - Elisabeth Pinter
- Department of Applied Life Sciences, University of Applied Sciences, Vienna, Austria
| | - Manfred Tacker
- Department of Applied Life Sciences, University of Applied Sciences, Vienna, Austria
| | | | | | - Alan Boobis
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Birch H, Kramer NI, Mayer P. Time-Resolved Freely Dissolved Concentrations of Semivolatile and Hydrophobic Test Chemicals in In Vitro Assays-Measuring High Losses and Crossover by Headspace Solid-Phase Microextraction. Chem Res Toxicol 2019; 32:1780-1790. [PMID: 31426631 DOI: 10.1021/acs.chemrestox.9b00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vitro assays are normally conducted in plastic multiwell plates open to exchange with the ambient air. The concentration of test substances freely available to cells is often not known, can change over time, and is difficult to measure in the small volumes in microplates. However, even a well-characterized toxicological response is of limited value if it cannot be linked to a well-defined exposure level. The aim of this study was to develop and apply an approach for determining time-resolved freely dissolved concentrations of semivolatile and hydrophobic organic chemicals (SVHOCs) in in vitro assays: (1) free fractions were measured by a new medium dilution method and (2) time-resolved loss curves were obtained by measurements of total concentrations in 96-well plates during incubations at 37 °C. Headspace solid-phase microextraction was used as an analytical technique for 24 model chemicals spanning 6 chemical groups and 4-5 orders of magnitude in Kow and Kaw. Free fractions were >30% for chemicals with log Kow < 3.5 and then decreased with increasing log Kow. Medium concentrations declined significantly (>50%) within 24 h of incubation for all 20 chemicals having log Kow > 4 or log Kaw > -3.5 in serum-free medium. Losses of chemicals were lower for medium containing 10% fetal bovine serum, most significantly for chemicals with log Kow > 4. High crossover to neighboring wells also was observed below log Kow of 4 and log Kaw of -3.5. Sealing the well plates had limited effect on the losses but clearly reduced crossover. The high losses and crossover of most tested chemicals question the suitability of multiwell plates for in vitro testing of SVHOCs and call for (1) test systems that minimize losses, (2) methods to control in vitro exposure, (3) analytical confirmation of exposure, and (4) exposure control and confirmation being included in good in vitro reporting standards.
Collapse
Affiliation(s)
- Heidi Birch
- Department of Environmental Engineering , Technical University of Denmark , Bygningstorvet, Building 115 , 2800 Kongens Lyngby , Denmark
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences , Utrecht University , 3508 TC Utrecht , The Netherlands
| | - Philipp Mayer
- Department of Environmental Engineering , Technical University of Denmark , Bygningstorvet, Building 115 , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
13
|
Popiół J, Gunia-Krzyżak A, Piska K, Żelaszczyk D, Koczurkiewicz P, Słoczyńska K, Wójcik-Pszczoła K, Krupa A, Kryczyk-Poprawa A, Żesławska E, Nitek W, Żmudzki P, Marona H, Pękala E. Discovery of Novel UV-Filters with Favorable Safety Profiles in the 5-Arylideneimidazolidine-2,4-dione Derivatives Group. Molecules 2019; 24:E2321. [PMID: 31238526 PMCID: PMC6630718 DOI: 10.3390/molecules24122321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
Effective protection from the harmful effects of UV radiation may be achieved by using sunscreens containing organic or inorganic UV filters. The number of currently available UV filters is limited and some of the allowed molecules possess limitations such as systemic absorption, endocrine disruption properties, contact and photocontact allergy induction, and low photostability. In the search for new organic UV filters we designed and synthesized a series consisting of 5-benzylidene and 5-(3-phenylprop-2-en-1-ylidene)imidazolidine-2,4-dione (hydantoin) derivatives. The photoprotective activity of the tested compounds was confirmed in methanol solutions and macrogol formulations. The most promising compounds possessed similar UV protection parameter values as selected commercially available UV filters. The compound diethyl 2,2'-((Z)-4-((E)-3-(4-methoxyphenyl)allylidene)-2,5-dioxoimidazolidine-1,3-diyl)diacetate (4g) was characterized as an especially efficient UVA photoprotective agent with a UVA PF of 6.83 ± 0.05 and favorable photostability. Diethyl 2,2'-((Z)-4-(4-methoxybenzylidene)-2,5-dioxo- imidazolidine-1,3-diyl)diacetate (3b) was the most promising UVB-filter, with a SPFin vitro of 3.07 ± 0.04 and very good solubility and photostability. The main photodegradation products were geometric isomers of the parent compounds. These compounds were also shown to be non-cytotoxic at concentrations up to 50 µM when tested on three types of human skin cells and possess no estrogenic activity, according to the results of a MCF-7 breast cancer model.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Ewa Żesławska
