1
|
Ghosh M, Dey P, Das A, Giri A, Nath S, Giri S. Evaluation of arsenic induced genotoxicity and its impact on life processes of Daphnia magna. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503804. [PMID: 39326934 DOI: 10.1016/j.mrgentox.2024.503804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024]
Abstract
Heavy metals like arsenic is ubiquitously present in the environment. Geologic and anthropogenic activities are the root cause behind high concentration of arsenic in natural water bodies demanding strict monitoring of water quality prior to human consumption and utilization. In the present study, we have employed Daphnia magna for studying the biological effects of environmentally relevant high concentration of arsenic in water. In acute toxicity study, the LC50 value for 24hr exposure was found to be 2.504 mg/L, which gradually decreased with increase in time period (24hr- 96hr) to 2.011 mg/ L at 96hr. Sub-chronic toxicity was evaluated over 12 days using sub-lethal concentrations (5 %, 10 %, 15 %, and 20 % of the 24-hr LC50). Survivability in Daphnia showed a decreasing trend from 96 % to 91 % with increase in arsenic concentrations from 5 % of LC50 24 hr value to 20 % of LC 50 24hr value respectively. Alongside decreased survivability, there was a significant reduction in body size, with organisms exposed to the highest concentration of arsenic measuring 0.87±0.01 mm compared to 1.51±0.10 mm in the control group. Reproductive potential declined concentration dependently with exposure, with the highest reduction observed at 20 % of LC50 24hr value, where offspring numbers decreased to 7±1 from 23±5 in the control. Heart rate decreased in concentration and time-dependent manners, with the lowest rates observed at the highest arsenic concentration (279±16 bpm after 24hr and 277±27 bpm after 48hr). Comet assay and micronucleus assay conducted after 48 hrs of exposure revealed concentration-dependent genotoxic effects in Daphnia magna. Our results indicate negative impact on physiology and reproduction of Daphnia magna at environmentally existent concentration of arsenic. Also Daphnia magna could serve as a sensitive test system for investigating arsenic contamination in water bodies.
Collapse
Affiliation(s)
- Malaya Ghosh
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Pubali Dey
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Aparajita Das
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Anirudha Giri
- Laboratory of Environmental and Human Toxicology, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Satabdi Nath
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India.
| |
Collapse
|
2
|
Barka S, Gdara I, Ouanes-Ben Othmen Z, Mouelhi S, El Bour M, Hamza-Chaffai A. Seasonal ecotoxicological monitoring of freshwater zooplankton in Bir Mcherga dam (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5670-5680. [PMID: 30693446 DOI: 10.1007/s11356-019-04271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Dams represent large semi-closed reservoirs of pesticides and various organic and inorganic pollutants from agricultural and human activities, and their monitoring should receive special attention. This study evaluated the environmental health status of Bir Mcherga dam using zooplankton species. The dam has a capacity of 130 Mm3 and its waters are used for irrigation, water drinking supply, and fishery. Copepods and cladocerans (crustaceans) were collected in situ monthly between October and August 2012. Oxidative stress (CAT, MDA), neurotoxicity (AChE), and genotoxicity (micronucleus test) biomarkers were analyzed in two zooplankton species: Acanthocyclops robustus and Diaphanosoma mongolianum. High values of cells with a micronucleus were observed during summer. AChE activities were inhibited during early winter and summer. The high seasonal variability of CAT and MDA levels indicates that zooplankton is continuously exposed to different oxidative stresses. These results suggest that there is an obvious and continuous multi-faceted stress in Bir Mcherga reservoir and, consequently, an urgent monitoring of freshwater environments in Tunisia is needed, particularly those intended for human consumption and irrigation.
Collapse
Affiliation(s)
- Sabria Barka
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia.
