1
|
Oppong A, Leung YH, Ghosh A, Peyot ML, Paquet M, Morales C, Clarke HJ, Al-Mulla F, Boyer A, Madiraju SRM, Boerboom D, O'Flaherty C, Prentki M. Essential role of germ cell glycerol-3-phosphate phosphatase for sperm health, oxidative stress control and male fertility in mice. Mol Metab 2024; 90:102063. [PMID: 39542419 PMCID: PMC11617388 DOI: 10.1016/j.molmet.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVES Obesity, diabetes and high-calorie diets are associated with defective sperm function and lowered male fertility. Mature spermatozoa primarily use fructose and glucose, and glucose and glycerol metabolism are important for sperm function. We recently discovered a novel mammalian enzyme, glycerol-3-phosphate (Gro3P) phosphatase (G3PP), and showed that it operates the glycerol shunt by hydrolyzing Gro3P to glycerol, and regulates glucose, lipid and energy metabolism in pancreatic β-cells and liver. We now observed that G3PP expression is the highest in the testis and spermatozoa, and investigated its role in male fertility. METHODS We examined G3PP expression during spermatogenesis in mouse and assessed male fertility and spermatozoon function in conditional germ cell specific G3PP-KO (cG3PP-KO) mice and tamoxifen-inducible conditional germ cell G3PP-KO (icG3PP-KO) mice. We also determined the structural and metabolic parameters and oxidative stress in the spermatozoa from icG3PP-KO and control mice. RESULTS G3PP expression in mouse spermatocytes and spermatids markedly increases during spermatogenesis. Male cG3PP-KO mice, in which germ cell G3PP is deleted from embryonic stage, are infertile due to dysfunctional sperm with reduced motility and capacitation, and elevated spontaneous acrosomal reaction and oxidative stress. However, icG3PP-KO male mice do not have altered fertility, due to the presence of ∼10% normal spermatozoa. icG3PP-KO spermatozoa display significantly reduced functionality and morphological and ultrastructural alterations. The icG3PP-KO spermatozoa show reduced glycerol production, elevated levels of Gro3P and reactive oxygen species (ROS), and oxidative stress that is associated with increased mitochondrial membrane potential. CONCLUSIONS Germ cell G3PP deletion leads to the generation of spermatozoa that are functionally and structurally abnormal, likely due to the build-up of Gro3P that increases mitochondrial membrane potential, ROS, and oxidative stress and alters spermatozoa function. Overall, the results indicate that G3PP and the glycerol shunt are essential for normal spermatozoa function and male fertility.
Collapse
Affiliation(s)
- Abel Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marilène Paquet
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Carlos Morales
- Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Hugh J Clarke
- Departments of Obstetrics and Gynecology and Biology, Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Fahd Al-Mulla
- Translational Medicine Department, Dasman Diabetes Institute, Kuwait
| | - Alexandre Boyer
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Derek Boerboom
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Cristian O'Flaherty
- Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Surgery (Urology Division), Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; The Research Institute, McGill University Health Centre, Montréal, Québec, Canada.
