1
|
Tamizh Selvan G, Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J Genet Eng Biotechnol 2024; 22:100409. [PMID: 39674629 PMCID: PMC11381789 DOI: 10.1016/j.jgeb.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The measurement of micronucleus (MN) in the cytokinesis-block arrested binucleated cells has been extensively used as a biomarker in many radiation biology applications in specific biodosimetry. Following radiation casualties, medical management of exposed individuals begins with triage and biological dosimetry. The cytokinesis blocked micronucleus (CBMN) assay is the alternate for the gold standard dicentric chromosome assay in radiation dose assessment. In recent years, the CBMN assay has become well-validated and emerged as a method of choice for evaluating occupational and accidental exposures scenario. It is feasible due to its cost-effective, simple, and rapid dose assessment rather than a conventional chromosome aberration assay. PubMed search tool was used with keywords of MN, biodosimetry, radiotherapy and restricted to human samples. Since Fenech and Morely developed the assay, it has undergone many technical and technological reforms as a biomarker of various applications. In this review, we have abridged recent developments of the CBMN assay in radiation triage and biodosimetry, focusing on (a) the influence of variables on dose estimation, (b) the importance of baseline frequency and reported dose-response coefficient values among different laboratories, (c) inter-laboratory comparison and (d) its limitations and means to overcome them.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
2
|
Lee YH, Yoon HJ, Yang SS, Lee IK, Jo WS, Jeong SK, Oh SJ, Kim J, Lee Y, Seong KM. Lessons on harmonization of scoring criteria for dicentric chromosome assay in South Korea. Int J Radiat Biol 2024; 100:709-714. [PMID: 38394348 DOI: 10.1080/09553002.2024.2316603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Networking with other biodosimetry laboratories is necessary to assess the radiation exposure of many individuals in large-scale radiological accidents. The Korea biodosimetry network, K-BioDos, prepared harmonized scoring guidelines for dicentric chromosome assay to obtain homogeneous results within the network and investigated the efficiency of the guidelines. MATERIALS AND METHODS Three laboratories in K-BioDos harmonized the scoring guidelines for dicentric chromosome assay. The results of scoring dicentric chromosomes using the harmonized scoring guidelines were compared with the laboratories' results using their own methods. Feedback was collected from the scorers following the three intercomparison exercises in 3 consecutive years. RESULTS K-BioDos members showed comparable capacity to score dicentrics in the three exercises. However, the results of the K-BioDos guidelines showed no significant improvement over those of the scorers' own methods. According to the scorers, our harmonized guidelines led to more rejected metaphases and ultimately decreased the number of scorable metaphases compared with their own methods. Moreover, the scoring time was sometimes longer with the K-BioDos protocol because some scorers were not yet familiar with the guidelines, though most scorers reported that the time decreased or was unchanged. These challenges may cause low adherence to the guidelines. Most scorers expressed willingness to use the guidelines to select scorable metaphases or identify dicentrics for other biodosimetry works, whereas one did not want to use it due to the difference from their calibration curves. CONCLUSIONS We identified potential resistance to following the harmonized guidelines and received requests for more detailed methods. Our findings suggest that the harmonized criteria should be continually updated, and education and training should be provided for all scorers. These changes could allow members within the biodosimetry network to successfully collaborate and support each other in large-scale radiological accidents.
Collapse
Affiliation(s)
- Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Su San Yang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - In Kyung Lee
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Wol Soon Jo
- Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Soo Kyung Jeong
- Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Su Jung Oh
- Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jiin Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - Younghyun Lee
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
3
|
Schunck C, Lörch T, Kowalski R, Porter M, Mahnke R, Capaccio C, Perrier J, Damer K. A standardized and automated CBMN assay for biological dosimetry: the CytoRADx™ system. RADIATION PROTECTION DOSIMETRY 2023; 199:1516-1519. [PMID: 37721072 DOI: 10.1093/rpd/ncad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/06/2022] [Accepted: 01/25/2023] [Indexed: 09/19/2023]
Abstract
Major nuclear accidents can result in many casualties, and it is important to assess the absorbed radiation dose to support treatment decisions. Biological dosimetry (BD) allows retrospective determination of dose using biological markers. To achieve consistent cytogenetic assay results across labs, the current practice requires each lab to generate periodic, unique calibration curves using in vitro dose-effect experiments. Here, we present CytoRADx™, a standardized biodosimetry system that integrates automated dose calculation in a high-throughput platform without the need for lab-specific calibration curves. CytoRADx consists of an improved, standardized Cytokinesis Block Micronucleus assay combined with automated analysis utilizing an established slide scanning device. We tested CytoRADx for accuracy and reproducibility across different instruments, sites, days and operators. Our results demonstrate that CytoRADx eliminates the time-consuming, lab-specific calibration curves, allowing multiple laboratories to obtain consistent results and to distribute the testing burden in the event of a large-scale accident.