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia.
| | - Imene Gdara
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| | - Zouhour Ouanes-Ben Othmen
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| | - Samia Mouelhi
- Unité de Recherche de Biologie Animale et Systématique Evolutive 2092, Campus Universitaire, Manar II, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - Monia El Bour
- Laboratoire de Biotechnologie et Biodiversité Aquatiques, National Institute of Sea Sciences and Technologies INSTM, Salammbô, Tunisia
| | - Amel Hamza-Chaffai
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| |
Collapse
|
3
|
Jones JI, Murphy JF, Collins AL, Spencer KL, Rainbow PS, Arnold A, Pretty JL, Moorhouse AML, Aguilera V, Edwards P, Parsonage F, Potter H, Whitehouse P. The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:111-189. [PMID: 30671689 DOI: 10.1007/398_2018_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-rich sediments have the potential to impair life in freshwater streams and rivers and, thereby, to inhibit recovery of ecological conditions after any remediation of mine water discharges. Sediments remain metal-rich over long time periods and have long-term potential ecotoxicological interactions with local biota, unless the sediments themselves are physically removed or replaced by less metal-rich sediment. Laboratory-derived environmental quality standards are difficult to apply to the field situation, as many complicating factors exist in the real world. Therefore, there is a strong case to consider other, field-relevant, measures of toxic effects as alternatives to laboratory-derived standards and to seek better biological tools to detect, diagnose and ideally predict community-level ecotoxicological impairment. Hence, this review concentrated on field measures of toxic effects of metal-rich sediment in freshwater streams, with less emphasis on laboratory-based toxicity testing approaches. To this end, this review provides an overview of the impact of metal-rich sediments on freshwater stream life, focusing on biological impacts linked to metal contamination.
Collapse
|
4
|
Avermectin induces the oxidative stress, genotoxicity, and immunological responses in the Chinese Mitten Crab, Eriocheir sinensis. PLoS One 2019; 14:e0225171. [PMID: 31765405 PMCID: PMC6876965 DOI: 10.1371/journal.pone.0225171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
Avermectin is commonly used in aquaculture systems for pest control in recent decades in China. However, no information is provided for the toxic effect to the important commercial species, Chinese mitten crab, Eriocheir sinensis. To investigate the aquatic toxicity of avermectin, an acute toxic test was performed in this study. The results showed that the 48 h- and 96 h- LC50 were 1.663 and 0.954 mg/L, respectively. For further research, crabs were exposed to sublethal concentrations of 0.03, 0.06, 0.12, 0.24 and 0.48 mg/L. Levels of antioxidants, including superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) were significantly (P<0.05) decreased with dose- and time- dependent responses, meanwhile the oxidative products including malondialdehyde (MDA), hydrogen peroxide (H2O2) and protein carbonyl in serum increased significantly (P<0.05) at concentrations of 0.24 and 0.48 mg/L throughout the experiment. A significant (P<0.05) increase of intracellular ROS and decrease of phagocytic activity was observed in high concentration groups, with dose- and time- dependent manners during the exposure. In addition, serious genetic damage was detected, for the significant increase (P<0.05) of both comet ratio and %DNA in tail at each concentration, and micronucleus (MN) frequency at concentrations of 0.12, 0.24 and 0.48 mg/L at 96 h. These results indicated that sublethal concentration exposure of avermectin had a prominent toxic effect on E. sinensis based on the oxidative stress induced by generated ROS, immunological activity inhibition and genotoxicity.
