1
|
Witt KL, van Benthem J, Kobets T, Chen G, Kelber O, Krzykwa J, MacGregor JT, Mei N, Mitchell CA, Rietjens I, Sarigol-Kilic Z, Smith-Roe SL, Stopper H, Thakkar Y, Zeiger E, Pfuhler S. A proposed screening strategy for evaluating the genotoxicity potential of botanicals and botanical extracts. Food Chem Toxicol 2025; 197:115277. [PMID: 39855614 DOI: 10.1016/j.fct.2025.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Botanicals have long been used to promote health and treat diseases, but the safety of many currently marketed botanicals has not been adequately evaluated. Given the chemical complexity of botanicals, which often contain numerous unknown constituents, and their widespread use, comprehensive toxicity assessments are needed. The Botanical Safety Consortium was established to address this challenge. This international group of experts in toxicology, chemistry, bioinformatics, and pharmacognosy is developing a toolkit of assays to generate reliable toxicological profiles for botanicals. Genotoxicity assessment is especially critical, because, unlike other toxicities, genotoxicity is not adequately identified by adverse event and history-of-use reports, and genotoxicity is directly linked to health consequences such as cancer and birth defects. The Consortium's Genotoxicity Technical Working Group is exploring a genotoxicity testing strategy based on the use of in silico modeling and the bacterial reverse mutation and in vitro micronucleus assays and including several options for additional tests to further characterize genotoxicity and mode of action when indicated. The effectiveness of this testing strategy is being evaluated using 13 well-characterized botanicals with existing toxicological data as case studies. A brief overview of each of these 13 botanicals is provided. The final strategy for developing comprehensive genotoxicity profiles of botanicals will incorporate published genotoxicity data, chemical composition information, in silico and in vitro test data, and human exposure data, reducing the need for animal testing.
Collapse
Affiliation(s)
- Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Beethoven, the Netherlands
| | - Tetyana Kobets
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Guosheng Chen
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Olaf Kelber
- Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivonne Rietjens
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | | | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Yax Thakkar
- Research Institute for Fragrance Materials, Inc., Woodcliff Lake, NJ, USA
| | | | | |
Collapse
|
2
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Elhajouji A, Hove TT, O'Connell O, Martus H, Dertinger SD. Pig-a gene mutation assay study design: critical assessment of 3- versus 28-day repeat-dose treatment schedules. Mutagenesis 2021; 35:349-358. [PMID: 32608486 DOI: 10.1093/mutage/geaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Abstract
The in vivo Pig-a assay is being used in safety studies to evaluate the potential of chemicals to induce somatic cell gene mutations. Ongoing work is aimed at developing an Organisation for Economic Cooperation and Development (OECD) test guideline to support routine use for regulatory purposes (OECD project number 4.93). Among the details that will need to be articulated in an eventual guideline are recommended treatment and harvest schedules. With this in mind, experiments reported herein were performed with Wistar Han rats exposed to aristolochic acid I (AA), 1,3-propane sultone, chlorambucil, thiotepa or melphalan using each of two commonly used treatment schedules: 3 or 28 consecutive days. In the case of the 3-day studies, blood was collected for Pig-a analysis on days 15 or 16 and 29 or 30. For the 28-day studies blood was collected on day 29 or 30. The effect of treatment on mutant reticulocytes and mutant erythrocytes was evaluated with parametric pair-wise tests. While each of the five mutagens increased mutant phenotype cell frequencies irrespective of study design, statistical significance was consistently achieved at lower dose levels when the 28-day format was used (e.g. 2.75 vs 20 mg/kg/bw for AA). To more thoroughly investigate the dose-response relationships, benchmark dose (BMD) analyses were performed with PROAST software. These results corroborate the pair-wise testing results in that lower BMD values were obtained with the 28-day design. Finally, mutagenic potency, as measured by BMD analyses, most consistently correlated with the mutagens' tumorigenic dose 50 values when the lengthier treatment schedule was used. Collectively, these results suggest that both 3- and 28-day treatment schedules have merit in hazard identification-type studies. That being said, for the purpose of regulatory safety assessments, there are clear advantages to study designs that utilise protracted exposures.