Collapse
Affiliation(s)
| | - Thomas Lörch
- MetaSystems Hard & Software GmbH, Altlussheim, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Gotoh E. Chemical-Induced Premature Chromosome Condensation Protocol. Methods Mol Biol 2023; 2519:41-51. [PMID: 36066708 DOI: 10.1007/978-1-0716-2433-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chromosome analysis is one of most fundamental techniques for cytogenetic studies. Chromosomes are conventionally prepared from mitotic cells arrested by colcemid block protocol. Premature chromosome condensation (PCC) technique is an alternative to obtain chromosomes. It was more than half century ago that the first observation of PCC phenomena reported. Since then, cell-fusion-mediated PCC method has been developed and introduced in many fields of chromosome analysis. More than quarter century ago, novel PCC technique using chemical drug has been developed. Afterwards, this simple and efficient drug-induced PCC technique becomes a standard protocol for preparing chromosomes. Thus, it seems to be the good time to introduce PCC technique protocol for the artisans in the field of cytogenetic studies.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Division of Diagnostic Imaging, Department of Radiology, Japan Labour Health and Safety Organization, Tokyo Rosai Hospital, Ohta-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Wang C, Hao C, Dai K, Li Y, Jiao J, Niu Z, Xu X, Deng X, He J, Yao W. Occupational Low-Dose Radiation Affects the Expression of Immune Checkpoint of Medical Radiologists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7105. [PMID: 35742351 PMCID: PMC9223099 DOI: 10.3390/ijerph19127105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the expression of immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and T cell immunoglobulin and mucin domain 3 (TIM-3) in the peripheral blood T lymphocytes of medical radiologists. The study incorporated 100 male medical radiologists and 107 male healthy controls. The expressions of CTLA-4 and TIM-3 among CD4+ and CD8+ lymphocytes were detected by flow cytometry. The expression levels of CTLA-4 and TIM-3 in the CD4+T cells of radiation workers were lower than those of healthy controls (p < 0.05). Correlation analysis showed that the CD8+CTLA-4 expression level was significantly positively correlated with individual cumulative dose (rs = 0.260, p = 0.001, <0.05), while the expression level of CD8+TIM-3 was negatively correlated (rs = −0.180, p = 0.027, <0.05). Low-dose radiation exposure affects the expression of CTLA-4 and TIM-3 in human peripheral blood T lymphocytes. Future studies need to focus on exploring the mechanisms by which CTLA-4 and TIM-3 expression changes in response to low-dose radiation exposure.
Collapse
Affiliation(s)
- Chen Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Kai Dai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Yuzheng Li
- Henan Institute of Occupational Medicine, Zhengzhou 450001, China; (Y.L.); (J.J.)
| | - Jie Jiao
- Henan Institute of Occupational Medicine, Zhengzhou 450001, China; (Y.L.); (J.J.)
| | - Zhuoya Niu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Xiao Xu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Xuedan Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Jing He
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| |
Collapse
|
6
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
7
|
Soumboundou M, Dossou J, Kalaga Y, Nkengurutse I, Faye I, Guingani A, Gadji M, Yameogo KJ, Zongo H, Mbaye G, Dem A, Diarra M, Adjibade R, Djebou C, Junker S, Oudrhiri N, Hempel WM, Dieterlen A, Jeandidier E, Carde P, El Maalouf E, Colicchio B, Bennaceur-Griscelli A, Fenech M, Voisin P, Rodriguez-Lafrasse C, M'Kacher R. Is Response to Genotoxic Stress Similar in Populations of African and European Ancestry? A Study of Dose-Response After in vitro Irradiation. Front Genet 2021; 12:657999. [PMID: 34868192 PMCID: PMC8632650 DOI: 10.3389/fgene.2021.657999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Exposure to genotoxic stress such as radiation is an important public health issue affecting a large population. The necessity of analyzing cytogenetic effects of such exposure is related to the need to estimate the associated risk. Cytogenetic biological dosimetry is based on the relationship between the absorbed dose and the frequency of scored chromosomal aberrations. The influence of confounding factors on radiation response is a topical issue. The role of ethnicity is unclear. Here, we compared the dose-response curves obtained after irradiation of circulating lymphocytes from healthy donors of African and European ancestry. Materials and Methods: Blood samples from six Africans living in Africa, five Africans living in Europe, and five Caucasians living in Europe were exposed to various doses (0–4 Gy) of X-rays at a dose-rate of 0.1 Gy/min using an X-RAD320 irradiator. A validated cohort composed of 14 healthy Africans living in three African countries was included and blood samples were irradiated using the same protocols. Blood lymphocytes were cultured for 48 h and chromosomal aberrations scored during the first mitosis by telomere and centromere staining. The distribution of dicentric chromosomes was determined and the Kruskal-Wallis test was used to compare the dose-response curves of the two populations. Results: No spontaneous dicentric chromosomes were detected in African donors, thus establishing a very low background of unstable chromosomal aberrations relative to the European population. There was a significant difference in the dose response curves between native African and European donors. At 4 Gy, African donors showed a significantly lower frequency of dicentric chromosomes (p = 8.65 10–17), centric rings (p = 4.0310–14), and resulting double-strand-breaks (DSB) (p = 1.32 10–18) than European donors. In addition, a significant difference was found between African donors living in Europe and Africans living in Africa. Conclusion: This is the first study to demonstrate the important role of ethnic and environmental factors that may epigenetically influence the response to irradiation. It will be necessary to establish country-of-origen-specific dose response curves to practice precise and adequate biological dosimetry. This work opens new perspective for the comparison of treatments based on genotoxic agents, such as irradiation.