Collapse
|
5
|
Ouanes-Ben Othmen Z, Barka S, Adeljelil ZB, Mouelhi S, Krifa M, Kilani S, Chekir-Ghedira L, Forget-Leray J, Hamza-Chaffai A. In situ genotoxicity assessment in freshwater zooplankton and sediments from different dams, ponds, and temporary rivers in Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1435-1444. [PMID: 30426375 DOI: 10.1007/s11356-018-3703-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Tunisia water resources are limited. The country currently has 29 large dams, more than 1000 hill lakes, and 220 small dams which are essential for economic and social development given their contribution to irrigation, drinking water consumption, flooding protection, production of electrical energy, groundwater recharge, and industrial uses. Given the scarcity of these resources, it is crucial to be able to ensure the quality of freshwater environments, particularly those intended for human consumption. In this study, we meant to assess the health status of various freshwater ecosystems in different regions of Tunisia (north and center west) in order to detect genotoxic components in sediments and their potential effect on zooplankton (cladocerans). Sediment and cladoceran species were collected from dams, ponds, and temporary rivers in Tunisia. For each collection site, micronucleus (MN) assay was performed, in triplicates, using a pool of ten specimens of the same cladoceran species. MN occurrence in cladocerans varied from one site to another and MN frequencies varied between 0.67 and 22‰, suggesting the presence of genotoxic substances in certain sites. Sediment genotoxicity and mutagenicity were assessed using the SOS Chromotest and the Ames test. Sediment results showed that genotoxicity varies from one site to another displaying a quantitative and a qualitative variation of pollutant among the sites. These results suggest an urgent need for continuous monitoring of freshwater environments in Tunisia, particularly those intended for drinking water.
Collapse
Affiliation(s)
- Zouhour Ouanes-Ben Othmen
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS Sfax University, Sfax, Tunisia.
| | - Sabria Barka
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS Sfax University, Sfax, Tunisia
| | - Zied Ben Adeljelil
- Biochemistry Laboratory-Medicine Faculty of Monastir: LR12ES05, Monastir University, Monastir, Tunisia
| | - Samia Mouelhi
- Unité de Recherche de Biologie Animale et Systématique Evolutive 2092, Faculté des Sciences de Tunis, Campus Universitaire Manar II, Tunis, Tunisia
| | - Mounira Krifa
- Unité de Recherche de Pharmacognosie/Biologie Moléculaire 99/UR/07-03, Faculté de Pharmacie, Monastir University, Rue Avicenne, Monastir, Tunisia
| | - Soumaya Kilani
- Unité de Recherche de Pharmacognosie/Biologie Moléculaire 99/UR/07-03, Faculté de Pharmacie, Monastir University, Rue Avicenne, Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Unité de Recherche de Pharmacognosie/Biologie Moléculaire 99/UR/07-03, Faculté de Pharmacie, Monastir University, Rue Avicenne, Monastir, Tunisia
| | - Joëlle Forget-Leray
- Laboratoire d'Ecotoxicologie des Milieux Aquatiques, EA 3222, FED 4116 SCALE, Université du Havre, rue Philippe Lebon, Le Havre, France
| | - Amel Hamza-Chaffai
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS Sfax University, Sfax, Tunisia
| |
Collapse
|
6
|
Hong Y, Yang X, Huang Y, Yan G, Cheng Y. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. CHEMOSPHERE 2018; 210:896-906. [PMID: 30208549 DOI: 10.1016/j.chemosphere.2018.07.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 05/02/2023]
Abstract
In the present study, an acute toxic test was performed to assess the oxidative stress and genotoxic effects of the herbicide on the freshwater shrimp Macrobrachium nipponensis. The results showed that the 48-h and 96-h LC50 values of Roundup to M. nipponensis were 57.684 mg/L and 11.237 mg/L, respectively. For further investigation, the shrimps were exposed to sublethal concentrations of 0.35, 0.70, 1.40, 2.80 and 5.60 mg/L for 96 h. A significant decrease in total haemocytes count (THC) was observed at concentration of 5.60 mg/L throughout the experiment. The level of superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) in all the treatments decreased in a dose- and time-dependent manner except for the concentration group of 0.35 mg/L. The malondialdehyde (MDA), hydrogen peroxide (H2O2) and protein carbonyl in serum increased significantly at concentrations of 2.80 mg/L and 5.60 mg/L. A significant decrease in acetylcholinesterase (AChE) activity was observed at each concentration (P<0.05). In addition, the micronucleus (MN) frequency of haemocytes significantly increased (P<0.05) at concentrations of 1.40, 2.80 and 5.60 mg/L, whereas the comet ratio and %DNA in the tails exhibited a clear time- and dose-dependent response during the exposure. The analysis of the integrated biomarker response (IBR) showed the induction of oxidative stress biomarkers and the inhibition of antioxidants, and this dose-dependent relation suggests the sensitivity and availability of all the biomarkers. These results revealed that Roundup had a prominent toxic effect on M. nipponensis based on the antioxidative response inhibition and genotoxicity.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Yi Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Guangwen Yan
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China.