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
2
|
Hughes-Fulford M, Carroll DJ, Allaway HCM, Dunbar BJ, Sawyer AJ. Women in space: A review of known physiological adaptations and health perspectives. Exp Physiol 2024. [PMID: 39487998 DOI: 10.1113/ep091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
Exposure to the spaceflight environment causes adaptations in most human physiological systems, many of which are thought to affect women differently from men. Since only 11.5% of astronauts worldwide have been female, these issues are largely understudied. The physiological nuances affecting the female body in the spaceflight environment remain inadequately defined since the last thorough published review on the subject. A PubMed literature search yielded over 2200 publications. Using NASA's 2014 review series 'The effects of sex and gender on adaptation to space' as a benchmark, we identified substantive advancements and persistent knowledge gaps in need of further study from the nearly 600 related articles that have been published since the initial review. This review highlights the most critical issues to mitigate medical risk and promote the success of missions to the Moon and Mars. Salient sex-linked differences observed terrestrially should be studied during upcoming missions, including increased levels of inflammatory markers, coagulation factors and leptin levels following sleep deprivation; correlation between body mass and the severity of spaceflight-associated neuro-ocular syndrome; increased incidence of orthostatic intolerance; increased severity of muscle atrophy and bone loss; differences in the incidence of urinary tract infections; and susceptibility to specific cancers after exposure to ionizing radiation. To optimize health and well-being among all astronauts, it is imperative to prioritize research that considers the physiological nuances of the female body. A more robust understanding of female physiology in the spaceflight environment will support crew readiness for Artemis missions and beyond.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Danielle J Carroll
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Surgery, UCSF, San Francisco, California, USA
- Department of Bioastronautics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather C M Allaway
- Department of Kinesiology, Texas A&M University, College Station, Texas, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bonnie J Dunbar
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Texas A&M University, College Station, Texas, USA
| | - Aenor J Sawyer
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Orthopaedic Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
3
|
Ren W, Hou L, Zhang K, Chen H, Feng X, Jiang Z, Shao F, Dai J, Gao Y, He J. The sparing effect of ultra-high dose rate irradiation on the esophagus. Front Oncol 2024; 14:1442627. [PMID: 39070145 PMCID: PMC11272628 DOI: 10.3389/fonc.2024.1442627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Background and purpose Current studies have substantiated the sparing effect of ultra-high dose rate irradiation (FLASH) in various organs including the brain, lungs, and intestines. Whether this sparing effect extends to esophageal tissue remains unexplored. This study aims to compare the different responses of esophageal tissue in histological and protein expression levels following conventional dose rate irradiation (CONV) and FLASH irradiation to ascertain the presence of a sparing effect. Methods and materials C57 female mice were randomly divided into three groups: control, CONV, and FLASH groups. The chest region of the mice in the radiation groups was exposed to a prescribed dose of 20 Gy using a modified electron linear accelerator. The CONV group received an average dose rate of 0.1 Gy/s, while the FLASH group received an average dose rate of 125 Gy/s. On the 10th day after irradiation, the mice were euthanized and their esophagi were collected for histopathological analysis. Subsequently, label-free proteomic quantification analysis was performed on esophageal tissue. The validation process involved analyzing transmission electron microscopy images and utilizing the parallel reaction monitoring method. Results Histopathology results indicated a significantly lower extent of esophageal tissue damage in the FLASH group compared to the CONV group (p < 0.05). Label-free quantitative proteomic analysis revealed that the sparing effect observed in the FLASH group may be attributed to a reduction in radiation-induced protein damage associated with mitochondrial functions, including proteins involved in the tricarboxylic acid cycle and oxidative phosphorylation, as well as a decrease in acute inflammatory responses. Conclusions Compared with CONV irradiation, a sparing effect on esophageal tissue can be observed after FLASH irradiation. This sparing effect is associated with alleviated mitochondria damage and acute inflammation.
Collapse
Affiliation(s)
- Wenting Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Hou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziming Jiang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory and Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
5
|
Ahrari K, Omolaoye TS, Goswami N, Alsuwaidi H, du Plessis SS. Effects of space flight on sperm function and integrity: A systematic review. Front Physiol 2022; 13:904375. [PMID: 36035496 PMCID: PMC9402907 DOI: 10.3389/fphys.2022.904375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the advancement in space exploration and the intention to establish an inhabitable human settlement on Mars, it is important to investigate the effects of exposure to space/microgravity and the associated radiations on procreation. Sperm function and integrity are fundamental to male reproduction and can potentially be affected by the environmental changes experienced in space. Therefore, this study was conducted to systematically gather, filter, and collate all the relevant information on the effects of spaceflight on male reproductive parameters and functions. A search was performed utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were extracted from the major electronic databases including PubMed, and other credible literature sources. MeSH search terms that were employed included "spermatozoa", "microgravity", and "ionizing radiation". The literature search did not discriminate against papers published before a certain date due to the very limited number of articles available. However, there was a restriction on the male gender and language (English). The parameters included in this study are sperm motility, total sperm count, sperm DNA fragmentation hormonal levels and testicular histology. Following a comprehensive literature search, a total of 273 articles were retrieved and screened, 252 articles were excluded due to the irrelevance to the topic, duplication, and non-original articles. A total of 21 articles met the inclusion criteria and are included in the current study. Findings from these studies showed that sperm motility was decreased after exposure to microgravity and ionizing radiation. Total sperm count was also found to be reduced by microgravity only. Sperm DNA fragmentation was increased by both ionizing radiation and microgravity. Testosterone levels and testicular weight were also decreased by microgravity. Although there is a dearth in the literature regarding the effects of microgravity and ionizing radiation on male reproductive parameters, the available findings showed that exposure to microgravity poses a risk to male reproductive health. Therefore, it is essential to develop countermeasures to either manage, treat, or prevent these consequential adverse effects. Hence, this review also highlights some potential countermeasure approaches that may mitigate the harmful effects of microgravity and associated exposures on male reproductive health.