- Department of Chemistry, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Krakow, Poland;
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| |
Collapse
|
14
|
Niehus NC, Floeter C, Hollert H, Witt G. Miniaturised Marine Algae Test with Polycyclic Aromatic Hydrocarbons - Comparing Equilibrium Passive Dosing and Nominal Spiking. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:190-197. [PMID: 29554635 DOI: 10.1016/j.aquatox.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
In this study the miniaturised Marine Algae Test (mMAT) using passive dosing was developed based on the ISO EN DIN10253 to investigate the growth inhibition of the marine diatom Phaeodactylum tricornutum caused by polycyclic aromatic hydrocarbons (PAHs). Risk assessment of hydrophobic organic compounds (HOCs) like PAHs in aquatic toxicity tests is very difficult due to their low aqueous solubilities, losses via sorption to the wells and volatilisation. However, passive dosing can overcome these challenges. In this study biocompatible silicone O-rings were used as PAH reservoir. Individual PAHs at saturation were tested using passive dosing and in comparison with nominal spiking. Additionally, a recreated mixture of PAHs reflecting the field composition of the sediment pore water was tested with passive dosing. PAHs revealed strong growth inhibiting effects on algal growth in passive dosing tests, while nominal spiking had only slightly growth inhibiting effects in the highest concentration. The recreated PAH mixture revealed slightly inhibiting effects using passive dosing when tested with a factor of 5000 of the field concentration. This study demonstrates the superiority of passive dosing to spiking and further the successful implementation of passive dosing in the marine algae test maintaining a constant concentration for HOCs with a log KOW > 4.6.
Collapse
Affiliation(s)
- Nora Claire Niehus
- Hamburg University of Applied Sciences, Department Environmental Engineering, Ulmenliet 20 21033 Hamburg, Germany; RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany.
| | - Carolin Floeter
- Hamburg University of Applied Sciences, Department Environmental Engineering, Ulmenliet 20 21033 Hamburg, Germany.
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany.
| | - Gesine Witt
- Hamburg University of Applied Sciences, Department Environmental Engineering, Ulmenliet 20 21033 Hamburg, Germany.
| |
Collapse
|
15
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
16
|
Development of a luminescent mutagenicity test for high-throughput screening of aquatic samples. Toxicol In Vitro 2018; 46:350-360. [DOI: 10.1016/j.tiv.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 11/21/2022]
|
17
|
Mustajärvi L, Eriksson-Wiklund AK, Gorokhova E, Jahnke A, Sobek A. Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1404-1413. [PMID: 29022620 DOI: 10.1039/c7em00228a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose-response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.
Collapse
Affiliation(s)
- Lukas Mustajärvi
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Hvastkovs EG, Rusling JF. Modern Approaches to Chemical Toxicity Screening. CURRENT OPINION IN ELECTROCHEMISTRY 2017; 3:18-22. [PMID: 29250606 PMCID: PMC5729768 DOI: 10.1016/j.coelec.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical toxicity has a serious impact on public health, and toxicity failures of drug candidates drive up drug development costs. Many in vitro bioassays exist for toxicity screening, and newer versions of these tend to be high throughput or high content assays, some of which rely on electrochemical detection. Toxicity very often results from metabolites of the chemicals we are exposed to, so it is important that assays feature metabolic conversion. Combining bioassays, computational predictions, and accurate chemical pathway elucidation presents our best chance for reliable toxicity prediction. Employing electrochemical and electrochemiluminescent approaches, cell-free microfluidic arrays can measure relative rates of formation of DNA-metabolite adduct formation (a measure of genotoxicity) as well as DNA oxidation levels resulting from enzyme-generated metabolites. Enzymes for several organ types can be studied simultaneously. These arrays can be used to identify the most reactive metabolites, and subsequent mechanistic details can then be investigated with high throughput LC-HPLC using enzyme/DNA-coated magnetic beads.
