1
|
Hao LT, Lee S, Hwang DS, Jeon H, Park J, Kim HJ, Oh DX. Self-Healing Scaffolding Technology with Strong, Reversible Interactions under Physiological Conditions for Engineering Marbled Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40317268 DOI: 10.1021/acsami.5c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cultured meat offers a sustainable alternative to animal farming, with the potential to reduce environmental impacts and improve food security. However, recapitulating natural meat marbling remains a significant challenge. This study presents a straightforward technology for achieving precise marbling patterns in large-scale cultured meat using self-healing hydrogels containing boronic acid-conjugated chitosan. Unlike conventional hydrogels, which require nonphysiological conditions for strong, reversible bonding, our system achieves robust reversible bonding at neutral pH through a unique mechanism: the nucleophilic groups of chitosan facilitate boronic acid-diol bond formation, exhibiting half the strength of a typical covalent bond, as demonstrated by nanomechanics analysis. The hydrogels form dual reversible networks of boronic acid-diol and hydrogen bonds, enabling self-healing and tunable stiffness. Biocompatibility studies confirm that they support the growth of mouse-derived cells and bovine-derived primary muscle cells. Each hydrogel variant optimizes mechanotransduction for the distinct requirements of fat or muscle cell culture and differentiation. This self-healing scaffolding technology enables the seamless assembly of muscle and fat monocultures into centimeter-thick meat with micrometer-scale marbling patterns, tailoring organoleptic properties and nutritional profiles without the need for meat glues or processing equipment.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seunghyeon Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Haveric A, Haveric S, Hadzic M, Ezic J, Cetković T, Galic B. Moderate Toxicity of Potential Boron-containing Therapeutic, Dipotassium-trioxohydroxytetrafl uorotriborate -K2(B3O3F4OH) in Rats and Mice. BRAZ J PHARM SCI 2023; 59. [DOI: 10.1590/s2175-97902023e21384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Turna Demir F, Demir E. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model. J Appl Toxicol 2022; 42:1854-1867. [PMID: 35837816 DOI: 10.1002/jat.4363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Boron trioxide nanoparticles (B2 O3 NPs) have recently been widely used in a range of applications including electronic device technologies, acousto-optic apparatus fields and as nanopowder for the production of special glasses. We propose Drosophila melanogaster as a useful in vivo model system to study the genotoxic risks associated with NP exposure. In this study we have conducted a genotoxic evaluation of B2 O3 NPs (size average 55.52 ± 1.41 nm) and its ionic form in D. melanogaster. B2 O3 NPs were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. Toxicity, intracellular oxidative stress (reactive oxygen species, ROS), phenotypic alterations, genotoxic effect (via the wing somatic mutation and recombination test (SMART), and DNA damage (via Comet assay) were the end-points evaluated. B2 O3 NPs did not cause any mutagenic/recombinogenic effects in all tested non-toxic concentrations in Drosophila SMART. Negative data were also obtained with the ionic form. Exposure to B2 O3 NPs and its ionic form (at two highest concentrations, 2.5 and 5 mM) was found to induce DNA damage in Comet assay. Additionally, ROS induction in hemocytes and phenotypic alterations were determined in the mouths and legs of Drosophila. This study is the first study reporting genotoxicity data in the somatic cells of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects in a concentration dependent manner caused by B2 O3 NPs and its ionic form. The obtained in vivo results contribute to improvement the genotoxicity database on the B2 O3 NPs.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
4
|
Yagmur Goren A, Recepoglu YK, Karagunduz A, Khataee A, Yoon Y. A review of boron removal from aqueous solution using carbon-based materials: An assessment of health risks. CHEMOSPHERE 2022; 293:133587. [PMID: 35031249 DOI: 10.1016/j.chemosphere.2022.133587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based compounds have gained attention of researchers for use in boron removal due to their properties, which make them a viable and low cost adsorbent with a high availability, as well as environmental friendliness and high removal efficiency. The removal of boron utilizing carbon-based materials, including activated carbon (AC), graphene oxide (GO), and carbon nanotubes (CNTs), is extensively reviewed in this paper. The effects of the operating conditions, kinetics, isotherm models, and removal methods are also elaborated. The impact of the modification of the lifetime of carbon-based materials has also been explored. Compared to unmodified carbon-based materials, modified materials have a significantly higher boron adsorption capability. It has been observed that adding various elements to carbon-based materials improves their surface area, functional groups, and pore volume. Tartaric acid, one of these doped elements, has been employed to successfully improve the boron removal and adsorption capabilities of materials. An assessment of the health risk posed to humans by boron in treated water utilizing carbon-based materials was performed to better understand the performance of materials in real-world applications. Furthermore, the boron removal effectiveness of carbon-based materials was evaluated, as well as any shortcomings, future perspectives, and gaps in the literature.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Yasar K Recepoglu
- Department of Chemical Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
5
|
Abstract
BACKGROUND Hypoglycemia, the condition of low blood sugar, is a common occurance in people with diabetes using insulin therapy. Protecting against hypoglycaemia by engineering an insulin preparation that can auto-adjust its biological activity to fluctuating blood glucose levels has been pursued since the 1970s, but despite numerous publications, no system that works well enough for practical use has reached clinical practise. SCOPE OF REVIEW This review will summarise and scrutinise known approaches for producing glucose-sensitive insulin therapies. Notably, systems described in patent applications will be extensively covered, which has not been the case for earlier reviews of this area. MAJOR CONCLUSIONS The vast majority of published systems are not suitable for product development, but a few glucose-sensitive insulin concepts have recently reached clinical trials, and there is hope that glucose-sensitive insulin will become available to people with diabetes in the near future.