Collapse
Affiliation(s)
- Khulood Ahrari
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nandu Goswami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Otto Loewi Research Center of Vascular Biology, Inflammation, and Immunity, Medical University of Graz, Graz, Austria
| | - Hanan Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan S. du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
6
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
7
|
Abstract
Extended travel in deep space poses potential hazards to the reproductive function of female and male astronauts, including exposure to cosmic radiation, microgravity, increased gravity (hypergravity), psychological stress, physical stress and circadian rhythm disruptions. This Review focuses on the effects of microgravity, hypergravity and cosmic radiation. Cosmic radiation contains protons, helium nuclei and high charge and energy (HZE) particles. Studies performed on Earth in which rodents were exposed to experimentally generated HZE particles have demonstrated a high sensitivity of ovarian follicles and spermatogenic cells to HZE particles. Exposure to microgravity during space flight and to simulated microgravity on Earth disrupts spermatogenesis and testicular testosterone synthesis in rodents, whereas the male reproductive system seems to adapt to exposure to moderate hypergravity. A few studies have investigated the effects of microgravity on female reproduction, with findings of disrupted oestrous cycling and in vitro follicle development being cause for concern. Many remaining data gaps need to be addressed, including the effects of microgravity, hypergravity and space radiation on the male and female reproductive tracts, hypothalamic-pituitary regulation of reproduction and prenatal development of the reproductive system as well as the combined effects of the multiple reproductive hazards encountered in space.
Collapse
Affiliation(s)
- Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ulrike Luderer
- Center for Occupational and Environmental Health, Department of Medicine, Department of Developmental and Cell Biology, Program in Public Health, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Li H, Zhang W, Zhang H, Xie Y, Sun C, Di C, Si J, Gan L, Yan J. Mitochondrial proteomics reveals the mechanism of spermatogenic cells apoptosis induced by carbon ion radiation in zebrafish. J Cell Physiol 2019; 234:22439-22449. [DOI: 10.1002/jcp.28808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
- School of Nuclear Science and Technology University of Chinese Academy of Sciences Beijing China
| | - Weihong Zhang
- Department of Ultrasonography Gansu Wuwei Tumor Hospital Wuwei China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
- School of Nuclear Science and Technology University of Chinese Academy of Sciences Beijing China
- Department of Science and Technology Gansu Wuwei Tumor Hospital Wuwei China
| | - Yi Xie
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
| | - Junfang Yan
- Department of Radiation Medicine, Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics Lanzhou China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China
- School of Nuclear Science and Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
He Y, Li H, Zhang Y, Hu J, Shen Y, Feng J, Zhao X. Comparative Analysis of Mitochondrial Proteome Reveals the Mechanism of Enhanced Ram Sperm Motility Induced by Carbon Ion Radiation After In Vitro Liquid Storage. Dose Response 2019; 17:1559325818823998. [PMID: 30733653 PMCID: PMC6343446 DOI: 10.1177/1559325818823998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to reveal the mechanism of enhanced ram sperm motility induced by heavy ion radiation (HIR) after in vitro liquid storage. Ram semen was stored for 24 hours at 5°C and then irradiated with 0.1 Gy carbon ion radiation (CIR). In comparison to nonirradiated (NIR) sperm, the motility, viability, and adenosine triphosphate content were all higher in CIR sperm, and the reactive oxygen species levels were lower. Moreover, 87 differential mitochondrial protein spots were detected in 2-dimensional gels between CIR and NIR sperm and were identified as 52 corresponding proteins. In addition, 33 differential proteins were involved in a main pathway network, including COX5B, ERAB/HSD17B10, ETFA, SDHB, and SOD2, which are known to be involved in cell communication, energy production, and antioxidant responses. We used immunoblotting and immunofluorescence to analyze the content and localization of these proteins, respectively, and the levels of these proteins in CIR sperm were lower than those in NIR sperm. An understanding of the molecular function of these proteins could provide further insight into the mechanisms underlying high sperm motility induced by HIR in rams.
