1
|
Furihata C, Suzuki T. Four functional genotoxic marker genes (Bax, Btg2, Ccng1, and Cdkn1a) discriminate genotoxic hepatocarcinogens from non-genotoxic hepatocarcinogens and non-genotoxic non-hepatocarcinogens in rat public toxicogenomics data, Open TG-GATEs. Genes Environ 2024; 46:28. [PMID: 39702344 DOI: 10.1186/s41021-024-00322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Previously, Japanese Environmental Mutagen and Genome Society/Mammalian Mutagenicity Study Group/Toxicogenomics Study Group (JEMS/MMS toxicogenomic study group) proposed 12 genotoxic marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) and non-genotoxic non-hepatocarcinogens (NGTNHCs) in mouse and rat liver using qPCR and RNA-Seq and confirmed in public rat toxicogenomics data, Open TG-GATEs, by principal component analysis (PCA). On the other hand, the U.S. Environmental Protection Agency (US EPA) suggested seven genotoxic marker genes (Bax, Btg2, Ccng1, Cgrrf1, Cdkn1a, Mgmt, and Tmem47) with Open TG-GATEs data. Four genes (Bax, Btg2, Ccng1, and Cdkn1a) were common in these two studies. In the present study, we examined the performance of these four genes in Open TG-GATEs data using PCA. RESULTS The study's findings are of paramount significance, as these four genes proved to be highly effective in distinguishing five typical GTHCs (2-acetylaminofluorene, aflatoxin B1, 2-nitrofluorene, N-nitrosodiethylamine and N-nitrosomorpholine) from seven typical NGTHCs (clofibrate, ethanol, fenofibrate, gemfibrozil, hexachlorobenzene, phenobarbital, and WY-14643) and 11 NGTNHCs (allyl alcohol, aspirin, caffeine, chlorpheniramine, chlorpropamide, dexamethasone, diazepam, indomethacin, phenylbutazone, theophylline, and tolbutamide) by PCA at 24 h after a single administration with 100% accuracy. These four genes also effectively distinguished two typical GTHCs (2-acetylaminofluorene and N-nitrosodiethylamine) from seven NGTHCs and ten NGTNHCs by PCA on 29 days after 28 days-repeated administrations, with a similar or even better performance compared to the previous 12 genes. Furthermore, the study's analysis revealed that the three intermediate GTHC/NGTHCs (methapyrilene, monocrotaline, and thioacetamide, which were negative in the Salmonella test but positive in the in vivo rat liver test) were located in the intermediate region between typical GTHCs and typical NGTHCs by PCA. CONCLUSIONS The present results unequivocally demonstrate the availability of four genotoxic marker genes ((Bax, Btg2, Ccng1, and Cdkn1a) and PCA in discriminating GTHCs from NGTHCs and NGTNHCs in Open TG-GATEs. These findings strongly support our recommendation that future rat liver in vivo toxicogenomics tests prioritize these four genotoxic marker genes, as they have proven to be highly effective in discriminating between different types of hepatocarcinogens.
Collapse
Affiliation(s)
- Chie Furihata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan.
- School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Sagamihara, Kanagawa, 252-5258, Japan.
| | - Takayoshi Suzuki
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, 210-9501, Japan
| |
Collapse
|
2
|
Hamada S, Shigano M, Wako Y, Kawasako K, Satomoto K, Mitsumoto T, Fukuda T, Ohyama W, Morita T, Hayashi M. Detection of hepatocarcinogens by combination of liver micronucleus assay and histopathological examination in 2-week or 4-week repeated dose studies. Genes Environ 2022; 44:2. [PMID: 34983681 PMCID: PMC8725540 DOI: 10.1186/s41021-021-00222-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more scientific mechanism-based carcinogenicity assessments and promote safe and ethical development of new small molecule pharmaceuticals. In the revised draft, findings such as cellular hypertrophy, diffuse and/or focal cellular hyperplasia, persistent tissue injury and/or chronic inflammation, preneoplastic changes, and tumors are listed as histopathology findings of particular interest for identifying carcinogenic potential. In order to predict hepatocarcinogenicity of test chemicals based on the results from 2- or 4-week repeated dose studies, we retrospectively reanalyzed the results of a previous collaborative study on the liver micronucleus assay. We focused on liver micronucleus induction in combination with histopathological changes including hypertrophy, proliferation of oval cells or bile duct epithelial cells, tissue injuries, regenerative changes, and inflammatory changes as the early responses of hepatocarcinogenesis. For these early responses, A total of 20 carcinogens, including 14 genotoxic hepatocarcinogens (Group A) and 6 non-liver-targeted genotoxic carcinogens (Group B) were evaluated. Results In the Group A chemicals, 5 chemicals (NPYR, MDA, NDPA, 2,6-DNT, and NMOR) showed all of the 6 early responses in hepatocarcinogenesis. Five chemicals (DMN, 2,4-DNT, QUN, 2-AAF, and TAA) showed 4 responses, and 4 chemicals (DAB, 2-NP, MCT, and Sudan I) showed 3 responses. All chemicals exhibited at least 3 early responses. Contrarily, in the Group B chemicals (6 chemicals), 3 of the 6 early responses were observed in 1 chemical (MNNG). No more than two responses were observed in 3 chemicals (MMC, MMS, and KA), and no responses were observed in 2 chemicals (CP and KBrO3). Conclusion Evaluation of liver micronucleus induction in combination with histopathological examination is useful for detecting hepatocarcinogens. This assay takes much less time than routine long-term carcinogenicity studies.