Collapse
Affiliation(s)
- Thomas Hoeg-Jensen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park H5.S.05, DK-2720 Maaloev, Denmark.
| |
Collapse
|
6
|
Hadrup N, Frederiksen M, Sharma AK. Toxicity of boric acid, borax and other boron containing compounds: A review. Regul Toxicol Pharmacol 2021; 121:104873. [PMID: 33485927 DOI: 10.1016/j.yrtph.2021.104873] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 01/14/2023]
Abstract
Boron, often in the form of boric acid, is widely used as a flame retardant in insulation products, and although humans ingest boron through food, high exposure may lead to unwanted health effects. We assessed the toxicity of boric acid, borax and other forms of boron, after inhalation, dermal and oral exposure. After oral exposure, boron is absorbed over the gastrointestinal tract. Intact skin seems to pose a more effective barrier to boron than compromised skin. Boron excretion seems to mainly occur via the urine, although after skin exposure boron has been demonstrated in bile and gastrointestinal contents. Inhalation toxicity data are sparse, but one animal study showed reduced foetal weight after inhalation of cellulose that had a boric acid content of 20%. Skin exposure to boric acid has proven fatal in some cases, and the range of toxicity effects include abdominal as well as local effects on the skin. Fatalities from boric acid also have occurred after oral ingestion, and the endpoints in animals are weight loss and reproductive toxicity. Concerning genotoxicity studies, the overall picture indicates that boron-containing compounds are not genotoxic. There was no evidence of the carcinogenicity of boric acid in a 2-year study in mice.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK, 2100, Denmark.
| | - Marie Frederiksen
- National Research Centre for the Working Environment, Copenhagen, DK, 2100, Denmark
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Denmark.
| |
Collapse
|
7
|
Haverić A, Durmić-Pašić A, Alić A, Mujezinović I, Smajlović A, Ostojić J, Ahatović A, Hadžić M, Prašović S, Haverić S, Galić B. Biochemical and histomorphological findings in Swiss Wistar rats treated with potential boron-containing therapeutic - K2[B3O3F4OH]. J Trace Elem Med Biol 2020; 62:126642. [PMID: 32950859 DOI: 10.1016/j.jtemb.2020.126642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Boron and boron containing compounds are known for their biological and protective roles being non-toxic and non-mutagenic in low concentrations. Male rats were exposed to halogenated boroxine (HB), dipotassium-trioxohydroxytetrafluorotriborate K2[B3O3F4OH], a potential new boron-containing therapeutic, aiming to determine concentrations with no adverse effects on selected serum biochemical parameters and histomorphological features. METHODS HB was prepared by reacting potassium hydrofluoride (KHF2) with boric acid in molar ratios 2:3 at room temperature and its primary structure contains 4 fluorine atoms substituted in 6-membered ring. In concentrations of 10, 25, 35 and 45 mg/kg, HB was administered intraperitoneally as a single dose. Biochemical parameters were observed 24 and 96 h following the treatment. Effects of HB on biochemical blood parameters were also observed 24 h following continuous nine days application in concentrations of 10 mg/kg intraperitoneally and 50 mg/kg per os. Histomorphological observation of kidneys, liver, spleen, lungs and heart was performed for all treated animals. RESULTS Administration of single high dose of HB (35 mg/kg-45 mg/kg) effected high levels of urea and creatinine, which indicated renal injury that appeared to be temporary. Possible cause of concern is pancreatic injury indicated by elevated levels of serum amylase in the groups of animals that received the highest dosages of the substance. Histopathological examination of selected tissues revealed mild to moderate lesions in the kidneys and livers associated with administration of HB. CONCLUSION Observation of biochemical serum parameters or histopathology of examined tissues revealed no adverse effects of HB either after the administration of single dose lower than 35 mg/kg or following repeated administration at 10 mg/kg. These dosages should be further considered for potential therapeutic applications.
