1
|
Dobrovolsky VN, Atiq OT, Heflich RH, Maisha M, McKinzie PB, Pearce MG, Robison TW. Erythrocyte PIG-A mutant frequencies in cancer patients receiving cisplatin. Cancer Med 2024; 13:e6895. [PMID: 38214136 PMCID: PMC10905239 DOI: 10.1002/cam4.6895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cisplatin is a primary chemotherapy choice for various solid tumors. DNA damage caused by cisplatin results in apoptosis of tumor cells. Cisplatin-induced DNA damage, however, may also result in mutations in normal cells and the initiation of secondary malignancies. In the current study, we have used the erythrocyte PIG-A assay to evaluate mutagenesis in non-tumor hematopoietic tissue of cancer patients receiving cisplatin chemotherapy. METHODS Twenty-one head and neck cancer patients undergoing treatment with cisplatin were monitored for the presence of PIG-A mutant total erythrocytes and the young erythrocytes, reticulocytes (RETs), in peripheral blood for up to five and a half months from the initiation of the anti-neoplastic chemotherapy. RESULTS PIG-A mutant frequency (MF) in RETs increased at least two-fold in 15 patients at some point of the monitoring, while the frequency of total mutant RBCs increased at least two-fold in 6 patients. A general trend for an increase in the frequency of mutant RETs and total mutant RBCs was observed in 19 and 18 patients, respectively. Only in one patient did both RET and total RBC PIG-A MFs did not increase at any time-point over the monitoring period. CONCLUSION Cisplatin chemotherapy induces moderate increases in the frequency of PIG-A mutant erythrocytes in head and neck cancer patients. Mutagenicity measured with the flow cytometric PIG-A assay may serve as a tool for predicting adverse outcomes of genotoxic antineoplastic therapy.
Collapse
Affiliation(s)
- Vasily N. Dobrovolsky
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Omar T. Atiq
- University of Arkansas for Medical Sciences (UAMS) Winthrop P. Rockefeller Cancer InstituteLittle RockArkansasUSA
| | - Robert H. Heflich
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Mackean Maisha
- Office of Scientific Coordination, NCTR, FDAJeffersonArkansasUSA
| | - Page B. McKinzie
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Mason G. Pearce
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Timothy W. Robison
- Office of New Drugs, OII, DPTII, Center for Drug Evaluation and Research (CDER), US FDASilver SpringMarylandUSA
| |
Collapse
|
2
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
3
|
Nicolette J, Luijten M, Sasaki JC, Custer L, Embry M, Froetschl R, Johnson G, Ouedraogo G, Settivari R, Thybaud V, Dearfield KL. Utility of a next-generation framework for assessment of genomic damage: A case study using the pharmaceutical drug candidate etoposide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:512-525. [PMID: 34775645 PMCID: PMC9299499 DOI: 10.1002/em.22467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.
Collapse
Affiliation(s)
| | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | - Laura Custer
- Bristol‐Myers Squibb Company, Drug Safety EvaluationNew BrunswickNew JerseyUSA
| | - Michelle Embry
- Health and Environmental Sciences InstituteWashingtonDistrict of ColumbiaUSA
| | | | - George Johnson
- Swansea University Medical SchoolSwansea UniversitySwanseaUK
| | | | | | | | | |
Collapse
|
4
|
Zhou CH, Yu CR, Huang PC, Li RW, Wang JT, Zhao TT, Zhao ZH, Ma J, Chang Y. In Vitro PIG-A Gene Mutation Assay in Human B-Lymphoblastoid TK6 Cells. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe X-linked PIG-A gene is involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. PIG-A mutant cells fail to synthesize GPI and to express GPI-anchored protein markers (e.g., CD59 and CD55). In recent years, in vitro PIG-A assay has been established based on the high conservation of PIG-A/Pig-a loci among different species and the large data from the in vivo system. The purpose of this study was to extend the approach for PIG-A mutation assessment to in vitro human B-lymphoblastoid TK6 cells by detecting the loss of GPI-linked CD55 and CD59 proteins. TK6 cells were treated with three mutagens 7,12-dimethylbenz[a]anthracene (DMBA), N-ethyl-N-nitrosourea (ENU), etoposide (ETO), and two nonmutagens: cadmium chloride (CdCl2) and sodium chloride (NaCl). The mutation rate of PIG-A gene within TK6 cells was determined on the 11th day with flow cytometry analysis for the negative frequencies of CD55 and CD59. The antibodies used in this production were APC mouse-anti-human CD19 antibody, PE mouse anti-human CD55 antibody, PE mouse anti-human CD59 antibody, and nucleic acid dye 7-AAD. An immunolabeling method was used to reduce the high spontaneous level of preexisting PIG-A mutant cells. Our data suggested that DMBA-, ENU-, and ETO-induced mutation frequency of PIG-A gene was increased by twofold compared with the negative control, and the effects were dose-dependent. However, CdCl2 and NaCl did not significantly increase the mutation frequency of PIG-A gene, with a high cytotoxicity at a dose of 10 mmol/L. Our study suggested that the novel in vitro PIG-A gene mutation assay within TK6 cells may represent a complement of the present in vivo Pig-a assay, and may provide guidance for their potential use in genotoxicity even in cells with a significant deficiency of GPI anchor.
