1
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
2
|
Muti ND, Salvio G, Ciarloni A, Perrone M, Tossetta G, Lazzarini R, Bracci M, Balercia G. Can extremely low frequency magnetic field affect human sperm parameters and male fertility? Tissue Cell 2023; 82:102045. [PMID: 36870312 DOI: 10.1016/j.tice.2023.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Exposure to extremely low frequency magnetic fields (ELF-MF) may have different effects on spermatozoa depending on the waveform, magnetic flux density, frequency of ELF-MF, and duration of exposure. In this study, we investigated the possible role of ELF-MF (50 Hz; 1 mT) exposure in altering sperm parameters. In this study we found that exposure to ELF-MF at the frequency of 50 Hz (1 mT) for two hours induces statistically significant alterations in progressive motility, morphology and reactive oxygen species (ROS) production of human spermatozoa, suggesting a role of ELF-MF in altering reproductive function of spermatozoa. Our results represent an important discovery in the field since occupational exposure to the sine waveform 1 mT 50 Hz ELF-MF used in our study is possible in workplace. Moreover, these electromagnetic fields are product by many electronic devices and household appliances. Thus, alterations of progressive motility and morphology of spermatozoa would be important consequences of human exposures to ELF-MF.
Collapse
Affiliation(s)
- Nicola Delli Muti
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Gianmaria Salvio
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Alessandro Ciarloni
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Michele Perrone
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Raffaella Lazzarini
- Occupational Health, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Massimo Bracci
- Occupational Health, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| |
Collapse
|
3
|
Mercado-Sáenz S, López-Díaz B, Burgos-Molina AM, Sendra-Portero F, González-Vidal A, Ruiz-Gómez MJ. Exposure of S. cerevisiae to pulsed magnetic field during chronological aging could induce genomic DNA damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1756-1767. [PMID: 33797308 DOI: 10.1080/09603123.2021.1910212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This study evaluates the DNA damage induced by pulsed magnetic field (MF) on S. cerevisiae cells exposed during chronological aging. Samples were exposed to 25 Hz pulsed MF (1.5mT, 8 h/day) while cells were aging chronologically. Clonogenic drop test was used to study cellular survival and the mutation frequency was evaluated by scoring the spontaneous revertant mutants. DNA damage analysis was performed after aging by electrophoresis and image analysis. Yeast cells aged during 40 days of exposure showing that pulsed MF exposure induced a premature aging. In addition, a gradual increase in spontaneous mutants was found in pulsed MF samples in relation to unexposed controls. An increase in DNA degradation, over the background level in relation to controls, was observed at the end of the exposure period. In conclusion, exposure of S. cerevisiae cells to pulsed MF during chronological aging could induce genomic DNA damage.
Collapse
Affiliation(s)
- Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Beatriz López-Díaz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
4
|
Mustafa E, Luukkonen J, Makkonen J, Naarala J. The duration of exposure to 50 Hz magnetic fields: Influence on circadian genes and DNA damage responses in murine hematopoietic FDC-P1 cells. Mutat Res 2021; 823:111756. [PMID: 34153743 DOI: 10.1016/j.mrfmmm.2021.111756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
We investigated the effects of 50 Hz extremely low-frequency magnetic fields (MFs) on gene expression related to the circadian rhythm or DNA damage signaling and whether these fields modify DNA damage repair rate after bleomycin treatment. Murine FDC-P1 hematopoietic cells were exposed for different durations (15 min, 2 h, 12 h, and 24 h) to either 200 μT MFs or sham-exposures. Cells were then collected for comet assay or real-time PCR to determine immediate DNA damage level and circadian rhythm gene expression, respectively. To assess DNA-damage signaling and DNA repair rate, the cells were subsequently treated with 20 μg/mL bleomycin for 1 h and then either assayed immediately or allowed to repair their DNA for 1 or 2 h. We found that circadian rhythm-related genes were upregulated after 12 h of MF exposure and downregulated after 24 h of MF exposure, but none of the affected genes were core genes controlling the circadian rhythm. In addition, we found that the repair rate for bleomycin-induced damage was only decreased after MF exposure for 24 h. In conclusion, our findings suggest that the effects of MFs are duration-dependent; they were observed predominantly after long exposures.
Collapse
Affiliation(s)
- Ehab Mustafa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Jenny Makkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Biosafe - Biological Safety Solutions, Kuopio, Finland.
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Klimek A, Rogalska J. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci 2021; 11:174. [PMID: 33572550 PMCID: PMC7912337 DOI: 10.3390/brainsci11020174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a stress factor. Exposure to ELF-MF "turns on" different intracellular mechanisms into both directions: compensatory or deleterious ones. ELF-MF can provoke morphological and physiological changes in stress-related systems, mainly nervous, hormonal, and immunological ones. This review summarizes the ELF-MF-mediated changes at various levels of the organism organization. Special attention is placed on the review of literature from the last decade. Most studies on ELF-MF effects concentrate on its negative influence, e.g., impairment of behavior towards depressive and anxiety disorders; however, in the last decade there was an increase in the number of research studies showing stimulating impact of ELF-MF on neuroplasticity and neurorehabilitation. In the face of numerous studies on the ELF-MF action, it is necessary to systematize the knowledge for a better understanding of the phenomenon, in order to reduce the risk associated with the exposure to this factor and to recognize the possibility of using it as a therapeutic agent.