Collapse
Affiliation(s)
- Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, WKL-135.2.25, Basel, Switzerland
| | - Tamsanqa Tafara Hove
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, WKL-135.2.25, Basel, Switzerland
| | - Oliver O'Connell
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, WKL-135.2.25, Basel, Switzerland
| | - Hansjoerg Martus
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, WKL-135.2.25, Basel, Switzerland
| | | |
Collapse
|
4
|
Torous DK, Avlasevich SL, Khattab MG, Baig A, Saubermann LJ, Chen Y, Bemis JC, Lovell DP, Walker VE, MacGregor JT, Dertinger SD. Human blood PIG-A mutation and micronucleated reticulocyte flow cytometric assays: Method optimization and evaluation of intra- and inter-subject variation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:807-819. [PMID: 32572998 PMCID: PMC8582004 DOI: 10.1002/em.22393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
We previously described flow cytometry-based methods for scoring the incidence of micronucleated reticulocytes (MN-RET) and PIG-A mutant phenotype reticulocytes (MUT RET) in rodent and human blood samples. The current report describes important methodological improvements for human blood analyses, including immunomagnetic enrichment of CD71-positive reticulocytes prior to MN-RET scoring, and procedures for storing frozen blood for later PIG-A analysis. Technical replicate variability in MN-RET and MUT RET frequencies based on blood specimens from 14 subjects, intra-subject variability based on serial blood draws from 6 subjects, and inter-subject variation based on up to 344 subjects age 0 to 73 years were quantified. Inter-subject variation explained most of the variability observed for both endpoints (≥77%), with much lower intra-subject and technical replicate variability. The relatively large degree of inter-subject variation is apparent from mean and standard deviation values for MN-RET (0.15 ± 0.10%) and MUT RET (4.7 ± 5.0 per million, after omission of two extreme outliers). The influences of age and sex on inter-subject variation were investigated, and neither factor affected MN-RET whereas both influenced MUT RET frequency. The lowest MUT RET values were observed for subjects <11 years old, and males had moderately higher frequencies than females. These results indicate that MN-RET and MUT RET are automation-compatible biomarkers of genotoxicity that bridge species of toxicological interest to include human populations. These data will be useful for appropriately designing future human studies that include these biomarkers of genotoxicity, and highlight the need for additional work aimed at identifying the sources of inter-individual variability reported herein.
Collapse
Affiliation(s)
| | | | - Mona G. Khattab
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Ayesha Baig
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | | | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | | | | | - Vernon E. Walker
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | | |
Collapse
|
5
|
Li XL, Guo XQ, Wang HR, Chen T, Mei N. Aristolochic Acid-Induced Genotoxicity and Toxicogenomic Changes in Rodents. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020; 6:12-25. [PMID: 32258091 PMCID: PMC7110418 DOI: 10.4103/wjtcm.wjtcm_33_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aristolochic acid (AA) is a group of structurally related nitrophenanthrene carboxylic acids found in many plants that are widely used by many cultures as traditional herbal medicines. AA is a causative agent for Chinese herbs nephropathy, a term replaced later by AA nephropathy. Evidence indicates that AA is nephrotoxic, genotoxic, and carcinogenic in humans; and it also induces tumors in the forestomach, kidney, renal pelvis, urinary bladder, and lung of rats and mice. Therefore, plants containing AA have been classified as carcinogenic to humans (Group 1) by the International Agency for Research on Cancer. In our laboratories, we have conducted a series of genotoxicity and toxicogenomic studies in the rats exposed to AA of 0.1–10 mg/kg for 12 weeks. Our results demonstrated that AA treatments induced DNA adducts and mutations in the kidney, liver, and spleen of rats, as well as significant alteration of gene expression in both its target and nontarget tissues. AA treatments altered mutagenesis- or carcinogenesis-related microRNA expression in rat kidney and resulted in significant changes in protein expression profiling. We also applied benchmark dose (BMD) modeling to the 3-month AA-induced genotoxicity data. The obtained BMDL10 (the lower 95% confidence interval of the BMD10 that is a 10% increase over the background level) for AA-induced mutations in the kidney of rats was about 7 μg/kg body weight per day. This review constitutes an overview of our investigations on AA-induced genotoxicity and toxicogenomic changes including gene expression, microRNA expression, and proteomics; and presents updated information focused on AA-induced genotoxicity in rodents.