Collapse
Affiliation(s)
| | - Julien Dossou
- Département du Génie d'Imagerie Médicale et Radiobiologie, Cotonou, Benin
| | - Yossef Kalaga
- Centre Hospitalier Yalgado Radioprotection-Radiobiologie, Ouagadougou, Burkina Faso
| | | | | | - Albert Guingani
- Centre Hospitalier Yalgado Radioprotection-Radiobiologie, Ouagadougou, Burkina Faso
| | | | - Koudbi J Yameogo
- Centre Hospitalier Yalgado Radioprotection-Radiobiologie, Ouagadougou, Burkina Faso
| | - Henri Zongo
- Centre Hospitalier Yalgado Radioprotection-Radiobiologie, Ouagadougou, Burkina Faso
| | - Gora Mbaye
- Laboratoire Biophysique UFR-Santé, Dakar, Senegal
| | | | | | - Rached Adjibade
- Département du Génie d'Imagerie Médicale et Radiobiologie, Cotonou, Benin
| | - Catherine Djebou
- Département du Génie d'Imagerie Médicale et Radiobiologie, Cotonou, Benin
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Noufissa Oudrhiri
- APHP-Service d'Hématologie - Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/Inserm UMR 935, Villejuif, France
| | | | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | - Eric Jeandidier
- Service de Génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | - Annelise Bennaceur-Griscelli
- APHP-Service d'Hématologie - Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/Inserm UMR 935, Villejuif, France
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Genome Health Foundation, North Brighton, SA, Australia.,Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, UMR CNRS5822/IN2P3, IPNL, PRISME, Oullins, France
| | | |
Collapse
|
8
|
Vinnikov V, Belyakov O. Clinical Applications of Biological Dosimetry in Patients Exposed to Low Dose Radiation Due to Radiological, Imaging or Nuclear Medicine Procedures. Semin Nucl Med 2021; 52:114-139. [PMID: 34879905 DOI: 10.1053/j.semnuclmed.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation dosimetric biomarkers have found applications beyond radiation protection area and now are actively introduced into clinical practice. Cytogenetic assays appeared to be a valuable tool for individualized quantifying radiation effects in patients, with high capability for assessing genotoxicity of various medical exposure modalities and providing meaningful radiation dose estimates for prognoses of radiation-related cancer risk. This review summarized current data on the use of biological dosimetry methods in patients undergoing various medical irradiations to low doses. The highlighted topics include basic aspects of biological dosimetry and its limitations in the range of low radiation doses, and main patterns of in vivo induction of radiation biomarkers in clinical exposure scenarios, occurring in X-ray diagnostics, computed tomography, interventional radiology, low dose radiotherapy, and nuclear medicine (internally administered 131I and other radiopharmaceuticals). Additionally, several specific issues, examined by biodosimetry techniques, are analysed, such as contrast media effect, radiation response in pediatric patients, impact of magnetic resonance imaging, evaluation of radioprotectors, detection of patients' abnormal intrinsic radiosensitivity and dose estimation in persons involved in medical radiation incidents. A prognosis of possible directions for further improvements in this area includes the automation of cytogenetic analysis, introduction of molecular biodosimeters and development of multiparametric biodosimetry platforms. A potential approach to the advanced biodosimetry of internal exposure and/or low dose external irradiation is suggested; this can be a multiparametric platform based on the combination of the γ-H2AX foci, dicentric, and translocation assays, each applied in the optimum postexposure time range, with the amalgamation of the dose estimates. The study revealed the necessity of further research, which might clarify medical radiation safety concerns for patients via using stringent biodosimetry methodology.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- International Atomic Energy Agency (IAEA), Vienna, Austria; Grigoriev Institute for Medical Radiology and Oncology (GIMRO), Kharkiv, Ukraine.