Collapse
Affiliation(s)
- Eli G Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, CT 06032, USA
- School of Chemistry, National University of Ireland at Galway, Ireland
| |
Collapse
|
19
|
Stibany F, Ewald F, Miller I, Hollert H, Schäffer A. Improving the reliability of aquatic toxicity testing of hydrophobic chemicals via equilibrium passive dosing - A multiple trophic level case study on bromochlorophene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:96-104. [PMID: 28142058 DOI: 10.1016/j.scitotenv.2017.01.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 04/15/2023]
Abstract
The main objective of the present study was to improve the reliability and practicability of aquatic toxicity testing of hydrophobic chemicals based upon the model substance bromochlorophene (BCP). Therefore, we adapted a passive dosing format to test the toxicity of BCP at different concentrations and in multiple test systems with aquatic organisms of various trophic levels. At the same time, the method allowed for the accurate determination of exposure concentrations (i.e., in the presence of exposed organisms; Ctest) and freely dissolved concentrations (i.e., without organisms present; Cfree) of BCP in all tested media. We report on the joint adaptation of three ecotoxicity tests - algal growth inhibition, Daphnia magna immobilization, and fish-embryo toxicity - to a silicone O-ring based equilibrium passive dosing format. Effect concentrations derived by passive dosing methods were compared with corresponding effect concentrations derived by standard co-solvent setups. The passive dosing format led to EC50-values in the lower μgL-1 range for algae, daphnids, and fish embryos, whereas increased effect concentrations were measured in the co-solvent setups for algae and daphnids. This effect once more shows that passive dosing might offer advantages over standard methods like co-solvent setups when it comes to a reliable risk assessment of hydrophobic substances. The presented passive dosing setup offers a facilitated, practical, and repeatable way to test hydrophobic chemicals on their toxicity to aquatic organisms, and is an ideal basis for the detailed investigation of this important group of chemicals.
Collapse
Affiliation(s)
- Felix Stibany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Franziska Ewald
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ina Miller
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
20
|
Stibany F, Schmidt SN, Schäffer A, Mayer P. Aquatic toxicity testing of liquid hydrophobic chemicals - Passive dosing exactly at the saturation limit. CHEMOSPHERE 2017; 167:551-558. [PMID: 27770722 DOI: 10.1016/j.chemosphere.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
The aims of the present study were (1) to develop a passive dosing approach for aquatic toxicity testing of liquid substances with very high Kow values and (2) to apply this approach to the model substance dodecylbenzene (DDB, Log Kow = 8.65). The first step was to design a new passive dosing format for testing DDB exactly at its saturation limit. Silicone O-rings were saturated by direct immersion in pure liquid DDB, which resulted in swelling of >14%. These saturated O-rings were used to establish and maintain DDB exposure exactly at the saturation limit throughout 72-h algal growth inhibition tests with green algae Raphidocelis subcapitata. Growth rate inhibition at DDB solubility was 13 ± 5% (95% CI) in a first and 8 ± 3% (95% CI) in a repeated test, which demonstrated that improved exposure control can lead to good precision and repeatability of toxicity tests. This moderate toxicity at chemical activity of unity was higher than expected relative to a reported hydrophobicity cut-off in toxicity, but lower than expected relative to a reported chemical activity range for baseline toxicity. The present study introduces a new effective approach for toxicity testing of an important group of challenging chemicals, while providing a basis for investigating toxicity cut-off theories.
Collapse
Affiliation(s)
- Felix Stibany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, DK-2800 Kongens Lyngby, Denmark.
| | - Stine Nørgaard Schmidt
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Heger S, Bluhm K, Brendt J, Mayer P, Anders N, Schäffer A, Seiler TB, Hollert H. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels. PLoS One 2016; 11:e0163862. [PMID: 27684069 PMCID: PMC5042516 DOI: 10.1371/journal.pone.0163862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022] Open
Abstract
Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.
Collapse
Affiliation(s)
- Sebastian Heger
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Kerstin Bluhm
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Julia Brendt
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental Engineering, Kongens Lyngby, Denmark
| | - Nico Anders
- RWTH Aachen University, Chemical Engineering, Enzyme Process Technology, Aachen, Germany
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental Research, Chair of Environmental Biology and Chemodynamcis, Aachen, Germany
- Chongqing University, College of Resources and Environmental Science, Chongqing, China
- Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, China
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
- Chongqing University, College of Resources and Environmental Science, Chongqing, China
- Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, China
- Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, China
| |
Collapse
|
22
|
Jahnke A, Mayer P, Schäfer S, Witt G, Haase N, Escher BI. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5424-5431. [PMID: 26804122 DOI: 10.1021/acs.est.5b04687] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment and monitoring of such mixtures, a variety of cell-based in vitro and low-complexity in vivo bioassays based on algae, daphnids or fish embryos are available. A very important and sometimes unrecognized challenge is how to combine sampling, extraction and dosing to transfer the mixtures from the environment into bioassays, while conserving (or re-establishing) their chemical composition at adjustable levels for concentration-effect assessment. This article outlines various strategies for quantifiable transfer from environmental samples including water, sediment, and biota into bioassays using total extraction or polymer-based passive sampling combined with either solvent spiking or passive dosing.
