1
|
Casillas-Figueroa F, Arellano-García ME, Leyva-Aguilera C, Ruíz-Ruíz B, Luna Vázquez-Gómez R, Radilla-Chávez P, Chávez-Santoscoy RA, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N. Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1386. [PMID: 32708646 PMCID: PMC7408422 DOI: 10.3390/nano10071386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.
Collapse
Affiliation(s)
- Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Claudia Leyva-Aguilera
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Balam Ruíz-Ruíz
- Facultad de Medicina extensión los Mochis, Universidad Autónoma de Sinaloa, Av. Ángel Flores s/n, Ciudad Universitaria, 81223 Los Mochis, Sinaloa, Mexico;
| | - Roberto Luna Vázquez-Gómez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Rocío Alejandra Chávez-Santoscoy
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, ITESM, Monterrey, Eugenio Garza Sada, 2501 Sur, 64849 Monterrey, Nuevo León, Mexico;
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, UNAM, Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico;
| |
Collapse
|
2
|
Cytotoxic, Genotoxic, and Polymorphism Effects on Vanilla planifolia Jacks ex Andrews after Long-Term Exposure to Argovit ® Silver Nanoparticles. NANOMATERIALS 2018; 8:nano8100754. [PMID: 30257465 PMCID: PMC6215222 DOI: 10.3390/nano8100754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
Abstract
Worldwide demands of Vanilla planifolia lead to finding new options to produce large-scale and contaminant-free crops. Particularly, the Mexican Government has classified Vanilla planifolia at risk and it subject to protection programs since wild species are in danger of extinction and no more than 30 clones have been found. Nanotechnology could help to solve both demands and genetic variability, but toxicological concerns must be solved. In this work, we present the first study of the cytotoxic and genotoxic effects promoted by AgNPs in Vanilla planifolia plantlets after a very long exposure time of six weeks. Our results show that Vanilla planifolia plantlets growth with doses of 25 and 50 mg/L is favored with a small decrease in the mitotic index. A dose-dependency in the frequency of cells with chromosomal aberrations and micronuclei was found. However, genotoxic effects could be considered as minimum due to with the highest concentration employed (200 mg/L), the total percentage of chromatic aberrations is lower than 5% with only three micronuclei in 3000 cells, despite the long-time exposure to AgNP. Therefore, 25 and 50 mg/L (1.5 and 3 mg/L of metallic silver) were identified as safe concentrations for Vanilla planifolia growth on in vitro conditions. Exposure of plantlets to AgNPs increase the polymorphism registered by inter-simple sequence repeat method (ISSR), which could be useful to promote the genetic variability of this species.
Collapse
|
3
|
Panda KK, Golari D, Venugopal A, Achary VMM, Phaomei G, Parinandi NL, Sahu HK, Panda BB. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System. Antioxidants (Basel) 2017; 6:antiox6020035. [PMID: 28524089 PMCID: PMC5488015 DOI: 10.3390/antiox6020035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 01/24/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.
Collapse
Affiliation(s)
- Kamal K Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - Dambaru Golari
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - A Venugopal
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - V Mohan M Achary
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ganngam Phaomei
- Material Chemistry Laboratory, Department of Chemistry, Berhampur University, Berhampur 760007, Odisha, India.
| | - Narasimham L Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Hrushi K Sahu
- Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakum, Tamil Nadu 603102, India.
| | - Brahma B Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| |
Collapse
|