Collapse
Affiliation(s)
- Shuichi Hamada
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan.
| | - Miyuki Shigano
- LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Yumi Wako
- LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Kazufumi Kawasako
- Rakuno Gakuen University, 582 midorimachi, Bunkyoudai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Kensuke Satomoto
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Tatsuya Mitsumoto
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Takayuki Fukuda
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Takeshi Morita
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 151-0066, Japan
| | - Makoto Hayashi
- makoto international consulting, 4-23-3-1 Kamiimaizumi, Ebina-shi, Kanagawa, 243-0431, Japan
| |
Collapse
|
3
|
Shigano M, Takasawa H, Hamada S. The effect of aging on the repeated-dose liver micronucleus assay. Genes Environ 2021; 43:37. [PMID: 34503583 PMCID: PMC8427953 DOI: 10.1186/s41021-021-00212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The liver micronucleus (MN) assay is an effective and important in vivo test for detecting genotoxic compounds. In particular, the repeated-dose liver MN (RDLMN) assay which greatly facilitates incorporation of the liver MN assay into the general toxicity study has been developed. Usefulness of the RDLMN assay was appraised highly in the 7th International Workshops on Genotoxicity Testing (2017 in Tokyo) in that sufficient numbers and types of chemicals were studied and easy integration into the general toxicity study is preferred from the 3R's point of view. However, it was pointed out that it is necessary to evaluate the effect of age at the start of 4-week repeated administration, since there are limited data, where only those of rats of 6 week of age at the start of administration are available. In this study, we conducted the 4-week RDLMN assay using rats of 6 and 8 weeks of age (at the start of administration) to investigate the effect of age on the liver MN inducibility. Clofibrate, a weak inducer of liver MN, was used in this study to detect the slight difference in the liver MN induction. RESULTS The liver MN induced by clofibrate was detected in both rats of 6 and 8 weeks of age at the start of administration. However, the liver MN induction was lower in rats of 8 weeks of age compared to rats of 6 weeks of age at the start of administration. CONCLUSION These results suggest that the liver MN inducibility decreases with age. Therefore, we recommend the use of rats of 6 weeks of age at start of administration to reliably detect the liver MN induction in the RDLMN assay.
Collapse
Affiliation(s)
- Miyuki Shigano
- Safety Assessment Department, Kashima Laboratories, LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan.
| | - Hironao Takasawa
- Safety Assessment Department, Kashima Laboratories, LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Shuichi Hamada
- Bozo Research Center Inc, 1-3-11, Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| |
Collapse
|
4
|
Li B, Jiang HY, Wang ZH, Ma YC, Bao YN, Jin Y. Effect of fenofibrate on proliferation of SMMC-7721 cells via regulating cell cycle. Hum Exp Toxicol 2021; 40:1208-1221. [PMID: 33538198 DOI: 10.1177/0960327121991901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Liver cancer is a malignant cancer with great harmfulness. Fenofibrate is a peroxisome proliferation activated receptor (PPARα) agonist widely used in the treatment of dyslipidemia. Previous studies have shown that fenofibrate may promote cell proliferation, but the underlying mechanism has not been fully characterized. The aim of this study was to investigate the role of PPARα agonist fenofibrate in cell proliferation of SMMC-7721 cells compared with that of THLE-2 cells. SMMC-7721 and THLE-2 cells were treated with different concentrations of fenofibrate. Cell proliferation was analyzed by MTT, using flow cytometry for cell cycle analysis, and CyclinD1, Cyclin-dependent kinases2 (CDK2) and Proliferating Cell Nuclear Antigen (PCNA) were analyzed by Western blotting. RT-qPCR method was used to assess CDK2, CyclinD1 and PCNA mRNA levels. The results showed that 10-9-10-4 mol/L fenofibrate could induce cell growth and 10-4, 10-5, 10-6 mol/L fenofibrate could reduce the number of G0/G1 phase cells and increased in the number of cells in S and G2/M phase of cell cycle in SMMC-7721 cells. Furthermore, fenofibrate could significantly increase the expression of cell cycle related protein (CyclinD1, CDK2)and cell proliferation related proteins (PCNA). The use of PPARα inhibitor MT886 inhibited cell cycle progression and promote tumor cell apoptosis. But fenofibrate had no obvious effect on THLE-2 cells. These results revealed the effect of fenofibrate on the cell cycle of liver cancer cells, and provided a reasonable explanation for studying how fenofibrate promotes cell proliferation.