Collapse
Affiliation(s)
- Annika Jahnke
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, DE-04318 Leipzig, Germany
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Svante Arrhenius väg 8, SE-114 18 Stockholm, Sweden
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark , Miljøvej B113, DK-2800 Kongens Lyngby, Denmark
| | - Sabine Schäfer
- Department of Qualitative Hydrology, German Federal Institute of Hydrology (BFG) , Am Mainzer Tor 1, DE-56068 Koblenz, Germany
| | - Gesine Witt
- Department of Environmental Technology, Hamburg University of Applied Sciences , Ulmenliet 20, DE-21033 Hamburg, Germany
| | - Nora Haase
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstr. 15, DE-04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen , Hölderlinstr. 12, DE-72074 Tübingen, Germany
- National Research Centre for Environmental Toxicology (Entox), The University of Queensland , 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| |
Collapse
|
23
|
Abstract
Routine in vitro bioassays and animal toxicity studies of drug and environmental chemical candidates fail to reveal toxicity in ∼30% of cases. This Feature article addresses research on new approaches to in vitro toxicity testing as well as our own efforts to produce high-throughput genotoxicity arrays and LC-MS/MS approaches to reveal possible chemical pathways of toxicity.
Collapse
Affiliation(s)
- Eli G. Hvastkovs
- Department of Chemistry, East Carolina University Greenville, North Carolina 27858, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
- Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
24
|
Defining and Controlling Exposure During In Vitro Toxicity Testing and the Potential of Passive Dosing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:263-292. [DOI: 10.1007/10_2015_5017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Gilbert D, Mayer P, Pedersen M, Vinggaard AM. Endocrine activity of persistent organic pollutants accumulated in human silicone implants--Dosing in vitro assays by partitioning from silicone. ENVIRONMENT INTERNATIONAL 2015; 84:107-114. [PMID: 26264162 DOI: 10.1016/j.envint.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/28/2015] [Accepted: 07/04/2015] [Indexed: 06/04/2023]
Abstract
Persistent organic pollutants (POPs) accumulated in human tissues may pose a risk for human health by interfering with the endocrine system. This study establishes a new link between actual human internal POP levels and the endocrine active dose in vitro, applying partitioning-controlled dosing from silicone to the H295R steroidogenesis assay: (1) Measured concentrations of POPs in silicone breast implants were taken from a recent study and silicone disks were loaded according to these measurements. (2) Silicone disks were transferred into H295R cell culture plates in order to control exposure of the adrenal cells by equilibrium partitioning. (3) Hormone production of the adrenal cells was measured as toxicity endpoint. 4-Nonylphenol was used for method development, and the new dosing method was compared to conventional solvent-dosing. The two dosing modes yielded similar dose-dependent hormonal responses of H295R cells. However, with the partitioning-controlled freely dissolved concentrations (Cfree) as dose metrics, dose-response curves were left-shifted by two orders of magnitude relative to spiked concentrations. Partitioning-controlled dosing of POPs resulted in up to 2-fold increases in progestagen and corticosteroid levels at Cfree of individual POPs in or below the femtomolar range. Silicone acted not only as source of the POPs but also as a sorption sink for lipophilic hormones, stimulating the cellular hormone production. Methodologically, the study showed that silicone can be used as reference partitioning phase to transfer in vivo exposure in humans (silicone implants) to in vitro assays (partition-controlled dosing). The main finding was that POPs at the levels at which they are found in humans can interfere with steroidogenesis in a human adrenocortical cell line.