Collapse
Affiliation(s)
- Anja Haverić
- Institute for Genetic Engineering and Biotechnology, Laboratory for Cytogenetics and Genotoxicology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina.
| | - Adaleta Durmić-Pašić
- Institute for Genetic Engineering and Biotechnology, Laboratory for Cytogenetics and Genotoxicology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Amer Alić
- Veterinary Faculty, University of Sarajevo, Department of Pathology and Department of Pharmacology and Toxicology, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Indira Mujezinović
- Veterinary Faculty, University of Sarajevo, Department of Pathology and Department of Pharmacology and Toxicology, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Ahmed Smajlović
- Veterinary Faculty, University of Sarajevo, Department of Pathology and Department of Pharmacology and Toxicology, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Jelena Ostojić
- Faculty of Science, Department of Chemistry, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Anesa Ahatović
- Institute for Genetic Engineering and Biotechnology, Laboratory for Cytogenetics and Genotoxicology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Maida Hadžić
- Institute for Genetic Engineering and Biotechnology, Laboratory for Cytogenetics and Genotoxicology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Senad Prašović
- Veterinary Faculty, University of Sarajevo, Department of Pathology and Department of Pharmacology and Toxicology, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Sanin Haverić
- Institute for Genetic Engineering and Biotechnology, Laboratory for Cytogenetics and Genotoxicology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Borivoj Galić
- Faculty of Science, Department of Chemistry, University of Sarajevo, Zmaja od Bosne 35, 71 000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Landry C, Kim MT, Kruhlak NL, Cross KP, Saiakhov R, Chakravarti S, Stavitskaya L. Transitioning to composite bacterial mutagenicity models in ICH M7 (Q)SAR analyses. Regul Toxicol Pharmacol 2019; 109:104488. [PMID: 31586682 PMCID: PMC6919322 DOI: 10.1016/j.yrtph.2019.104488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
The International Council on Harmonisation (ICH) M7(R1) guideline describes the use of complementary (quantitative) structure-activity relationship ((Q)SAR) models to assess the mutagenic potential of drug impurities in new and generic drugs. Historically, the CASE Ultra and Leadscope software platforms used two different statistical-based models to predict mutations at G-C (guanine-cytosine) and A-T (adenine-thymine) sites, to comprehensively assess bacterial mutagenesis. In the present study, composite bacterial mutagenicity models covering multiple mutation types were developed. These new models contain more than double the number of chemicals (n = 9,254 and n = 13,514) than the corresponding non-composite models and show better toxicophore coverage. Additionally, the use of a single composite bacterial mutagenicity model simplifies impurity analysis in an ICH M7 (Q)SAR workflow by reducing the number of model outputs requiring review. An external validation set of 388 drug impurities representing proprietary pharmaceutical chemical space showed performance statistics ranging from of 66-82% in sensitivity, 91-95% in negative predictivity and 96% in coverage. This effort represents a major enhancement to these (Q)SAR models and their use under ICH M7(R1), leading to improved patient safety through greater predictive accuracy, applicability, and efficiency when assessing the bacterial mutagenic potential of drug impurities.
