1
|
Cheng S, Che L, Yang Q, Sun R, Nie Y, Shi H, Ding Y, Wang L, Du Z, Liu Z. Folic acid ameliorates N-methyl-N′-nitro-N-nitrosoguanidine-induced esophageal inflammation via modulation of the NF-κB pathway. Toxicol Appl Pharmacol 2022; 447:116087. [DOI: 10.1016/j.taap.2022.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/24/2022]
|
2
|
Hamada S, Shigano M, Wako Y, Kawasako K, Satomoto K, Mitsumoto T, Fukuda T, Ohyama W, Morita T, Hayashi M. Detection of hepatocarcinogens by combination of liver micronucleus assay and histopathological examination in 2-week or 4-week repeated dose studies. Genes Environ 2022; 44:2. [PMID: 34983681 PMCID: PMC8725540 DOI: 10.1186/s41021-021-00222-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more scientific mechanism-based carcinogenicity assessments and promote safe and ethical development of new small molecule pharmaceuticals. In the revised draft, findings such as cellular hypertrophy, diffuse and/or focal cellular hyperplasia, persistent tissue injury and/or chronic inflammation, preneoplastic changes, and tumors are listed as histopathology findings of particular interest for identifying carcinogenic potential. In order to predict hepatocarcinogenicity of test chemicals based on the results from 2- or 4-week repeated dose studies, we retrospectively reanalyzed the results of a previous collaborative study on the liver micronucleus assay. We focused on liver micronucleus induction in combination with histopathological changes including hypertrophy, proliferation of oval cells or bile duct epithelial cells, tissue injuries, regenerative changes, and inflammatory changes as the early responses of hepatocarcinogenesis. For these early responses, A total of 20 carcinogens, including 14 genotoxic hepatocarcinogens (Group A) and 6 non-liver-targeted genotoxic carcinogens (Group B) were evaluated. Results In the Group A chemicals, 5 chemicals (NPYR, MDA, NDPA, 2,6-DNT, and NMOR) showed all of the 6 early responses in hepatocarcinogenesis. Five chemicals (DMN, 2,4-DNT, QUN, 2-AAF, and TAA) showed 4 responses, and 4 chemicals (DAB, 2-NP, MCT, and Sudan I) showed 3 responses. All chemicals exhibited at least 3 early responses. Contrarily, in the Group B chemicals (6 chemicals), 3 of the 6 early responses were observed in 1 chemical (MNNG). No more than two responses were observed in 3 chemicals (MMC, MMS, and KA), and no responses were observed in 2 chemicals (CP and KBrO3). Conclusion Evaluation of liver micronucleus induction in combination with histopathological examination is useful for detecting hepatocarcinogens. This assay takes much less time than routine long-term carcinogenicity studies.
Collapse
Affiliation(s)
- Shuichi Hamada
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan.
| | - Miyuki Shigano
- LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Yumi Wako
- LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Kazufumi Kawasako
- Rakuno Gakuen University, 582 midorimachi, Bunkyoudai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Kensuke Satomoto
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Tatsuya Mitsumoto
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Takayuki Fukuda
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Takeshi Morita
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 151-0066, Japan
| | - Makoto Hayashi
- makoto international consulting, 4-23-3-1 Kamiimaizumi, Ebina-shi, Kanagawa, 243-0431, Japan
| |
Collapse
|
3
|
Hori H, Shimoyoshi S, Tanaka Y, Fujii W, Kitagawa Y, Hayashi M. Target-specific micronucleus induction by colon carcinogens: 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 1,2-dimethylhydrazine. Regul Toxicol Pharmacol 2020; 112:104578. [PMID: 31935482 DOI: 10.1016/j.yrtph.2020.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 11/30/2022]
Abstract
Genotoxicity occurring at the target organs of carcinogenesis is important for understanding the mechanisms of chemical carcinogenicity and also for setting of threshold estimation. In vivo gene mutations have been evaluated by transgenic animal models in which any organ can be targeted; however, the methodologies that have been applied to assess chromosomal aberrations including micronucleus induction, are organ restricted, (often to bone marrow hematopoietic cells, as a common example). For food and food-related chemicals, the digestive tract is the important target organ as it is the organ of first contact. In the present study, we used 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 1,2-dimethylhydrazine (DMH) as model chemicals of carcinogens primarily targeting the colon. We evaluated the applicability of colon cells and hepatocytes, together with bone marrow cells, in the micronucleus assay. Both model chemicals induced micronuclei in the colon, which is the target organ of these carcinogens, after short- and long-term treatment(s). The results demonstrate the target specificity of micronucleus induction and the assay using organs other than bone marrow will play an important role in understanding the mechanism of carcinogenicity and predicting new carcinogenic agents.