Collapse
Affiliation(s)
- Dorothea Gilbert
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, DTU Environment, Technical University of Denmark, Miljøvej 113, DK-2800 Kgs. Lyngby, Denmark
| | - Mikael Pedersen
- Division of Food Chemistry, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| |
Collapse
|
26
|
Claessens M, Monteyne E, Wille K, Vanhaecke L, Roose P, Janssen CR. Passive sampling reversed: coupling passive field sampling with passive lab dosing to assess the ecotoxicity of mixtures present in the marine environment. MARINE POLLUTION BULLETIN 2015; 93:9-19. [PMID: 25752535 DOI: 10.1016/j.marpolbul.2015.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
This study presents a new approach in aquatic toxicity testing combining passive sampling and passive dosing. Polydimethylsiloxane sheets were used to sample contaminant mixtures in the marine environment. These sheets were subsequently transferred to ecotoxicological test medium in which the sampled contaminant mixtures were released through passive dosing. 4 out of 17 of these mixtures caused severe effects in a growth inhibition assay with a marine diatom. These effects could not be explained by the presence of compounds detected in the sampling area and were most likely attributable to unmeasured compounds absorbed to the passive samplers during field deployment. The findings of this study indicate that linking passive sampling in the field to passive dosing in laboratory ecotoxicity tests provides a practical and complimentary approach for assessing the toxicity of hydrophobic contaminant mixtures that mimics realistic environmental exposures. Limitations and opportunities for future improvements are presented.
Collapse
Affiliation(s)
- Michiel Claessens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, J. Plateaustraat 22, B-9000 Ghent, Belgium.
| | - Els Monteyne
- Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Model, 2e en 23e Linieregimentsplein, B-8400 Oostende, Belgium
| | - Klaas Wille
- Ghent University, Faculty of Veterinary Medicine, Research Group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lynn Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Research Group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Patrick Roose
- Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Model, 2e en 23e Linieregimentsplein, B-8400 Oostende, Belgium
| | - Colin R Janssen
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, J. Plateaustraat 22, B-9000 Ghent, Belgium
| |
Collapse
|
27
|
Differential immunomodulatory responses to nine polycyclic aromatic hydrocarbons applied by passive dosing. Toxicol In Vitro 2015; 29:345-51. [DOI: 10.1016/j.tiv.2014.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 11/09/2014] [Accepted: 11/18/2014] [Indexed: 01/02/2023]
|
28
|
Armitage JM, Wania F, Arnot JA. Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9770-9. [PMID: 25014875 DOI: 10.1021/es501955g] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Practical, financial, and ethical considerations related to conducting extensive animal testing have resulted in various initiatives to promote and expand the use of in vitro testing data for chemical evaluations. Nominal concentrations in the aqueous phase corresponding to an effect (or biological activity) are commonly reported and used to characterize toxicity (or biological response). However, the true concentration in the aqueous phase can be substantially different from the nominal. To support in vitro test design and aid the interpretation of in vitro toxicity data, we developed a mass balance model that can be parametrized and applied to represent typical in vitro test systems. The model calculates the mass distribution, freely dissolved concentrations, and cell/tissue concentrations corresponding to the initial nominal concentration and experimental conditions specified by the user. Chemical activity, a metric which can be used to assess the potential for baseline toxicity to occur, is also calculated. The model is first applied to a set of hypothetical chemicals to illustrate the degree to which test conditions (e.g., presence or absence of serum) influence the distribution of the chemical in the test system. The model is then applied to set of 1194 real substances (predominantly from the ToxCast chemical database) to calculate the potential range of concentrations and chemical activities under assumed test conditions. The model demonstrates how both concentrations and chemical activities can vary by orders of magnitude for the same nominal concentration.
Collapse
Affiliation(s)
- James M Armitage
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | | | | |
Collapse
|
29
|
Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI. Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology 2013; 332:30-40. [PMID: 23978460 DOI: 10.1016/j.tox.2013.08.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 12/17/2022]
Abstract
Challenges to improve toxicological risk assessment to meet the demands of the EU chemical's legislation, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alternative methods such as in vitro assays to predict in vivo dose-response relationships, which impedes their use in regulatory toxicology. One issue reviewed here, is the lack of a well-defined dose metric for use in concentration-effect relationships obtained from in vitro cell assays. Traditionally, the nominal concentration has been used to define in vitro concentration-effect relationships. However, chemicals may differentially and non-specifically bind to medium constituents, well plate plastic and cells. They may also evaporate, degrade or be metabolized over the exposure period at different rates. Studies have shown that these processes may reduce the bioavailable and biologically effective dose of test chemicals in in vitro assays to levels far below their nominal concentration. This subsequently hampers the interpretation of in vitro data to predict and compare the true toxic potency of test chemicals. Therefore, this review discusses a number of dose metrics and their dependency on in vitro assay setup. Recommendations are given on when to consider alternative dose metrics instead of nominal concentrations, in order to reduce effect concentration variability between in vitro assays and between in vitro and in vivo assays in toxicology.
Collapse
Affiliation(s)
- Floris A Groothuis
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Minne B Heringa
- National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Beate Nicol
- Unilever U.K., Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom.
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|