Collapse
Affiliation(s)
- Xi-Lin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xiao-Qing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hai-Rong Wang
- Tianjin Center for New Drug Safety Assessment and Research, Tianjin, China
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
6
|
Chen R, Zhou C, Cao Y, Xi J, Ohira T, He L, Huang P, You X, Liu W, Zhang X, Ma S, Xie T, Chang Y, Luan Y. Assessment of Pig-a, Micronucleus, and Comet Assay Endpoints in Tg.RasH2 Mice Carcinogenicity Study of Aristolochic Acid I. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:266-275. [PMID: 31443125 DOI: 10.1002/em.22325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A newly developed in vivo Pig-a gene mutation assay displays great potential for integration into genotoxicity tests. To obtain more evidence for application of the Pig-a assay, we integrated this assay, micronucleus test in peripheral blood (MN-pb test) and bone marrow (MN-bm test), as well as a Comet assay into a transgenic RasH2 mice carcinogenicity study. Fourteen male RasH2 mice and five wild-type (WT) mice were treated with a strong mutagen aristolochic acid I at a dose of 5 mg/kg/day for 4 consecutive weeks. Mice recovered in 5 weeks. Peripheral bloods were collected for Pig-a assay, MN-pb test, and Comet assay at several time points, while bone marrow and target organs were harvested for the MN-bm test and pathological diagnosis after mice were euthanized. Finally, 13 of the 14 RasH2 mice developed squamous cell carcinomas in the forestomach, while there were no carcinomas in the WT mice. Pig-a mutant frequencies (MFs) consecutively increased throughout the study to a maximum value of approximately 63-fold more than background. These frequencies were relative to the incidence, size, and malignant degree of tumors. Micronucleated reticulocytes increased from Day 1 to Day 49, before returning to background levels. No positive responses were observed in either the MN-bm test or the Comet assay. Results suggested that, when compared with the other two tests, the Pig-a assay persistently contributed to sustaining MFs, enhanced detection sensitivity due to the accumulation of Pig-a mutations, and demonstrated better predictability for tumorigenicity. Environ. Mol. Mutagen. 61:266-275, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Changhui Zhou
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Toko Ohira
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Liang He
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Pengcheng Huang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangcheng Ma
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Institutes for Food and Drug Control, Beijing, China
| | - Tianpei Xie
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Standard Technology Co., Ltd., Shanghai, People's Republic of China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
White PA, Long AS, Johnson GE. Quantitative Interpretation of Genetic Toxicity Dose-Response Data for Risk Assessment and Regulatory Decision-Making: Current Status and Emerging Priorities. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:66-83. [PMID: 31794061 DOI: 10.1002/em.22351] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The screen-and-bin approach for interpretation of genotoxicity data is predicated on three false assumptions: that genotoxicants are rare, that genotoxicity dose-response functions do not contain a low-dose region mechanistically characterized by zero-order kinetics, and that genotoxicity is not a bona fide toxicological endpoint. Consequently, there is a need to develop and implement quantitative methods to interpret genotoxicity dose-response data for risk assessment and regulatory decision-making. Standardized methods to analyze dose-response data, and determine point-of-departure (PoD) metrics, have been established; the most robust PoD is the benchmark dose (BMD). However, there are no standards for regulatory interpretation of mutagenicity BMDs. Although 5-10% is often used as a critical effect size (CES) for BMD determination, values for genotoxicity endpoints have not been established. The use of BMDs to determine health-based guidance values (HBGVs) requires assessment factors (AFs) to account for interspecies differences and variability in human sensitivity. Default AFs used for other endpoints may not be appropriate for interpretation of in vivo mutagenicity BMDs. Analyses of published dose-response data showing the effects of compensatory pathway deficiency indicate that AFs for sensitivity differences should be in the range of 2-20. Additional analyses indicate that the AF to compensate for short treatment durations should be in the range of 5-15. Future work should use available data to empirically determine endpoint-specific CES values; similarly, to determine AF values for BMD adjustment. Future work should also evaluate the ability to use in vitro dose-response data for risk assessment, and the utility of probabilistic methods for determination of mutagenicity HBGVs. Environ. Mol. Mutagen. 61:66-83, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alexandra S Long
