1
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
2
|
Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules 2023; 28:molecules28062460. [PMID: 36985432 PMCID: PMC10059899 DOI: 10.3390/molecules28062460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.
Collapse
|
3
|
Silva JF, Maria de Oliveira J, Silva WF, Costa Soares AC, Rocha U, Oliveira Dantas N, Alves da Silva Filho E, Duzzioni M, Helmut Rulf Cofré A, Wagner de Castro O, Anhezini L, Christine Almeida Silva A, Jacinto C. Supersensitive nanothermometer based on CdSe/CdSxSe1-x magic-sized quantum dots with in vivo low toxicity. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Chen J, Chen H, Wu Y, Meng J, Jin L. Parental exposure to CdSe/ZnS QDs affects cartilage development in rare minnow (Gobiocypris rarus) offspring. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109304. [PMID: 35257888 DOI: 10.1016/j.cbpc.2022.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/03/2022]
Abstract
Cartilage development is a sensitive process that is easily disturbed by environmental toxins. In this study, the toxicity of CdSe/ZnS quantum dots on the skeleton of the next generation (F1) was evaluated using rare minnows (Gobiocypris rarus) as model animals. Four-month-old sexually mature parental rare minnows (F0) were selected and treated with 0, 100, 200, 400 and 800 nmol/L CdSe/ZnS quantum dots for 4 days. Embryos of F1 generation rare minnows were obtained by artificial insemination. The results showed that with increasing maternal quantum dots exposure, the body length of F1 embryos decreased, the overall calcium content decreased, and the deformity and mortality rates increased. Alcian blue staining results showed that the lengths of the craniofacial mandible, mandibular arch length, mandibular width, and CH-CH and CH-PQ angles of larvae of rare minnows increased; histological hematoxylin-eosin staining further indicated that quantum dots affected the development of chondrocytes. Furthermore, high concentrations of CdSe/ZnS quantum dots inhibited the transcript expression of the bmp2b, bmp4, bmp6, runx2b, sox9a, lox1 and col2α1 genes. In conclusion, CdSe/ZnS quantum dots can affect the skeletal development of F1 generation embryos of rare minnows at both the individual and molecular levels, the damage to the craniofacial bone is more obvious, and the toxic effect of high concentrations of quantum dots (400 nmol/L and 800 nmol/L) is more significant.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juanzhu Meng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
5
|
Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chem Rev 2016; 116:10731-819. [DOI: 10.1021/acs.chemrev.6b00116] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Reiss
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Marie Carrière
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-CIBEST/LAN, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Christophe Lincheneau
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Louis Vaure
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Sudarsan Tamang
- Department
of Chemistry, Sikkim University, Sikkim 737102, India
| |
Collapse
|
6
|
Scebba F, Tognotti D, Presciuttini G, Gabellieri E, Cioni P, Angeloni D, Basso B, Morelli E. A SELDI-TOF approach to ecotoxicology: comparative profiling of low molecular weight proteins from a marine diatom exposed to CdSe/ZnS quantum dots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:45-52. [PMID: 26323371 DOI: 10.1016/j.ecoenv.2015.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 06/04/2023]
Abstract
Quantum dots (QDs), namely semiconductor nanocrystals, due to their particular optical and electronic properties, have growing applications in device technology, biotechnology and biomedical fields. Nevertheless, the possible threat to human health and the environment have attracted increasing attention as the production and applications of QDs increases rapidly while standard evaluation of safety lags. In the present study we performed proteomic analyses, by means of 2D gel electrophoresis and Surface Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-TOF-MS). We aimed to identify potential biomarkers of exposure to CdSe/ZnS quantum dots. The marine diatom Phaeodactylum tricornutum exposed to 2.5nM QDs was used as a model system. Both 2DE and SELDI showed the presence of differentially expressed proteins. By Principal Component Analysis (PCA) we were able to show that the differentially expressed proteins can discriminate between exposed and not exposed cells. Furthermore, a protein profile specific for exposed cells was obtained by SELDI analysis. To our knowledge, this is the first example of the application of SELDI technology to the analysis of microorganisms used as biological sentinel model of marine environmental pollution.