Collapse
Affiliation(s)
- B Li
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - H-Y Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Z-H Wang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y-C Ma
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y-N Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
6
|
Evaluation of the novel liver micronucleus assay using formalin-fixed tissues. Genes Environ 2019; 41:13. [PMID: 31086610 PMCID: PMC6507131 DOI: 10.1186/s41021-019-0128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
Background The repeated-dose liver micronucleus (RDLMN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly for those that require metabolic activation to show genotoxicity. In a collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS), micronucleus induction of 22 chemicals with the RDLMN assay employing the collagenase digestion method was examined and reported on. Recently, we have developed a method which enables retrospective evaluation of micronucleus induction in formalin-fixed liver tissues (the formalin-fixed method) obtained in general toxicity studies completed in the past. Using this method, we were able to easily evaluate clastogenic potential of chemicals from the formalin-fixed tissues obtained in the general toxicity studies. In this study, to evaluate the usefulness of the formalin-fixed method, we have conducted a liver micronucleus assay using the formalin-fixed liver samples obtained from the above collaborative study (18 of 22 test chemicals) and carried out a comparison with the results obtained by the collagenase digestion method. Results Comparison of the collagenase digestion and formalin-fixed methods was conducted using the results of the micronucleus assays with a total of 18 test chemicals which included 12 genotoxic hepatocarcinogens (Group A), 4 genotoxic carcinogens but not liver targeted (Group B), and 2 nongenotoxic hepatocarcinogens (Group C). The formalin-fixed method obtained the similar results as the collagenase digestion method in 10 out of the 12 chemicals of Group A, and all chemicals of Group B and Group C. Although the results were statistically contradictive due to different levels of concurrent negative control, the 2 other chemicals of Group A showed comparable responses between the two methods. Conclusion The present study shows that the formalin-fixed method is capable of detecting liver carcinogens with sensitivity equal to or higher than that of the collagenase digestion method. We recommend use of the formalin-fixed method because of its capability of enabling retrospective evaluation of micronucleus induction in the formalin-fixed liver tissues obtained in general toxicity studies completed in the past.
Collapse
|
7
|
Ji Z, Settivari RS, LeBaron MJ. Pilot studies evaluating the nongenotoxic rodent carcinogens phenobarbital and clofibrate in the rat Pig-a assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:42-46. [PMID: 30338550 DOI: 10.1002/em.22232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The Pig-a assay is an emerging and promising in vivo method to determine mutagenic potential of chemicals. Since its development in 2008, remarkable progress has been made in harmonizing and characterizing the test procedures, primarily using known mutagenic chemicals. The purpose of the present study was to evaluate specificity of the Pig-a assay using two nongenotoxic and well-characterized rodent liver carcinogens, phenobarbital and clofibrate, in male F344/DuCrl rats. Daily oral administration of phenobarbital or clofibrate at established hepatotoxic doses for 28 days resulted in substantial hepatic alterations, however, did not increase the frequency of Pig-a mutation markers (RETCD59- and RBCCD59- ) compared to vehicle control or pre-exposure (Day -5) mutant frequencies. These results are consistent with the existing literature on the nonmutagenic mode of action (MoA) of phenobarbital and clofibrate liver tumors. The present study contributes to the limited, but expanding evidence on the specificity of the Pig-a assay and further for the investigations of carcinogenic MoAs, i.e., mutagenic or nonmutagenic potential of chemicals. Environ. Mol. Mutagen. 60:42-46, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | - Raja S Settivari
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | - Matthew J LeBaron
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| |
Collapse
|
8
|
Zhu XW, Xin YJ, Chen QH. Chemical and in vitro biological information to predict mouse liver toxicity using recursive random forests. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:559-572. [PMID: 27353437 DOI: 10.1080/1062936x.2016.1201142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
In this study, recursive random forests were used to build classification models for mouse liver toxicity. The mouse liver toxicity endpoint (67 toxic and 166 non-toxic) was a composition of four in vivo chronic systemic and carcinogenic toxicity endpoints (non-proliferative, neoplastic, proliferative and gross pathology). A multiple under-sampling approach and a shifted classification threshold of 0.288 (non-toxic < 0.288 and toxic ≥ 0.288) were used to cope with the unbalanced data. Our study showed that recursive random forests are very efficient in variable selection and for the development of predictive in silico models. Generally, over 95% redundant descriptors could be reduced from modelling for all the chemical, biological and hybrid models in this study. The predictive performance of chemical models (CCR of 0.73) is comparable with hybrid model performance (CCR of 0.74). Descriptors related to the octanol-water partition coefficient are vital for model performance. The in vitro endpoint of CYP2A2 played a key role in the development and interpretation of hybrid models. Identifying high-throughput screening assays relevant to liver toxicity would be key for improving in silico models of liver toxicity.
Collapse
Affiliation(s)
- X-W Zhu
- a College of Resource and Environment, Qingdao Agricultural University , Qingdao , China
- b Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University , Qingdao , China
| | - Y-J Xin
- a College of Resource and Environment, Qingdao Agricultural University , Qingdao , China
| | - Q-H Chen
- a College of Resource and Environment, Qingdao Agricultural University , Qingdao , China
| |
Collapse
|
9
|
Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: Summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:2-17. [DOI: 10.1016/j.mrgentox.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|