| | - Oleg Belyakov
- International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
9
|
Lee YH, Lee Y, Yoon HJ, Yang SS, Joo HM, Kim JY, Cho SJ, Jo WS, Jeong SK, Oh SJ, Kang YR, Seong KM. An intercomparison exercise to compare scoring criteria and develop image databank for biodosimetry in South Korea. Int J Radiat Biol 2021; 97:1199-1205. [PMID: 34133255 DOI: 10.1080/09553002.2021.1941384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Mutual cooperation of biodosimetry laboratories is required for dose assessments of large numbers of people with potential radiation exposure, as in mass casualty accidents. We launched an intercomparison exercise to validate the performance of biodosimetry laboratories in South Korea. MATERIALS AND METHODS Participating laboratories shared metaphase images from dicentric chromosome assays (DCAs) and fluorescence in situ hybridization (FISH)-based translocation assays, which were evaluated based on their own scoring protocols. RESULTS Overall, the coefficient of variation among three laboratories was less than 10% for counting scorable metaphases and chromosomal aberrations. However, there was variation in the interpretation of the International Atomic Energy Agency guidelines for selecting scorable metaphases and identifying chromosomal aberrations. In a technical workshop, scoring discrepancies were extensively discussed in order to harmonize biodosimetry protocols in Korea. In addition, metaphase images with agreement among all participating laboratories were compiled into an image databank, which can be used for education and training of scorers. CONCLUSIONS These findings and exercises may improve the accuracy of dose assessment, as well as increase the capacity for biodosimetry in South Korea.
Collapse
Affiliation(s)
- Yang Hee Lee
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Younghyun Lee
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hyo Jin Yoon
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Su San Yang
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hae Mi Joo
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Ji Young Kim
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Seong-Jun Cho
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Soo Kyung Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Ki Moon Seong
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
10
|
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, Balajee A, Beukes P, Blakely WF, Dominguez I, Duy PN, Gil OM, Güçlü I, Guogyte K, Hadjidekova SP, Hadjidekova V, Hande P, Jang S, Lumniczky K, Meschini R, Milic M, Montoro A, Moquet J, Moreno M, Norton FN, Oestreicher U, Pajic J, Sabatier L, Sommer S, Testa A, Terzoudi G, Valente M, Venkatachalam P, Vral A, Wilkins RC, Wojcik A, Zafiropoulos D, Kulka U. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol 2021; 97:888-905. [PMID: 33970757 DOI: 10.1080/09553002.2021.1928782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
Collapse
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Gaetan Gruel
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Adayabalam Balajee
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health, Sciences, Bethesda, MD, USA
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | | | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | | | - Alegria Montoro
- Fundación para la Investigación del Hospital Universitario LA FE de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud - Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Farrah N Norton
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ursula Oestreicher
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux-Roses, France and Université Paris-Saclay, France
| | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L´Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research "Demokritos", NCSR"D", Athens, Greece
| | | | | | - Anne Vral
- Radiobiology Research Unit, Gent University, Gent, Belgium
| | | | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | | | - Ulrike Kulka
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
11
|
Vosoughi H, Azimian H, Khademi S, Rezaei AR, Najafi-Amiri M, Vaziri-Nezamdoost F, Bahreyni-Toossi MT. PHA stimulation may be useful for FDXR gene expression-based biodosimetry. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:449-453. [PMID: 32489559 PMCID: PMC7239428 DOI: 10.22038/ijbms.2020.42350.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/11/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Nowadays, ionizing radiation (IR) has a significant contribution to the diagnostic and therapeutic medicine, and following that, health risks to individuals through unexpected exposure is greatly increased. Therefore, biological and molecular technology for estimation of dose (biodosimetry) is taken into consideration. In biodosimetry methods stimulation of cells to proliferation is routine to achieve more sensitivity of techniques. However, this concept has recently been challenged by new molecular methods such as gene expression analysis. This study aims to investigate the stimulation effects on gene expression biodosimetry. MATERIALS AND METHODS The blood samples were taken from15 patients who were irradiated by TC-99 MIBI, before radiopharmaceutical injection and 24 hr after injection. Lymphocytes were extracted immediately and activated by (phytohemagglutinin) PHA for 24 hr and XPA and FDXR expression levels were investigated by employing relative quantitative Real-Time PCR. RESULTS The results of this study show a significant increase in the FDXR expression level and a significant decrease in the XPA after stimulation of irradiated lymphocytes. Interestingly, a significant increasing trend in the FDXR expression level (at 0.05 significance level) following cell stimulation to the division was observed. CONCLUSION Our results suggest that the PHA activation role in gene expression-based biodosimetry is strongly depended on the target genes and the relevant protein pathways. Finally, cell stimulation looks to be useful for some specific genes, such as FDXR, due to the increasing trend in expression and improvement of sensitivity of gene expression-based biodosimetry method.