Collapse
Affiliation(s)
- Curran Landry
- US Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Marlene T Kim
- US Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Naomi L Kruhlak
- US Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Kevin P Cross
- Leadscope Inc., 1393 Dublin Road, Columbus, OH, 43215, USA
| | - Roustem Saiakhov
- Multicase Inc., 23811 Chagrin Boulevard, Suite 305, Beachwood, OH, 44122, USA
| | - Suman Chakravarti
- Multicase Inc., 23811 Chagrin Boulevard, Suite 305, Beachwood, OH, 44122, USA
| | - Lidiya Stavitskaya
- US Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
9
|
Baldwin AF, North R, Eisenbeis S. Trace Level Quantification of Derivatized Boronic Acids by LC/MS/MS. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron F. Baldwin
- Pharmaceutical Sciences Small Molecule †Analytical Research & Development and ‡Chemical Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert North
- Pharmaceutical Sciences Small Molecule †Analytical Research & Development and ‡Chemical Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shane Eisenbeis
- Pharmaceutical Sciences Small Molecule †Analytical Research & Development and ‡Chemical Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
10
|
Akgun B, Hall DG. Boronic Acids as Bioorthogonal Probes for Site‐Selective Labeling of Proteins. Angew Chem Int Ed Engl 2018; 57:13028-13044. [DOI: 10.1002/anie.201712611] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/23/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Burcin Akgun
- Department of Chemistry—CCIS 4–010University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Dennis G. Hall
- Department of Chemistry—CCIS 4–010University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
11
|
Farfán-García ED, Castillo-García EL, Soriano-Ursúa MA. More than boric acid: Increasing relevance of boron in medicine. World J Transl Med 2018; 7:1-4. [DOI: 10.5528/wjtm.v7.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Although boron has been a chemical element of interest since the ancient times, only a few boron-containing compounds (BCCs) had been used for medicinal purposes before the 21st century. Among these, only boric acid has been explored in multiple therapeutic applications. Hence, it is common to extrapolate from boric acid to all BCCs, supposing a similar biological effect. However, boric acid is just one of dozens of BCCs in nature and thousands available from chemical synthesis. Nowadays, there is a boom in research on new BCCs as potential tools in the prevention, diagnosis and therapy of human disease. We herein discuss the new role of BCCs in drug development, with emphasis on the compounds for which a mechanism of action has been proposed or demonstrated. Because of data gathered in recent years, BCCs have expanded beyond the well-known fields of antimicrobial and antineoplastic agents, now being explored for their possible use as enzyme inhibitors, regulators of protein expression and modulators of the immune response, as well as in biomaterials. We suggest that translational medicine can accelerate the medicinal applications of BCCs, which is especially important for the human diseases that are generating a high global burden.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Emily L Castillo-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
12
|
Akgun B, Hall DG. Boronsäuren als bioorthogonale Sonden für zentrenselektives Protein‐Labeling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Burcin Akgun
- Department of Chemistry – CCIS 4-010University of Alberta Edmonton Alberta T6G 2G2 Kanada
| | - Dennis G. Hall
- Department of Chemistry – CCIS 4-010University of Alberta Edmonton Alberta T6G 2G2 Kanada
| |
Collapse
|
13
|
Affiliation(s)
- Eşref Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Giresun University, Giresun, Turkey
| | - Ricard Marcos
- Departament de Genètica i de Microbiologia, Grup de Mutagènesi, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
14
|
Pérez-Rodríguez M, García-Mendoza E, Farfán-García ED, Das BC, Ciprés-Flores FJ, Trujillo-Ferrara JG, Tamay-Cach F, Soriano-Ursúa MA. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine. Neurotoxicology 2017; 62:92-99. [PMID: 28595910 DOI: 10.1016/j.neuro.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Several striatal toxins can be used to induce motor disruption. One example is MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), whose toxicity is accepted as a murine model of parkinsonism. Recently, 3-Thienylboronic acid (3TB) was found to produce motor disruption and biased neuronal damage to basal ganglia in mice. The aim of this study was to examine the toxic effects of four boronic acids with a close structural relationship to 3TB (all having a five-membered cycle), as well as boric acid and 3TB. These boron-containing compounds were compared to MPTP regarding brain access, morphological disruption of the CNS, and behavioral manifestations of such disruption. Data was collected through acute toxicity evaluations, motor behavior tests, necropsies, determination of neuronal survival by immunohistochemistry, Raman spectroscopic analysis of brain tissue, and HPLC measurement of dopamine in substantia nigra and striatum tissue. Each compound showed a distinct profile for motor disruption. For example, motor activity was not disrupted by boric acid, but was decreased by two boronic acids (caused by a sedative effect). 3TB, 2-Thienyl and 2-furanyl boronic acid gave rise to shaking behavior. The various manifestations generated by these compounds can be linked, in part, to different levels of dopamine (measured by HPLC) and degrees of neuronal damage in the basal ganglia and cerebellum. Clearly, motor disruption is not induced by all boronic acids with a five-membered cycle as substituent. Possible explanations are given for the diverse chemico-morphological changes and degrees of disruption of the motor system, considering the role of boron and the structure-toxicity relationship.