Collapse
Affiliation(s)
- Francesca Scebba
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Danika Tognotti
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Gianluca Presciuttini
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Edi Gabellieri
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Patrizia Cioni
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Barbara Basso
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Elisabetta Morelli
- National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| |
Collapse
|
7
|
Optical imaging, biodistribution and toxicity of orally administered quantum dots loaded heparin-deoxycholic acid. Macromol Res 2015. [DOI: 10.1007/s13233-015-3092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Wang M, Zheng Z, Meng J, Wang H, He M, Zhang F, Liu Y, Hu B, He Z, Hu Q, Wang H. In vivo study of immunogenicity and kinetic characteristics of a quantum dot-labelled baculovirus. Biomaterials 2015; 64:78-87. [PMID: 26117660 DOI: 10.1016/j.biomaterials.2015.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Nanomaterials conjugated with biomacromolecules, including viruses, have great potential for in vivo applications. Therefore, it is important to evaluate the safety of nanoparticle-conjugated macromolecule biomaterials (Nano-mbio). Although a number of studies have assessed the risks of nanoparticles and macromolecule biomaterials in living bodies, only a few of them investigated Nano-mbios. Here we evaluated the in vivo safety profile of a quantum dot-conjugated baculovirus (Bq), a promising new Nano-mbio, in mice. Each animal was injected twice intraperitoneally with 50 μg virus protein labelled with around 3*10(-5)nmol conjugated qds. Control animals were injected with PBS, quantum dots, baculovirus, or a mixture of quantum dots and baculovirus. Blood, tissues and body weight were analysed at a series of time points following both the first and the second injections. It turned out that the appearance and behaviour of the mice injected with Bq were similar to those injected with baculovirus alone. However, combination of baculovirus and quantum dot (conjugated or simply mixed) significantly induced stronger adaptive immune responses, and lead to a faster accumulation and longer existence of Cd in the kidneys. Thus, despite the fact that both quantum dot and baculovirus have been claimed to be safe in vivo, applications of Bq in vivo should be cautious. To our knowledge, this is the first study examining the interaction between a nanoparticle-conjugated virus and a living body from a safety perspective, providing a basis for in vivo application of other Nano-mbios.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jin Meng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fuxian Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Laudien J, Naglav D, Groβ-Heitfeld C, Ferenz KB, de Groot H, Mayer C, Schulz S, Schnepf A, Kirsch M. Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy. J Microencapsul 2014; 31:738-45. [PMID: 24963954 DOI: 10.3109/02652048.2014.918668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Perfluorodecalin (PFD) is an established artificial oxygen carrier due to its physical capability to solve the respiratory gases oxygen and carbon dioxide. PFD-filled poly(n-butyl-cyanoacrylate) (PACA) nanocapsules are already discussed as effective artificial oxygen carriers, and their principal suitability for intravenous administration had been shown. To further elucidate their action in vivo, it is imperative to characterise their preclinical safety and particularly their biodistribution. For these purposes, intravital fluorescence microscopy would display an attractive technique in order to monitor the PACA nanocapsules in vivo, but unfortunately, it is impossible to stain the PACA nanocapsules with a fluorescent dye fulfilling special criteria required for in vivo microscopy. In order to develop such a dye, a long-chained fluorinated thiol was used to modify a BODIPY derivative that is a highly fluorescent organic compound belonging to the difluoro-boraindacene family, as well as to functionalise mesoscopic systems, such as CdSe/ZnS-quantum dots and gold nanoparticles. Furthermore, a functionalisation of porphyrin derivatives was investigated by placing divalent ions in the centre of these systems. Due to the high solubility of all synthesised dyes in PFD, it should be possible to stain PFD-filled particles in general. However, only the functionalised BODIPY derivative was suitable for in vivo monitoring of the PFD-filled PACA nanocapsules.
Collapse
Affiliation(s)
- J Laudien
- Institute of Physiological Chemistry, University Hospital Essen , Essen , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|