Collapse
Affiliation(s)
- Habibeh Vosoughi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdul-Rahim Rezaei
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Najafi-Amiri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
12
|
Lee Y, Seo S, Jin YW, Jang S. Assessment of working environment and personal dosimeter-wearing compliance of industrial radiographers based on chromosome aberration frequencies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:151-164. [PMID: 31539897 DOI: 10.1088/1361-6498/ab4686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Industrial radiographers are exposed to relatively higher doses of radiation than other radiation-exposed workers in South Korea. The objective of our study was to investigate the impact of specific occupational conditions on chromosome aberration frequency and evaluate dosimeter-wearing compliance of industrial radiographers in Korea. We studied individual and occupational characteristics of 120 industrial radiographers working in South Korea and evaluated the frequency of dicentrics and translocations in chromosomes to estimate radiation exposure. The association between working conditions and chromosome aberration frequencies was assessed by Poisson regression analysis after adjusting for confounding factors. Legal personal dosimeter-wearing compliance among workers was investigated by correlation analysis between recorded dose and chromosome aberration frequency. Daily average number of radiographic films used in the last six months was associated with dicentrics frequency. Workers performing site radiography showed significantly higher translocation frequency than those working predominantly in shielded enclosures. The correlation between chromosome aberration frequency and recorded dose was higher in workers in the radiography occupation since 2012 (new workers) than other veteran workers. Our study found that site radiography could affect actual radiation exposure to workers. Controlling these working conditions and making an effort to improve personal dosimeter-wearing compliance among veteran workers as well as new workers may be necessary to reduce radiation exposure as much as possible in their workplace.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
13
|
Cardiac catheterization procedures in children with congenital heart disease: Increased chromosomal aberrations in peripheral lymphocytes. Mutat Res 2020; 852:503163. [PMID: 32265037 DOI: 10.1016/j.mrgentox.2020.503163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Cardiac catheterization procedures are performed on about 20,000 children with congenital heart disease (CHD) annually in China. The procedure, which involves exposure to ionizing radiation, causes DNA damage and may lead to increased cancer risk. We have studied chromosomal aberrations (CA) in peripheral lymphocytes of CHD children. CA frequencies were assessed in an interventional group of 70 children who underwent cardiac catheterization and a control group of 51 children receiving open-heart surgery. Total CA and all chromosome-type aberrations were higher in the exposed children than in the control group. With respect to the type of septal defect, the translocation frequency was higher in patients with ventricular rather than atrial defects. Cardiac catheterization procedures increase CA frequencies and may also increase the risk of cancer.
Collapse
|
14
|
Lee Y, Jin YW, Wilkins RC, Jang S. Validation of the dicentric chromosome assay for radiation biological dosimetry in South Korea. JOURNAL OF RADIATION RESEARCH 2019; 60:555-563. [PMID: 31165147 PMCID: PMC6806015 DOI: 10.1093/jrr/rrz039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/25/2019] [Indexed: 05/21/2023]
Abstract
The dicentric chromosome assay (DCA) is a well-established biodosimetry test to estimate exposure to ionizing radiation. The Korea Institute of Radiological and Medical Sciences (KIRAMS) established a DCA protocol as a medical response to radiation emergencies in South Korea. To maintain its accuracy and performance, intercomparison exercises with Health Canada (HC) have been conducted; herein, we aimed to validate our capacity of DCA analysis based on those results. Blood samples irradiated at HC were shipped to KIRAMS to assess the irradiation dose to blinded samples using conventional DCA full scoring and triage-based techniques (conventional DCA scoring in triage mode and DCA QuickScan method). Actual doses fell within the 95% confidence intervals of dose estimates for 70-100% of the blinded samples in 2015-2018. All methods discriminated binary dose categories, reflecting clinical significance. This DCA can be used as a reliable radiation biodosimetry tool in preparation for radiation accidents in South Korea.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Corresponding author. Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea. Tel: +82-2-3399-5951; Fax: +82-2-3399-5950;
| |
Collapse
|
15
|
Cho YH, Jang Y, Woo HD, Kim YJ, Kim SY, Christensen S, Cole E, Choi SY, Chung HW. LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:174-184. [PMID: 30488609 PMCID: PMC6363886 DOI: 10.1002/em.22237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