Collapse
Affiliation(s)
- Maribel Pérez-Rodríguez
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Esperanza García-Mendoza
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Del. Tlalpan, México City, Mexico
| | - Eunice D Farfán-García
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Bhaskar C Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Madison Avenue, Box 1243 New York, NY 10029, USA
| | - Fabiola J Ciprés-Flores
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Feliciano Tamay-Cach
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico.
| |
Collapse
|
15
|
García-Ávila AK, Farfán-García ED, Guevara-Salazar JA, Trujillo-Ferrara JG, Soriano-Ursúa MA. Scope of translational medicine in developing boron-containing compounds for therapeutics. World J Transl Med 2017; 6:1-9. [DOI: 10.5528/wjtm.v6.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023] Open
Abstract
The ubiquitousness of naturally occurring boron-containing compounds (BCCs) has led to their constant contact with humankind. Recently, many synthetic BCCs have been elaborated for a broad spectrum of purposes, especially boric, boronic and borinic acids. Although BCCs were once employed primarily as antiseptics and later as antibiotics, they have become an increasingly relevant therapeutic tool. Nevertheless, this potential of BCCs has been drastically limited due to some unfortunate intra-hospital accidents in the 1940s and 1950s. The increasing use of BCCs as insecticides, antimicrobials, and other agents is providing new insights into their role in the physiology of several living species and in the pathophysiology of humans. It is becoming clear that BCCs act through a wide range of mechanisms, as do their corresponding boron-free counterparts. When comparing BCCs and similar boron-free compounds, in many cases the former show advantages in the medical field. The current mini-review focuses on how BCCs have been developed by means of translational medicine, a process connecting biomedical research with clinical applications. This process of discovery is currently in an exponential stage.
Collapse
|
16
|
Farfán-García ED, Pérez-Rodríguez M, Espinosa-García C, Castillo-Mendieta NT, Maldonado-Castro M, Querejeta E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice. Toxicol Appl Pharmacol 2016; 307:130-137. [PMID: 27495897 DOI: 10.1016/j.taap.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥200mg/kg, and involving granular cell damage at doses of 400mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system.
Collapse
Affiliation(s)
- E D Farfán-García
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - M Pérez-Rodríguez
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - C Espinosa-García
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México, Mexico
| | - N T Castillo-Mendieta
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - M Maldonado-Castro
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - E Querejeta
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - J G Trujillo-Ferrara
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - M A Soriano-Ursúa
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico.
| |
Collapse
|
17
|
Farfán-García ED, Castillo-Mendieta NT, Ciprés-Flores FJ, Padilla-Martínez II, Trujillo-Ferrara JG, Soriano-Ursúa MA. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol Lett 2016; 258:115-125. [PMID: 27329537 DOI: 10.1016/j.toxlet.2016.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/29/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects.
Collapse
Affiliation(s)
- E D Farfán-García
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México; Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - N T Castillo-Mendieta
- Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - F J Ciprés-Flores
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México; Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - I I Padilla-Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, 07340, México
| | - J G Trujillo-Ferrara
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - M A Soriano-Ursúa
- Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, 11340, México City, México.
| |
Collapse
|
18
|
Hansen MM, Jolly RA, Linder RJ. Boronic Acids and Derivatives—Probing the Structure–Activity Relationships for Mutagenicity. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00150] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marvin M. Hansen
- Small Molecule Design and Development and ‡Health/Safety/Environmental, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Robert A. Jolly
- Small Molecule Design and Development and ‡Health/Safety/Environmental, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ryan J. Linder
- Small Molecule Design and Development and ‡Health/Safety/Environmental, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
19
|
Elder DP, White A, Harvey J, Teasdale A, Williams R, Covey-Crump E. Mutagenic Impurities: Precompetitive/Competitive Collaborative and Data Sharing Initiatives. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David P. Elder
- GlaxoSmithKline R&D Ltd, Park Road, Ware, Hertfordshire SG12 0DP, United Kingdom
| | - Angela White
- GlaxoSmithKline R&D Ltd, Park Road, Ware, Hertfordshire SG12 0DP, United Kingdom
| | - James Harvey
- GlaxoSmithKline R&D Ltd, Park Road, Ware, Hertfordshire SG12 0DP, United Kingdom
| | - Andrew Teasdale
- AstraZeneca, Charter Way, Silk Road Business Park, Macclesfield, Cheshire SK10 2NX, United Kingdom
| | - Richard Williams
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, United Kingdom
| | | |
Collapse
|
20
|
Pellizzaro ML, Covey-Crump EM, Fisher J, Werner ALD, Williams RV. Investigating a Relationship between the Mutagenicity of Arylboronic Acids and 11B NMR Chemical Shifts. Chem Res Toxicol 2015; 28:1422-6. [DOI: 10.1021/acs.chemrestox.5b00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Julie Fisher
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, U.K
| | | | | |
Collapse
|