Collapse
Affiliation(s)
- Hisako Hori
- Suntory MONOZUKURI Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan.
| | - Satomi Shimoyoshi
- Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Yasuhiro Tanaka
- Suntory MONOZUKURI Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Wataru Fujii
- Suntory MONOZUKURI Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Yoshinori Kitagawa
- Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Makoto Hayashi
- Makoto International Consulting, 23-3-1, 4-chome, Kami-imaizumi, Ebina, 243-0431, Japan
| |
Collapse
|
4
|
Multiple-endpoint genotoxicity assay for colon carcinogen 1,2-dimethylhydrazine. Mutat Res 2019; 849:503130. [PMID: 32087857 DOI: 10.1016/j.mrgentox.2019.503130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022]
Abstract
Human risk assessment of the toxic potency of chemicals typically includes genotoxicity assays for predicting carcinogenicity. Gene mutation frequency and chromosomal aberration are two major genotoxicity endpoints in standardized in vitro and in vivo assays. The weight-of-evidence approach in risk assessment is more focused on in vivo assay results; however, animal welfare considerations are aimed at the reduction, replacement, and refinement (3R's) of animal experiments, including a reduction in the number of experimental animals. Proposals to reduce experimental animals in genotoxicity testing include the incorporation of genotoxicity endpoint(s) into other toxicological studies and the combination of two or more assays detecting different genotoxicity endpoints in the same animals. In this study, we used 1,2-dimethylhydrazine as a model chemical of colon carcinogen to assess gene mutation frequency and chromosomal aberration in vivo simultaneously. Specifically, a gene mutation frequency assay was combined with a multiple-organ micronucleus test (peripheral blood, bone marrow, liver, and colon) in F344 gpt delta transgenic rats. Both gpt mutant frequency and micronucleated cell frequency significantly increased in colon and liver but not in bone marrow. Interestingly, we found that the colon carcinogen induced both gene mutations and micronuclei in the targeted colon tissue. Thus, we demonstrated that the mechanism of a carcinogen could be derived from an animal experiment using a lower number of experimental animals as currently recommended. Moreover, a significant increase in mutant frequency in colon and liver was already observed on the first day after treatment completion, as well as on the third day, which is the guideline-recommended period. Thus, this endpoint is compatible with other genotoxicity assays. We confirmed that performing the micronucleus assay in combination with a gene mutation assay in F344 gpt delta transgenic rats is useful to evaluate different genotoxic endpoints simultaneously in the same animals, which reduces the number of experimental animals.
Collapse
|
5
|
Evaluation of the novel liver micronucleus assay using formalin-fixed tissues. Genes Environ 2019; 41:13. [PMID: 31086610 PMCID: PMC6507131 DOI: 10.1186/s41021-019-0128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
Background The repeated-dose liver micronucleus (RDLMN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly for those that require metabolic activation to show genotoxicity. In a collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS), micronucleus induction of 22 chemicals with the RDLMN assay employing the collagenase digestion method was examined and reported on. Recently, we have developed a method which enables retrospective evaluation of micronucleus induction in formalin-fixed liver tissues (the formalin-fixed method) obtained in general toxicity studies completed in the past. Using this method, we were able to easily evaluate clastogenic potential of chemicals from the formalin-fixed tissues obtained in the general toxicity studies. In this study, to evaluate the usefulness of the formalin-fixed method, we have conducted a liver micronucleus assay using the formalin-fixed liver samples obtained from the above collaborative study (18 of 22 test chemicals) and carried out a comparison with the results obtained by the collagenase digestion method. Results Comparison of the collagenase digestion and formalin-fixed methods was conducted using the results of the micronucleus assays with a total of 18 test chemicals which included 12 genotoxic hepatocarcinogens (Group A), 4 genotoxic carcinogens but not liver targeted (Group B), and 2 nongenotoxic hepatocarcinogens (Group C). The formalin-fixed method obtained the similar results as the collagenase digestion method in 10 out of the 12 chemicals of Group A, and all chemicals of Group B and Group C. Although the results were statistically contradictive due to different levels of concurrent negative control, the 2 other chemicals of Group A showed comparable responses between the two methods. Conclusion The present study shows that the formalin-fixed method is capable of detecting liver carcinogens with sensitivity equal to or higher than that of the collagenase digestion method. We recommend use of the formalin-fixed method because of its capability of enabling retrospective evaluation of micronucleus induction in the formalin-fixed liver tissues obtained in general toxicity studies completed in the past.
Collapse
|
6
|
Integration of micronucleus tests with a gene mutation assay in F344 gpt delta transgenic rats using benzo[a]pyrene. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 837:1-7. [PMID: 30595204 DOI: 10.1016/j.mrgentox.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022]
Abstract
Reduction of the number of animals used in in vivo genotoxicity tests is encouraged. For this purpose, we conducted integrated toxicity tests combining gene mutation assays with multiple-organ micronucleus (MN) tests (peripheral blood, bone marrow, liver, and colon) in F344 gpt delta transgenic (Tg) rats. Seven-week-old male F344 gpt delta rats were orally administered 62.5 or 125 mg/kg/day benzo[a]pyrene (B[a]P) for 28 days. One day after the final day of treatment (day 29) and three days after the final treatment (day 31), bone marrow, liver, and colon samples were collected, and mutation assays and MN tests were performed. The gpt mutant frequency (MF) significantly increased in bone marrow, liver and colon but MN induction was only significant in bone marrow but not in liver and colon. Similarly MN induction was only observed in bone marrow in non-Tg F344 rats. In peripheral blood obtained on day 4, 15, 29, 31, a time-dependent increase was observed in reticulocyte MN frequency during the treatment. Thus, our integrated method successfully detected both gene mutations and MN induction caused by B[a]P. In addition, no significant differences were observed between sampling times (day 29 versus 31), suggesting that sampling on day 29 is also valid to evaluate gene mutations. On the other hand, MN results in bone marrow and peripheral blood were different depending on the sampling day. An appropriate sampling day should be designated according to which assays are integrated. We confirmed that integration of the MN test with a gene mutation assay using F344 gpt delta Tg rats is useful to evaluate different endpoints related to genotoxicity using the same animals and to reduce animal use.
Collapse
|
7
|
Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: Summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:2-17. [DOI: 10.1016/j.mrgentox.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|