Global DNA hypomethylation is proposed as a potential biomarker for cancer risk associated with genomic instability, which is an important factor in radiation-induced cancer. However, the associations among radiation exposure, changes in DNA methylation, and carcinogenesis are unclear. The aims of this study were (1) to examine whether low-level occupational radiation exposure induces genomic DNA hypomethylation; and (2) to determine the relationships between radiation exposure, genomic DNA hypomethylation and radiation-induced genomic instability (RIGI) in industrial radiographers. Genomic DNA methylation levels were measured in blood DNA from 40 radiographers and 28 controls using the LINE-1 pyrosequencing assay and the luminometric methylation assay. Further, the micronucleus-centromere assay was performed to measure aneuploidy of chromosomes 1 and 4 as a marker of delayed RIGI. Genomic DNA methylation levels were significantly lower in radiographers than those in controls. LINE-1 hypomethylation was not significantly correlated with recent 1-year, recent 3-year, or total cumulative radiation doses in radiographers; however, LINE-1 hypomethylation significantly correlated with the cumulative radiation dose without recent 3-year exposure data (D3dose, r = -0.39, P < 0.05). In addition, LINE-1 hypomethylation was a significant contributor to aneuploidy frequency by D3dose (F (2, 34) = 13.85, P < 0.001), in which a total of 45% of the variance in aneuploidy frequency was explained. Our results provide suggestive evidence regarding the delayed effects of low-dose occupational radiation exposure in radiographers and its association with LINE-1 hypomethylation; however, additional studies using more subjects are needed to fully understand the relationship between genomic DNA hypomethylation and RIGI. Environ. Mol. Mutagen. 60: 174-184, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoon Hee Cho
- Departments of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Yoonhee Jang
- Departments of Psychology, The University of Montana, Missoula, MT, USA
| | - Hae Dong Woo
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Yang Jee Kim
- Da Vinci College of General Education, Chung-Ang University, Seoul, Korea
| | - Su Young Kim
- Departments of Preventive Medicine, School of Medicine, Jeju National University, Jeju-si, Jeju-do, Korea
| | - Sonja Christensen
- Departments of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Elizabeth Cole
- Departments of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Soo Yong Choi
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Science, Seoul Korea
| | - Hai Won Chung
- School of Public Health, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Gao Y, Wang P, Wang Z, Han L, Li J, Tian C, Zhao F, Wang J, Zhao F, Zhang Q, Lyu Y. Serum 8-Hydroxy-2'-Deoxyguanosine Level as a Potential Biomarker of Oxidative DNA Damage Induced by Ionizing Radiation in Human Peripheral Blood. Dose Response 2019; 17:1559325818820649. [PMID: 30670937 PMCID: PMC6327346 DOI: 10.1177/1559325818820649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, the effect of ionizing radiation on 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human peripheral blood was investigated. Blood samples were collected from 230 radiation workers and 8 patients who underwent radiotherapy for population study. Blood samples from 2 healthy individuals were irradiated with different X-ray doses for in vitro experiment, and levels of 8-OHdG in serum and cell culture supernatants were assessed by enzyme-linked immunosorbent assay. Observations demonstrated the positive relationships between serum 8-OHdG level and radiation dose and working period were observed, and serum 8-OHdG levels were higher among interventional radiation workers than among other hospital radiation workers. In addition, 8-OHdG yields in supernatants increased, peaked at 3 Gy of radiation dose, and then decreased with further increases in radiation; the dose-response curve obtained fitted a polynomial function. By contrast, a similar trend was not found in radiotherapy patients. The present study suggests that 8-OHdG may be a useful biomarker reflecting oxidative damage among workers occupationally exposed to low-dose radiation.
Collapse
Affiliation(s)
- Yu Gao
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ping Wang
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Zhaonan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lin Han
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Jie Li
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Chongbin Tian
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Fengling Zhao
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
| | - Jianpo Wang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Zhao
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yumin Lyu
- Department of Toxicology, Henan Institute of Occupational Medicine, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Roch-Lefèvre S, Grégoire E, Martin-Bodiot C, Flegal M, Fréneau A, Blimkie M, Bannister L, Wyatt H, Barquinero JF, Roy L, Benadjaoud M, Priest N, Jourdain JR, Klokov D. Cytogenetic damage analysis in mice chronically exposed to low-dose internal tritium beta-particle radiation. Oncotarget 2018; 9:27397-27411. [PMID: 29937993 PMCID: PMC6007944 DOI: 10.18632/oncotarget.25282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to carry out a comprehensive examination of potential genotoxic effects of low doses of tritium delivered chronically to mice and to compare these effects to the ones resulting from equivalent doses of gamma-irradiation. Mice were chronically exposed for one or eight months to either tritiated water (HTO) or organically bound tritium (OBT) in drinking water at concentrations of 10 kBq/L, 1 MBq/L or 20 MBq/L. Dose rates of internal β-particle resulting from such tritium treatments were calculated and matching external gamma-exposures were carried out. We measured cytogenetic damage in bone marrow and in peripheral blood lymphocytes (PBLs) and the cumulative tritium doses (0.009 - 181 mGy) were used to evaluate the dose-response of OBT in PBLs, as well as its relative biological effectiveness (RBE). Neither tritium, nor gamma exposures produced genotoxic effects in bone marrow. However, significant increases in chromosome damage rates in PBLs were found as a result of chronic OBT exposures at 1 and 20 M Bq/L, but not at 10 kBq/L. When compared to an external acute gamma-exposure ex vivo, the RBE of OBT for chromosome aberrations induction was evaluated to be significantly higher than 1 at cumulative tritium doses below 10 mGy. Although found non-existent at 10 kBq/L (the WHO limit), the genotoxic potential of low doses of tritium (>10 kBq/L), mainly OBT, may be higher than currently assumed.