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - George E Johnson
- Swansea University Medical School, Swansea, Wales, United Kingdom
| |
Collapse
|
8
|
Dertinger SD, Avlasevich SL, Torous DK, Singh P, Khanal S, Kirby C, Drake A, MacGregor JT, Bemis JC. 3Rs friendly study designs facilitate rat liver and blood micronucleus assays and Pig-a gene mutation assessments: Proof-of-concept with 13 reference chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:704-739. [PMID: 31294869 PMCID: PMC8600442 DOI: 10.1002/em.22312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 05/16/2023]
Abstract
Regulatory guidance documents stress the value of assessing the most appropriate endpoints in multiple tissues when evaluating the in vivo genotoxic potential of chemicals. However, conducting several independent studies to evaluate multiple endpoints and/or tissue compartments is resource intensive. Furthermore, when dependent on visual detection, conventional approaches for scoring genotoxicity endpoints can be slow, tedious, and less objective than the ideal. To address these issues with current practices we attempted to (1) devise resource sparing treatment and harvest schedules that are compatible with liver and blood micronucleus endpoints, as well as the Pig-a gene mutation assay, and (2) utilize flow cytometry-based methods to score each of these genotoxicity biomarkers. Proof-of-principle experiments were performed with 4-week-old male and female Crl:CD(SD) rats exposed to aristolochic acids I/II, benzo[a]pyrene, cisplatin, cyclophosphamide, diethylnitrosamine, 1,2-dimethylhydrazine, dimethylnitrosamine, 2,6-dinitrotoluene, hydroxyurea, melphalan, temozolomide, quinoline, or vinblastine. These 13 chemicals were each tested in two treatment regimens: one 3-day exposure cycle, and three 3-day exposure cycles. Each exposure, blood collection, and liver harvest was accomplished during a standard Monday-Friday workweek. Key findings are that even these well-studied, relatively potent genotoxicants were not active in both tissues and all assays (indeed only cisplatin was clearly positive in all three assays); and whereas the sensitivity of the Pig-a assay clearly benefitted from three versus one treatment cycle, micronucleus assays yielded qualitatively similar results across both study designs. Collectively, these results suggest it is possible to significantly reduce animal and other resource requirements while improving assessments of in vivo genotoxicity potential by simultaneously evaluating three endpoints and two important tissue compartments using fit-for-purpose study designs in conjunction with flow cytometric scoring approaches. Environ. Mol. Mutagen., 60:704-739, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephen D. Dertinger
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger and Jeffrey C. Bemis, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, and
| | | | | | | | | | | | | | | | - Jeffrey C. Bemis
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger and Jeffrey C. Bemis, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, and
| |
Collapse
|
9
|
Kirkland D, Uno Y, Luijten M, Beevers C, van Benthem J, Burlinson B, Dertinger S, Douglas GR, Hamada S, Horibata K, Lovell DP, Manjanatha M, Martus HJ, Mei N, Morita T, Ohyama W, Williams A. In vivo genotoxicity testing strategies: Report from the 7th International workshop on genotoxicity testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403035. [PMID: 31699340 DOI: 10.1016/j.mrgentox.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster, LS24 0AS, United Kingdom.
| | - Yoshifumi Uno
- Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama, 335-8505, Japan
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Carol Beevers
- Exponent International Ltd., The Lenz, Hornbeam Park, Harrogate, HG2 8RE, United Kingdom
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Brian Burlinson
- Envigo, Huntingdon, Cambridgeshire, PE28 4HS, United Kingdom
| | | | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Shuichi Hamada
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Katsuyoshi Horibata
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - David P Lovell
- St George's Medical School, University of London, London, SW17 0RE, United Kingdom
| | | | | | - Nan Mei
- US FDA, National Center for Toxicological Research, Jefferson, AR, USA
| | - Takeshi Morita
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd., 5-11, Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Andrew Williams
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| |
Collapse
|
10
|