Collapse
Affiliation(s)
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| |
Collapse
|
6
|
Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging (Albany NY) 2020; 12:3662-3681. [PMID: 32074079 PMCID: PMC7066880 DOI: 10.18632/aging.102836] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
Magnetic field (MF) is being used in antitumor treatment; however, the underlying biological mechanisms remain unclear. In this study, the potency and mechanism of a previously published tumor suppressing MF exposure protocol were further investigated. This protocol, characterized as a 50 Hz electromagnetic field modulated by static MF with time-average intensity of 5.1 mT, when applied for 2 h daily for over 3 consecutive days, selectively inhibited the growth of a broad spectrum of tumor cell lines including lung cancer, gastric cancer, pancreatic cancer and nephroblastoma. The level of intracellular reactive oxygen species (ROS) increased shortly after field exposure and persisted. Subsequently, pronounced DNA damage and activation of DNA repair pathways were identified both in vitro and in vivo. Furthermore, use of free radical scavenger alleviated DNA damage and partially reduced cell death. Finally, this field was found to inhibit cell proliferation, and simultaneously induced two types of programmed cell death, apoptosis and ferroptosis. In conclusion, this tumor suppressing MF could determine cell fate through ROS-induced DNA damage, inducing oxidative stress and activation of the DNA damage repair pathways, eventually lead to apoptosis and ferroptosis, as well as inhibition of tumor growth.
Collapse
|
7
|
Mercado-Sáenz S, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019; 95:1588-1596. [DOI: 10.1080/09553002.2019.1643050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Silvia Mercado-Sáenz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Antonio M. Burgos-Molina
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Beatriz López-Díaz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Miguel J. Ruiz-Gómez
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
8
|
Nasrabadi N, Soheili ZS, Bagheri A, Ahmadieh H, Amizadeh Y, Sahebjam F, Tabeie F, Rezaei Kanavi M. The effects of electromagnetic fields on cultured human retinal pigment epithelial cells. Bioelectromagnetics 2019; 39:585-594. [PMID: 30462846 DOI: 10.1002/bem.22154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
A great deal of evidence has confirmed that electromagnetic fields (EMFs) can affect the central nervous system. In this study, cultured neonatal human retinal pigment epithelial (hRPE) cells were exposed to pulsed EMF of 1 mT intensity and 50 Hz frequency 8 h daily for 3 days. In addition to cell proliferation and cell death assays, immunocytochemistry for RPE65, PAX6, nestin, and cytokeratin 8/18 proteins were performed. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was performed for NES, PAX6, RPE65, and ACTA2 gene expression. Exposed hRPE cells did not demonstrate significant change in terms of cytomorphology, cell proliferation, or cell death. Protein expression of PAX6 was decreased in treated cells compared to controls and remained unchanged for RPE65, cytokeratin 8/18, and nestin. Gene expressions of NES, RPE65, and PAX6 were decreased in treated cells as compared to controls. Gene expression of ACTA2 did not significantly change. In conclusion, viability of cultivated neonatal hRPE cells did not change after short exposure to a safe dose of pulsed EMF albeit that both gene and protein expressions of retinal progenitor cell markers were reduced. Whether longer exposure durations that are being constantly produced by widely-used electronic devices may induce significant changes in these cells, needs further investigation. Bioelectromagnetics. 39:585-594, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niyousha Nasrabadi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abouzar Bagheri
- Faculty of Medicine, Department of Clinical Biochemistry and Genetics, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yashar Amizadeh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzin Sahebjam
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Faraj Tabeie
- Department of Nuclear Medicine, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Falone S, Santini S, Cordone V, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies. Front Public Health 2018. [PMID: 29527520 PMCID: PMC5829633 DOI: 10.3389/fpubh.2018.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as “possible carcinogenic.” Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-National Research Council (CNR), L'Aquila, Italy
| |
Collapse
|
10
|
Giorgi G, Pirazzini C, Bacalini MG, Giuliani C, Garagnani P, Capri M, Bersani F, Del Re B. Assessing the combined effect of extremely low-frequency magnetic field exposure and oxidative stress on LINE-1 promoter methylation in human neural cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:193-200. [PMID: 28258386 DOI: 10.1007/s00411-017-0683-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Extremely low frequency magnetic fields (ELF-MF) have been classified as "possibly carcinogenic", but their genotoxic effects are still unclear. Recent findings indicate that epigenetic mechanisms contribute to the genome dysfunction and it is well known that they are affected by environmental factors. To our knowledge, to date the question of whether exposure to ELF-MF can influence epigenetic modifications has been poorly addressed. In this paper, we investigated whether exposure to ELF-MF alone and in combination with oxidative stress (OS) can affect DNA methylation, which is one of the most often studied epigenetic modification. To this end, we analyzed the DNA methylation levels of the 5'untranslated region (5'UTR) of long interspersed nuclear element-1s (LINE-1 or L1), which are commonly used to evaluate the global genome methylation level. Human neural cells (BE(2)C) were exposed for 24 and 48 h to extremely low frequency pulsed magnetic field (PMF; 50 Hz, 1 mT) in combination with OS. The methylation levels of CpGs located in L1 5'UTR region were measured by MassARRAY EpiTYPER. The results indicate that exposures to the single agents PMF and OS induced weak decreases and increases of DNA methylation levels at different CpGs. However, the combined exposure to PMF and OS lead to significant decrease of DNA methylation levels at different CpG sites. Most of the changes were transient, suggesting that cells can restore homeostatic DNA methylation patterns. The results are discussed and future research directions outlined.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences (BiGeA), Centre for Genome Biology, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
- CIG-Interdepartmental Centre "L. Galvani" for Bioinformatics, Biophysics and Biocomplexity, Piazza di Porta San Donato 1, 40126, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
- CIG-Interdepartmental Centre "L. Galvani" for Bioinformatics, Biophysics and Biocomplexity, Piazza di Porta San Donato 1, 40126, Bologna, Italy
| | - Ferdinando Bersani
- DIFA Department of Physics and Astronomy, University of Bologna, via Berti Pichat 6/2, 40127, Bologna, Italy
| | - Brunella Del Re
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|