Collapse
Affiliation(s)
- Sandrine Roch-Lefèvre
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - Eric Grégoire
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - Cécile Martin-Bodiot
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - Matthew Flegal
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Amélie Fréneau
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - Melinda Blimkie
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Laura Bannister
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Heather Wyatt
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Joan-Francesc Barquinero
- Present address at: Autonomous University of Barcelona, Faculty of Biosciences, Cerdanyola del Vallès, Spain
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - Mohamed Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - Nick Priest
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Jean-René Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Direction des Affaires Internationales, Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistrty, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Kaddour A, Colicchio B, Buron D, El Maalouf E, Laplagne E, Borie C, Ricoul M, Lenain A, Hempel WM, Morat L, Al Jawhari M, Cuceu C, Heidingsfelder L, Jeandidier E, Deschênes G, Dieterlen A, El May M, Girinsky T, Bennaceur-Griscelli A, Carde P, Sabatier L, M'kacher R. Transmission of Induced Chromosomal Aberrations through Successive Mitotic Divisions in Human Lymphocytes after In Vitro and In Vivo Radiation. Sci Rep 2017; 7:3291. [PMID: 28607452 PMCID: PMC5468351 DOI: 10.1038/s41598-017-03198-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022] Open
Abstract
The mechanisms behind the transmission of chromosomal aberrations (CA) remain unclear, despite a large body of work and major technological advances in chromosome identification. We reevaluated the transmission of CA to second- and third-division cells by telomere and centromere (TC) staining followed by M-FISH. We scored CA in lymphocytes of healthy donors after in vitro irradiation and those of cancer patients treated by radiation therapy more than 12 years before. Our data demonstrate, for the first time, that dicentric chromosomes (DCs) decreased by approximately 50% per division. DCs with two centromeres in close proximity were more efficiently transmitted, representing 70% of persistent DCs in ≥M3 cells. Only 1/3 of acentric chromosomes (ACs), ACs with four telomeres, and interstitial ACs, were paired in M2 cells and associated with specific DCs configurations. In lymphocytes of cancer patients, 82% of detected DCs were characterized by these specific configurations. Our findings demonstrate the high stability of DCs with two centromeres in close proximity during cell division. The frequency of telomere deletion increased during cell cycle progression playing an important role in chromosomal instability. These findings could be exploited in the follow-up of exposed populations.
Collapse
Affiliation(s)
- Akram Kaddour
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France.,Tunis El Manar University, School of Medicine, Tunis, Tunisia
| | - Bruno Colicchio
- Laboratoire MIPS Groupe IMTI Université de Haute-Alsace, Mulhouse, France
| | - Diane Buron
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Elie El Maalouf
- Laboratoire MIPS Groupe IMTI Université de Haute-Alsace, Mulhouse, France
| | | | - Claire Borie
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, Villejuif, France
| | - Michelle Ricoul
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Aude Lenain
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - William M Hempel
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Luc Morat
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Mustafa Al Jawhari
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Corina Cuceu
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | | | - Eric Jeandidier
- Service de Génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, 68070, Mulhouse, France
| | | | - Alain Dieterlen
- Laboratoire MIPS Groupe IMTI Université de Haute-Alsace, Mulhouse, France
| | - Michèle El May
- Tunis El Manar University, School of Medicine, Tunis, Tunisia
| | - Theodore Girinsky
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Patrice Carde
- Department of Hematology, Gustave Roussy cancer Campus, Villejuif, France
| | - Laure Sabatier
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Radhia M'kacher
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France. .,Cell Environment, Paris, France.
| |
Collapse
|
19
|
Saberi A, Khodamoradi E, Tahmasebi Birgani MJ, Makvandi M, Noori B. Dose-Response Curves of the FDXR and RAD51 Genes with 6 and 18 MV Beam Energies in Human Peripheral Blood Lymphocytes. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017; 18:e32013. [PMID: 28191342 PMCID: PMC5292577 DOI: 10.5812/ircmj.32013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Rapid dose assessment using biological dosimetry methods is essential to increase the chance of survival of exposed individuals in radiation accidents. OBJECTIVES We compared the expression levels of the FDXR and RAD51 genes at 6 and 18 MV beam energies in human peripheral blood lymphocytes. The results of our study can be used to analyze radiation energy in biological dosimetry. METHODS For this in vitro experimental study, from 36 students in the medical physics and virology departments, seven voluntary, healthy, non-smoking male blood donors of Khuzestan ethnicity with no history of exposure to ionization radiation were selected using simple randomized sampling. Sixty-three peripheral blood samples were collected from the seven healthy donors. Human peripheral blood was then exposed to doses of 0, 0.2, 0.5, 2, and 4 Gy with 6 and 18 MV beam energies in a Linac Varian 2100C/D (Varian, USA) at Golestan hospital in Ahvaz, Iran. After RNA extraction and cDNA synthesis, the expression levels of FDXR and RAD51 were determined 24 hours post-irradiation using the gel-purified reverse transcription polymerase chain reaction (RT-PCR) technique and TaqMan strategy (by real-time PCR). RESULTS The expression level of FDXR gene was significantly increased at doses of 2 Gy and 4 Gy in the 6 - 18 MV energy range (P < 0.001 and P < 0.008, respectively). The medians with interquartile ranges (IQRs) of the copy numbers of the FDXR gene at 2 Gy and 4 Gy doses under 6 and 18 MV beam energies were 2393.59 (1798.21, 2575.37) and 2983.00 (2199.48, 3643.82) and 3779.12 (3051.40, 5120.74) and 5051.26 (4704.83, 5859.17), respectively. However, RAD51 gene expression levels only showed a significant difference between samples at a dose of 2 Gy with 6 and 18 MV beam energies, respectively (P < 0.040). The medians with IQRs of the copy numbers of the RAD51 gene were 2092.77 (1535.78, 2705.61) and 3412.57 (2979.72, 4530.61) at beam energies of 6 and 18 MV, respectively. CONCLUSIONS The data suggest that the expression analysis of the FDXR gene, contrary to that of the RAD51 gene, may be suitable for assessment of high-energy X-ray. In addition, RAD51 is not a suitable gene for dose assessment in biological dosimetry.