Avlasevich SL, Torous DK, Bemis JC, Bhalli JA, Tebbe CC, Noteboom J, Thomas D, Roberts DJ, Barragato M, Schneider B, Prattico J, Richardson M, Gollapudi BB, Dertinger SD. Suitability of Long-Term Frozen Rat Blood Samples for the Interrogation of Pig-a Gene Mutation by Flow Cytometry. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:47-55. [PMID: 30264522 DOI: 10.1002/em.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The rodent blood Pig-a assay has been undergoing international validation for use as an in vivo hematopoietic cell gene mutation assay, and given the promising results an Organization for Economic Co-operation and Development (OECD) Test Guideline is currently under development. Enthusiasm for the assay stems in part from its alignment with 3Rs principles permitting combination with other genotoxicity endpoint(s) and integration into repeat-dose toxicology studies. One logistical requirement and experimental design limitation has been that blood samples required antibody labeling and flow cytometric analysis within one week of collection. In the current report, we describe the performance of freeze-thaw reagents that enable storage and subsequent labeling and analysis of rat blood samples for at least seven months. Data generated from three laboratories are presented that demonstrate rat erythrocyte recoveries in the range of 80-90%. Despite some loss of erythrocytes, Pearson coefficients and Bland-Altman analyses based on fresh blood vs. frozen/thawed matched pairs indicate that mutant cell and reticulocyte frequencies are not significantly affected, as the measurements are highly correlated and exhibit low bias. Collectively, these data support the effectiveness and suitability of a freeze-thaw procedure that endows the assay with several new advantageous characteristics that include: flexibility in scheduling personnel/instrumentation; reliability when shipping samples from in-life facilities to analytical sites; 3Rs-friendly, as blood from positive control animals can be stored frozen to serve as analytical controls; and ability to defer a decision to generate Pig-a data until more toxicological information becomes available on a test substance. Environ. Mol. Mutagen. 60:47-55, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
|
11
|
Elhajouji A, Vaskova D, Downing R, Dertinger SD, Martus H. Induction ofin vivo Pig-agene mutation but not micronuclei by 5-(2-chloroethyl)-2ʹ-deoxyuridine, an antiviral pyrimidine nucleoside analogue. Mutagenesis 2018; 33:343-350. [DOI: 10.1093/mutage/gey029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/10/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Dagmara Vaskova
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Rebecca Downing
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Hansjeorg Martus
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
12
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
13
|
Avlasevich SL, Labash C, Torous DK, Bemis JC, MacGregor JT, Dertinger SD. In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:30-37. [PMID: 28833575 PMCID: PMC5773054 DOI: 10.1002/em.22122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
14
|
Koyama N, Yonezawa Y, Nakamura M, Sanada H. Evaluation for a mutagenicity of aristolochic acid by Pig-a and PIGRET assays in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:80-85. [PMID: 27931820 DOI: 10.1016/j.mrgentox.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/29/2022]
Abstract
The Pig-a assay, which uses the endogenous phosphatidylinositol glycan, class A gene (Pig-a) as a reporter of mutation, has been developed as a method for evaluating in vivo mutagenicity. Pig-a gene mutation can be detected by identifying the presence of CD59, the glycosylphosphatidylinositol anchor protein, on the surface of erythrocytes (RBC Pig-a assay) and reticulocytes (PIGRET assay). The International Workshop on Genotoxicity Testing (IWGT) showed the usefulness of the RBC Pig-a assay through the evaluation of several compounds. Aristolochic acid (AA), one of the evaluated compounds in the IWGT workgroup, is a carcinogenic plant toxin that is a relatively strong gene mutagen both in vitro and in vivo, but a weak inducer of micronuclei in vivo. In the present study, we examined the mutagenicity of AA in the peripheral blood of rats treated orally with a single dose of AA using Pig-a assays. Furthermore, we evaluated the advantages of the PIGRET assay compared with the RBC Pig-a assay. The results showed that a statistically significant increase in mutant frequency of the Pig-a gene was detected at day 28 by the RBC Pig-a assay, and at days 7, 14 and 28 by the PIGRET assay. In addition, the mutant frequency by the PIGRET assay was higher than that by the RBC Pig-a assay. These results indicate that the mutagenicity of AA can be detected using the Pig-a assays, as reported by the IWGT, and the PIGRET assay can detect Pig-a mutants at an early time point compared with the RBC Pig-a assay.
Collapse
Affiliation(s)
- Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan.
| | - Yutaka Yonezawa
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Michi Nakamura
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Hisakazu Sanada
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| |
Collapse
|
15
|
Ji Z, LeBaron MJ, Schisler MR, Zhang F, Bartels MJ, Gollapudi BB, Pottenger LH. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU. Mutagenesis 2015; 31:297-308. [PMID: 26040483 DOI: 10.1093/mutage/gev035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents.