| |
Collapse
|
7
|
Hong Y, Yang X, Huang Y, Yan G, Cheng Y. Oxidative stress and genotoxic effect of deltamethrin exposure on the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2018; 212:25-33. [PMID: 29969679 DOI: 10.1016/j.cbpc.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
The oxidative stress and genotoxic effect of deltamethrin on the Chinese mitten crab Eriocheir sinensis were assessed using several commonly used biomarkers in this study. The results showed that the 48 h and 96 h LC50 values of deltamethrin to E. sinensis were 2.319 and 1.164 μg/L, respectively, and the safe concentration was 0.293 μg/L. According to these results, deltamethrin was applied at concentrations of 1/16, 1/8, 1/4, 1/2 and 1/1 96 h LC50 for 8 d in an exposure experiment. The activity of superoxide dismutase (SOD) increased remarkably at 1 d, but decreased at 4 d in concentration group of 1/4, 1/2 and 1/1 LC50, whereas catalase (CAT) activity decreased during the exposure. The total antioxidant capacity (T-AOC) at the concentrations of 1/4, 1/8 and 1/16 LC50 increased significantly at 1 d or 2 d respectively, whereas it decreased gradually until the end of the experiment under the concentrations above 1/4 LC50. The oxidative stress products malondialdehyde (MDA) and hydrogen peroxide (H2O2) in serum increased significantly at each concentration except H2O2 at concentration of 1/16 LC50. Additionally, the micronucleus (MN) frequency of haemocytes increased at the concentrations of 1/4, 1/2 and 1/1 LC50 throughout the exposure, similar trend was observed in the comet ratio and percentage of tail-DNA (%DNA) in haemocytes. These results revealed that deltamethrin had a prominent toxic effect on E. sinensis based on antioxidative response inhibition and genotoxicity that was possibly due to lipid peroxidation (LPO) induced by oxidative products, and the accumulation of peroxide, even under a sublethal concentration.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang College, Xichang 415000, Sichuan Province, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Yi Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang College, Xichang 415000, Sichuan Province, China
| | - Guangwen Yan
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang College, Xichang 415000, Sichuan Province, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China.
| |
Collapse
|
8
|
Butrimavičienė L, Baršienė J, Greiciūnaitė J, Stankevičiūtė M, Valskienė R. Environmental genotoxicity and risk assessment in the Gulf of Riga (Baltic Sea) using fish, bivalves, and crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24818-24828. [PMID: 29926332 DOI: 10.1007/s11356-018-2516-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Environmental genotoxicity in the Gulf of Riga was assessed using different bioindicators (fish, clams, and isopods) collected from 14 study stations. Comparison of genotoxicity responses (micronuclei (MN) and nuclear buds (NB)) in blood erythrocytes of herring (Clupea harengus), eelpout (Zoarces viviparous), and flounder (Platichthys flesus) revealed the species- and site-specific differences. For the first time, the analysis of genotoxicity was carried out in gill cells of isopods Saduria entomon. The highest inductions of MN and NB in gill cells of investigated S. entomon and clams (Macoma balthica) were evaluated in specimens from station 111A (offshore zone). In fish, the highest incidences of MN were measured in eelpout and in herring collected in the southern part of Gulf of Riga (station GOR3/41S). Moreover, in the southern coastal area, the assessment of genotoxicity risk (according to micronuclei levels) indicated exceptionally high risk for flounder, eelpout, and clams.
Collapse
Affiliation(s)
- Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania.
| | - Janina Baršienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Janina Greiciūnaitė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Milda Stankevičiūtė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Roberta Valskienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|