Collapse
Affiliation(s)
- Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, IR Iran
| | - Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding Author: Ehsan Khodamoradi, Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. E-mail:
| | - Mohammad Javad Tahmasebi Birgani
- Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Manoochehr Makvandi
- Department of Virology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, IR Iran
| | - Bijan Noori
- Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR Iran
| |
Collapse
|
20
|
Wilkins RC, Carr Z, Lloyd DC. An update of the WHO Biodosenet: Developments since its Inception. RADIATION PROTECTION DOSIMETRY 2016; 172:47-57. [PMID: 27421473 DOI: 10.1093/rpd/ncw154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass casualty event. In order to assess the progress and success of this network, the results of the second survey conducted in 2015 that assessed the capabilities and capacities of the members of the network, were compared to the similar first survey conducted in 2009. The results of the survey offer a unique cross-section of the global status of biodosimetry capacity and demonstrate how the BioDoseNet has brought together laboratories from around the world and strengthened the international capacity for biodosimetry.
Collapse
Affiliation(s)
| | - Z Carr
- World Health Organization, Geneva, Switzerland
| | - D C Lloyd
- Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
21
|
Monteiro Gil O, Vaz P, Romm H, De Angelis C, Antunes AC, Barquinero JF, Beinke C, Bortolin E, Burbidge CI, Cucu A, Della Monaca S, Domene MM, Fattibene P, Gregoire E, Hadjidekova V, Kulka U, Lindholm C, Meschini R, M’Kacher R, Moquet J, Oestreicher U, Palitti F, Pantelias G, Montoro Pastor A, Popescu IA, Quattrini MC, Ricoul M, Rothkamm K, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Trompier F, Vral A. Capabilities of the RENEB network for research and large scale radiological and nuclear emergency situations. Int J Radiat Biol 2016; 93:136-141. [DOI: 10.1080/09553002.2016.1227107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Christina Beinke
- Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - Christopher Ian Burbidge
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | - Valeria Hadjidekova
- National Centre of Radiobiology and Radiation Protection (NCRRP), Sofia, Bulgaria
| | - Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | - Roberta Meschini
- Department of Ecological & Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Radhia M’Kacher
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemicals and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Fabrizio Palitti
- Department of Ecological & Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research “Demokritos”, Athens, Greece
| | | | | | | | - Michelle Ricoul
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemicals and Environmental Hazards, Chilton, Oxfordshire, UK
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Laure Sabatier
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Sostenibile, Rome, Italy
| | - François Trompier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | - Anne Vral
- Ghent University, Department of Basic Medical Sciences, Ghent, Belgium
| |
Collapse
|
22
|
Biological dosimetry to assess risks of health effects in victims of radiation accidents: Thirty years after Chernobyl. Radiother Oncol 2016; 119:1-4. [DOI: 10.1016/j.radonc.2016.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 01/22/2023]
|
23
|
Venkatesan S, Natarajan AT, Hande MP. Chromosomal instability--mechanisms and consequences. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:176-84. [PMID: 26520388 DOI: 10.1016/j.mrgentox.2015.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 01/08/2023]
Abstract
Chromosomal instability is defined as a state of numerical and/or structural chromosomal anomalies in cells. Numerous studies have documented the incidence of chromosomal instability, which acutely or chronically may lead to accelerated ageing (tissue-wide or even organismal), cancer or other genetic disorders. Potential mechanisms leading to the generation of chromosome-genome instability include erroneous/inefficient DNA repair, chromosome segregation defects, spindle assembly defects, DNA replication stress, telomere shortening/dysfunction - to name a few. Understanding the cellular and molecular mechanisms for chromosomal instability in various human cells and tissues will be useful in elucidating the cause for many age associated diseases including cancer. This approach holds a great promise for the cytogenetic assays not only for prognosis but also for diagnostic purposes in clinical settings. In this review, a multi-dimensional approach has been attempted to portray the complexity behind the incidence of chromosome-genome instability including evolutionary implications at the species level for some of the mechanisms of chromosomal instability.
Collapse
Affiliation(s)
- Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Adayapalam T Natarajan
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597; Tembusu College, National University of Singapore, Singapore, 138597.
| |
Collapse
|