Collapse
Affiliation(s)
- Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yulong Shen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jin Feng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Fan PC, Zhang Y, Wang Y, Wei W, Zhou YX, Xie Y, Wang X, Qi YZ, Chang L, Jia ZP, Zhou Z, Guan H, Zhang H, Xu P, Zhou PK. Quantitative proteomics reveals mitochondrial respiratory chain as a dominant target for carbon ion radiation: Delayed reactive oxygen species generation caused DNA damage. Free Radic Biol Med 2019; 130:436-445. [PMID: 30395972 DOI: 10.1016/j.freeradbiomed.2018.10.449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023]
Abstract
Heavy ion radiotherapy has shown great promise for cancer therapy. Understanding the cellular response mechanism to heavy ion radiation is required to explore measures of overcoming devastating side effects. Here, we performed a quantitative proteomic analysis to investigate the mechanism of carbon ion irradiation on human AHH-1 lymphoblastoid cells. We identified 4602 proteins and quantified 4569 proteins showing high coverage in the mitochondria. Data are available via ProteomeXchange with identifier PXD008351. After stringent filtering, 290 proteins were found to be significantly up-regulated and 16 proteins were down-regulated. Functional analysis revealed that these up-regulated proteins were enriched in the process of DNA damage repair, mitochondrial ribosome, and particularly mitochondrial respiratory chain, accounting for approximately 50% of the accumulated proteins. Bioinformatics and functional analysis demonstrated that these up-regulated mitochondrial respiratory chain proteins enhanced ATP production and simultaneously reactive oxygen species release. More importantly, increased reactive oxygen species led to secondary organelle injury and lagged DNA double-strand breaks. Consistently, the expression of antioxidant enzymes was up-regulated for free radical scavenging. The mechanism of lagged secondary injury originated from disturbances in the mitochondrial respiratory chain. Our results provided a novel target for cell self-repair against heavy ion radiation-induced cellular damage.
Collapse
Affiliation(s)
- Peng-Cheng Fan
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China; Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Key Laboratory of the Plateau of Environmental Damage Control, General Hospital of Lanzhou, Lanzhou 730050, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China
| | - Yan-Xia Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xin Wang
- Key Laboratory of the Plateau of Environmental Damage Control, General Hospital of Lanzhou, Lanzhou 730050, China
| | - Ying-Zi Qi
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China
| | - Zheng-Ping Jia
- Key Laboratory of the Plateau of Environmental Damage Control, General Hospital of Lanzhou, Lanzhou 730050, China
| | - Zhe Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing102206, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
11
|
Li H, Wang B, Zhang H, Katsube T, Xie Y, Gan L. Apoptosis Induction by Iron Radiation via Inhibition of Autophagy in Trp53+/- Mouse Testes: Is Chronic Restraint-Induced Stress a Modifying Factor? Int J Biol Sci 2018; 14:1109-1121. [PMID: 29989073 PMCID: PMC6036728 DOI: 10.7150/ijbs.22805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/24/2018] [Indexed: 11/05/2022] Open
Abstract
We used chronic restraint-induced stress (CRIS) and iron ionizing radiation (IR) to mimic human exposure to psychological stress (PS) and IR in a mouse model, and to investigate the relationship among endoplasmic reticulum stress (ERS), apoptosis and autophagy in testicular toxicity. Male Trp53+/- C57BL/6N mice were restrained for 6 h/day for 28 consecutive days, and total body irradiation with 0.1 or 2 Gy iron ion beam was performed on the day 8. Histopathological observation showed severely damaged spermatogenic cells, increased apoptotic cells, caspase-3 activation and cytochrome c release, indicating that IR and CRIS+IR induced testicular cell apoptosis. Upregulation of GRP78 (78-kDa glucose-regulated protein) suggested that IR and CRIS+IR induced ERS in the testes, and further analysis showed that apoptosis was enhanced by ERS through activation of the PERK/eIF2α/ATF4/CHOP pathway. Decreased expression of LC3II, Atg5 (autophagy related 5) and Beclin 1, and increased expression of p62, combined with ultrastructural changes seen under transmission electron microscopy, suggest that IR and CRIS+IR inhibit autophagosome formation. This process was related to inhibition of autophagy via activation of the PI3K/AKT/mTOR pathway under ERS. We showed that apoptosis was strengthened and autophagy was inhibited by ERS in mouse testes induced by IR and CRIPS+IR. These results showed that CRIS+IR had no difference in apoptosis induction and autophagy inhibition compared with IR alone. CIRS alone could induce apoptosis only in Leydig cells and its induction of pathological and molecular changes in testicular tissues was only a small extent as compared to those induced by IR. Of note, we showed that 28 consecutive days of CRIS did not exacerbate IR effects (no additive effect with IR). These findings also suggest that studies on the concurrent exposure to PS and IR should be done using different endpoints in both short and long-term CRIS models.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China.,Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yi Xie