Collapse
|
16
|
Kitamoto S, Matsuyama R, Uematsu Y, Ogata K, Ota M, Yamada T, Miyata K, Funabashi H, Saito K. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [PMID: 26212303 DOI: 10.1016/j.mrgentox.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The in vivo rodent alkaline comet assay (comet assay) is a promising technique to evaluate DNA damage in vivo. However, there is no agreement on a method to evaluate DNA damage in organs where cytotoxicity is observed. As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the comet assay, we examined DNA damage in the liver, stomach, and bone marrow of rats given three oral doses of N-methyl-N-nitrosourea (MNU) up to the maximum tolerated dose based on systemic toxicity. MNU significantly increased the % tail DNA in all the organs. Histopathological analysis showed no cytotoxic effect on the liver, indicating clearly that MNU has a genotoxic potential in the liver. In the stomach, however, the cytotoxic effects were very severe at systemically non-toxic doses. Low-dose MNU significantly increased the % tail DNA even at a non-cytotoxic dose, indicating that MNU has a genotoxic potential also in the stomach. Part of the DNA damage at cytotoxic doses was considered to be a secondary effect of severe cell damage. In the bone marrow, both the % tail DNA and incidence of micronucleated polychromatic erythrocytes significantly increased at non-hematotoxic doses, which were different from the non-cytotoxic doses for liver and stomach. These findings indicate that an optimal dose for detecting DNA damage may vary among organs and that careful attention is required to select an optimum dose for the comet assay based on systemic toxicity such as mortality and clinical observations. The present study shows that when serious cytotoxicity is suggested by increased % hedgehogs in the comet assay, histopathological examination should be included for the evaluation of a positive response.
Collapse
Affiliation(s)
- Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan.
| | - Ryoko Matsuyama
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Yasuaki Uematsu
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Mika Ota
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Toru Yamada
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Hitoshi Funabashi
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd. 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
17
|
Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:23-35. [DOI: 10.1016/j.mrgentox.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
|
18
|
Kenyon MO, Coffing SL, Ackerman JI, Gunther WC, Dertinger SD, Criswell K, Dobo KL. Compensatory erythropoiesis has no impact on the outcome of the in vivo Pig-a mutation assay in rats following treatment with the haemolytic agent 2-butoxyethanol. Mutagenesis 2015; 30:325-34. [PMID: 25820171 DOI: 10.1093/mutage/geu051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Pig-a assay has rapidly gained international interest as a useful tool for assessing the mutagenic potential of compounds in vivo. Although a large number of compounds, including both mutagens and non-mutagens, have been tested in the rat Pig-a assay in haematopoietic cells, there is limited understanding of how perturbations in haematopoiesis affect assay performance. Of particular concern is the possibility that regenerative haematopoiesis alone, without exposure to a genotoxic agent, could result in elevated Pig-a mutant cell frequencies. To address this concern, Wistar-Han rats were dosed by oral gavage with a non-genotoxic haemolytic agent, 2-butoxyethanol (2-BE). Dose levels ranging from 0 to 450 mg/kg were tested using both single administration and 28-day treatment regimens. Haematology parameters were assessed at minimum within the first 24h of treatment and 8 days after the final administration. Pig-a mutant frequencies were assessed on Days 15 and ~30 for both treatment protocols and also on Days 43 and 57 for the 28-day protocol. Even at doses of 2-BE that induced marked intravascular lysis and strong compensatory erythropoiesis, the average Pig-a mutant phenotype red blood cell and reticulocyte frequencies were within the historical vehicle control distribution. 2-BE therefore showed no evidence of in vivo mutagenicity in these studies. The data suggest that perturbations in haematopoiesis alone do not lead to an observation of increased mutant frequency in the Pig-a assay.
Collapse
Affiliation(s)
- Michelle O Kenyon
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Stephanie L Coffing
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Joel I Ackerman
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - William C Gunther
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | | | - Kay Criswell
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Krista L Dobo
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| |
Collapse
|
19
|
Yadav L, Khan S, Shekh K, Jena G. Influence of 3-aminobenzamide, an inhibitor of poly(ADP-ribose)polymerase, in the evaluation of the genotoxicity of doxorubicin, cyclophosphamide and zidovudine in female mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:6-15. [DOI: 10.1016/j.mrgentox.2014.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/22/2014] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
|
20
|
Cao X, Mittelstaedt RA, Pearce MG, Allen BC, Soeteman-Hernández LG, Johnson GE, Bigger CAH, Heflich RH. Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:385-99. [PMID: 24535894 DOI: 10.1002/em.21854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds.
Collapse
Affiliation(s)
- Xuefei Cao
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|