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
| |
Collapse
|
12
|
Islam R, Yoon H, Kim BS, Bae HS, Shin HR, Kim WJ, Yoon WJ, Lee YS, Woo KM, Baek JH, Ryoo HM. Blood-testis barrier integrity depends on Pin1 expression in Sertoli cells. Sci Rep 2017; 7:6977. [PMID: 28765625 PMCID: PMC5539286 DOI: 10.1038/s41598-017-07229-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/15/2023] Open
Abstract
The conformation and function of a subset of serine and threonine-phosphorylated proteins are regulated by the prolyl isomerase Pin1 through isomerization of phosphorylated Ser/Thr-Pro bonds. Pin1 is intensely expressed in Sertoli cells, but its function in this post mitotic cell remains unclear. Our aim was to investigate the role of Pin1 in the Sertoli cells. Lack of Pin1 caused disruption of the blood-testis barrier. We next investigated if the activin pathways in the Sertoli cells were affected by lack of Pin1 through immunostaining for Smad3 protein in testis tissue. Indeed, lack of Pin1 caused reduced Smad3 expression in the testis tissue, as well as a reduction in the level of N-Cadherin, a known target of Smad3. Pin1-/- testes express Sertoli cell marker mRNAs in a pattern similar to that seen in Smad3+/- mice, except for an increase in Wt1 expression. The resulting dysregulation of N-Cadherin, connexin 43, and Wt1 targets caused by lack of Pin1 might affect the mesenchymal-epithelial balance in the Sertoli cells and perturb the blood-testis barrier. The effect of Pin1 dosage in Sertoli cells might be useful in the study of toxicant-mediated infertility, gonadal cancer, and for designing male contraceptives.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea.
| |
Collapse
|
13
|
He Y, Li H, Wang K, Zhang Y, Zhao X. Loss of protein kinase 2 subunit alpha 2 (CK2α’) effect ram sperm function after freezing and thawing process. Anim Reprod Sci 2017; 181:9-15. [DOI: 10.1016/j.anireprosci.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/25/2022]
|
14
|
Li H, He Y, Di C, Yan J, Zhang H. Comparative analysis of the serum proteome for biomarker discovery to reveal hepatotoxicity induced by iron ion radiation in mice. Life Sci 2016; 167:57-66. [PMID: 27815023 DOI: 10.1016/j.lfs.2016.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
AIMS Proteomic analysis of serum biomarkers to determine liver toxicity after exposure to cosmic radiation has not been performed previously. This study was to identify serum biomarkers associated with hepatotoxicity following exposure to iron ion radiation. MAIN METHODS Male mice were whole-body irradiated with a 2grayunit (Gy) iron ion beam, and after 3months, serum and liver samples were collected. Two-dimensional electrophoresis (2-DE) was used to separate the identified serum proteins, and matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-TOF-TOF) was performed to identify differentially expressed proteins. Enzyme-linked immunosorbent assays and immunoblotting were applied to evaluate protein expression, and immunohistochemistry and immunofluorescence were used to investigate protein localization. Real-time polymerase chain reaction (PCR) was performed to confirm altered gene expression. KEY FINDINGS A total of 11 spots that showed differential expression were screened and identified as seven proteins. Of these, six proteins were in the same bioinformatics network and included complement component 3, serum amyloid P-component, apolipoprotein E, alpha-2-macroglobulin, fibrinogen alpha chain, and fibrinogen gamma chain. All of these proteins are synthesized by the liver, and may play an important role in liver toxicity. We also confirmed the mRNA transcription, and found that mRNA expression of the six identified proteins increased in the liver in irradiated mice. SIGNIFICANCE These results suggest that these proteins may be potential biomarkers of hepatotoxicity in astronauts enduring long space missions.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070,China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
| | - Jiawei Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215021, China.
| |
Collapse
|
15
|
Comparative proteomics reveals the underlying toxicological mechanism of low sperm motility induced by iron ion radiation in mice. Reprod Toxicol 2016; 65:148-158. [DOI: 10.1016/j.reprotox.2016.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
|
16
|
Huang YL, Fu Q, Pan H, Chen FM, Zhao XL, Wang HJ, Zhang PF, Huang FL, Lu YQ, Zhang M. Spermatogenesis-associated proteins at different developmental stages of buffalo testicular seminiferous tubules identified by comparative proteomic analysis. Proteomics 2016; 16:2005-18. [PMID: 27173832 DOI: 10.1002/pmic.201500547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/20/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The testicular seminiferous tubules contain Sertoli cells and different types of spermatogenic cells. They provide the microenvironment for spermatogenesis, but the precise molecular mechanism of spermatogenesis is still not well known. Here, we have employed tandem mass tag coupled to LC-MS/MS with the high-throughput quantitative proteomics technology to explore the protein expression from buffalo testicular seminiferous tubules at three different developmental stages (prepuberty, puberty, and postpuberty). The results show 304 differentially expressed proteins with a ≥2-fold change, and bioinformatics analysis indicates that 27 of these may be associated with spermatogenesis. Expression patterns of seven selected proteins were verified via Western blot and quantitative RT-PCR analysis, and further cellular localizations of these proteins by immunohistochemical or immunofluorescence analysis. Taken together, the results provide potential molecular markers of spermatogenesis and provide a rich resource for further studies on male reproduction regulation.
Collapse
Affiliation(s)
- Yu-Lin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Hong Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Fu-Mei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Xiu-Ling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Huan-Jing Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Peng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Feng-Ling Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P. R. China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, P. R. China
| |
Collapse
|
17
|
Diallyl disulfide attenuated carbon ion irradiation-induced apoptosis in mouse testis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway. Sci Rep 2015; 5:16020. [PMID: 26526304 PMCID: PMC4630619 DOI: 10.1038/srep16020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Diallyl disulfide (DADS), a major organosulfur compound derived from garlic, has various biological properties, including anti-cancer effects. However, the protective mechanism of DADS against radiation-induced mouse testis cell apoptosis has not been elucidated. In this study, the magnitude of radiation effects evoked by carbon ion irradiation was marked by morphology changes, significant rise in apoptotic cells, activation expression of p53, up regulation the ratio of pro-apoptotic Tap73/anti-apoptotic ΔNp73, as well as alterations of crucial mediator of the mitochondrial pathway. Interestingly, pretreatment with DADS attenuated carbon ion irradiation-induced morphology damages and apoptotic cells. Additionally, DADS elevated radiation-induced p53 and p21 expression, suggesting that p53 might be involved in the inhibition of cell cycle progression through up regulation of p21. Furthermore, administration with DADS prevented radiation-induced Tap73/ΔNp73 expression and consequently down regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression, indicating that the balance between Tap73 and ΔNp73 had potential to activate p53 responsive genes. Thus, our results showed that radio protection effect of DADS on mouse testis is mediated by blocking apoptosis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway, suggesting that DADS could be used as a potential radio protection agent for the testis against heavy-ion radiation.
Collapse
|
18
|
Li H, Zhang H, Di C, Xie Y, Zhou X, Yan J, Zhao Q. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes. Reprod Toxicol 2015; 58:45-53. [PMID: 26257270 DOI: 10.1016/j.reprotox.2015.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 01/07/2023]
Abstract
We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signaling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and therapeutic radiation.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jiawei Yan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Qiuyue Zhao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
19
|
Smith RW, Wang J, Mothersill CE, Lee LEJ, Seymour CB. Proteomic responses in the gills of fathead minnows (Pimephales promelas, Rafinesque, 1820) after 6 months and 2 years of continuous exposure to environmentally relevant dietary226Ra. Int J Radiat Biol 2015; 91:248-56. [DOI: 10.3109/09553002.2014.988894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Holland A, Ohlendieck K. Comparative profiling of the sperm proteome. Proteomics 2014; 15:632-48. [DOI: 10.1002/pmic.201400032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Ashling Holland
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| |
Collapse
|
21
|
Tripathi UK, Aslam MKM, Pandey S, Nayak S, Chhillar S, Srinivasan A, Mohanty TK, Kadam PH, Chauhan MS, Yadav S, Kumaresan A. Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds. Front Cell Dev Biol 2014; 2:24. [PMID: 25364731 PMCID: PMC4206989 DOI: 10.3389/fcell.2014.00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Sub-fertility is one of the most common problems observed in crossbred males, but the etiology remains unknown in most of the cases. Although proteomic differences in the spermatozoa and seminal plasma between breeds have been investigated, the possible differences at the sperm precursor cells and supporting/nourishing cells have not been studied. The present study reports the differential proteomic profile of spermatogenic and Sertoli cells in crossbred and purebred bulls. Testis was removed by unilateral castration of 12 peri-pubertal bulls (10 months age), four each from crossbred (Holstein Friesian × Tharparkar), exotic purebred [Holstein Friesian (HF)] and indigenous purebred [Tharparkar (TP)] bulls. Spermatogenic and Sertoli cells were isolated and subjected to proteomic analysis. Protein extracts from the Sertoli and spermatogenic cells of each breed were analyzed with 2-dimensional difference gel electrophoresis (2D-DIGE) and analyzed with Decyder™ software. Compared to HF, 26 protein spots were over expressed and 14 protein spots were under expressed in spermatogenic cells of crossbred bulls. Similarly, 7 protein spots were over expressed and 15 protein spots were under expressed in the spermatogenic cells of TP bulls compared to that of crossbred bulls. Out of 12 selected protein spots identified through mass spectrometry, Phosphatidyl ethanolamine binding protein was found to be over expressed in the spermatogenic cells of crossbred bulls compared to TP bulls. The protein, gamma actin was found to be over expressed in the Sertoli cells of HF bulls, whereas Speedy Protein-A was found to be over expressed in Sertoli cells of crossbred bulls. It may be concluded that certain proteomic level differences exist in sperm precursor cells and nourishing cells between breeds, which might be associated with differences in the fertility among these breeds.
Collapse
Affiliation(s)
- Utkarsh K Tripathi
- Theriogenology Lab, Livestock Production Management, National Dairy Research Institute Karnal, India
| | - Muhammad K M Aslam
- Theriogenology Lab, Livestock Production Management, National Dairy Research Institute Karnal, India
| | - Shashank Pandey
- Department of Biophysics, All India Institute of Medical Sciences New Delhi, India
| | - Samiksha Nayak
- Theriogenology Lab, Livestock Production Management, National Dairy Research Institute Karnal, India
| | - Shivani Chhillar
- Theriogenology Lab, Livestock Production Management, National Dairy Research Institute Karnal, India
| | - A Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences New Delhi, India
| | - T K Mohanty
- Theriogenology Lab, Livestock Production Management, National Dairy Research Institute Karnal, India
| | - Prashant H Kadam
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute Karnal, India
| | - M S Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute Karnal, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences New Delhi, India
| | - Arumugam Kumaresan
- Theriogenology Lab, Livestock Production Management, National Dairy Research Institute Karnal, India
| |
Collapse
|
22
|
Li H, He Y, Zhang H, Miao G. Differential proteome and gene expression reveal response to carbon ion irradiation in pubertal mice testes. Toxicol Lett 2014; 225:433-44. [DOI: 10.1016/j.toxlet.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 02/08/2023]
|