Collapse
Affiliation(s)
- Chang-Hui Zhou
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Chun-Rong Yu
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng-Cheng Huang
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ruo-Wan Li
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jing-Ting Wang
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Tian-Tian Zhao
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ze-Hao Zhao
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jing Ma
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yan Chang
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Chikura S, Kimoto T, Itoh S, Sanada H, Muto S, Horibata K. Standard protocol for the PIGRET assay, a high-throughput reticulocyte Pig-a assay with an immunomagnetic separation, used in the interlaboratory trial organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen and Genome Society. Genes Environ 2021; 43:10. [PMID: 33743813 PMCID: PMC7981892 DOI: 10.1186/s41021-021-00181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
The PIGRET assay is one of the Pig-a assays targeting reticulocytes (RETs), an in vivo genotoxicity evaluation method using flow cytometry with endogenous reporter glycosylphosphatidylinositol anchor protein. The PIGRET assay with RETs selectively enriched with anti-CD71 antibodies has several desirable features: high-throughput assay system, low background frequency of mutant cells, and early detection of mutation. To verify the potential and usefulness of the PIGRET assay for short-term testing, an interlaboratory trial involving 16 laboratories organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen and Genome Society was conducted. The collaborating laboratories assessed the mutagenicities of a total of 24 chemicals in rats using a single-treatment design and standard protocols for conducting the Pig-a assay on the total red blood cell assay and the PIGRET assay. Here the standard protocol for the PIGRET assay was described in detail.
Collapse
Affiliation(s)
- Satsuki Chikura
- Toxicology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan
| | - Takafumi Kimoto
- Toxicology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan.
| | - Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Hisakazu Sanada
- Development ADMET Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, 412-8513, Japan
| | - Shigeharu Muto
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
6
|
No evidence for genotoxicity in mice due to exposure to intermediate-frequency magnetic fields used for wireless power-transfer systems. Mutat Res 2021; 863-864:503310. [PMID: 33678242 DOI: 10.1016/j.mrgentox.2021.503310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Time varying magnetic fields (MFs) are used for the wireless power-transfer (WPT) technology. Especially, 85 kHz band MFs, which are included in the intermediate frequency (IF) band (300 Hz - 10 MHz), are commonly used WPT system for charging electric vehicles. Those applications of WPT technology have elicited public concern about health effects of IF-MF. However, existing data from health risk assessments are insufficient and additional data are needed. We assessed the genotoxic effects of IF-MF exposure on erythroid differentiation in mice. A high-intensity IF-MF mouse exposure system was constructed to induce an average whole-body electric field of 54.1 V/m. Blood samples were obtained from male mice before and after a 2-week IF-MF exposure (1 h/day, total: 10 h); X-irradiated mice were used as positive controls. We analyzed the blood samples with the micronucleus (MN) test and the Pig-a mutation assay. No significant differences were seen between IF-MF-exposed and sham-exposed mice in the frequencies of either MN or Pig-a mutations in mature erythrocytes and reticulocytes. IF-MF exposure did not induce genotoxicity in vivo under the study conditions (2.36× the basic restriction for occupational exposure, 22.9 V/m, in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines). The absence of significant biological effects due to IF-MF exposure supports the practical application of this technology.
Collapse
|
7
|
Dertinger SD, Avlasevich SL, Torous DK, Bemis JC, Hove TT, O'Connell O, Martus H, Elhajouji A. Intra- and inter-laboratory reproducibility of the rat blood Pig-a gene mutation assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:500-507. [PMID: 32187725 DOI: 10.1002/em.22367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The in vivo Pig-a assay is being used in safety studies to evaluate the potential of chemicals to induce somatic cell gene mutations. Ongoing work is aimed at developing an Organization for Economic Cooperation and Development (OECD) test guideline to support routine use for regulatory purposes (OECD project number 4.93). Among the requirements for OECD approval are demonstrations of assay reliability, including reproducibility within and among laboratories. Experiments reported herein address the reproducibility of the rat blood Pig-a assay using the reference mutagens chlorambucil and melphalan. These agents were evaluated for their ability to induce Pig-a mutant erythrocytes in three separate studies conducted across two laboratories. Each of the studies utilized a common treatment schedule: 28 consecutive days of exposure via oral gavage. Whereas one laboratory studied Crl:CD(SD) rats, the other laboratory used Wistar Han rats. One or two days after cessation of treatment blood samples were collected for mutant reticulocyte and mutant erythrocyte measurements that were accomplished with the same analytical technique whereby samples were depleted of wildtype erythrocytes via immunomagnetic separation followed by flow cytometric enumeration of mutant phenotype cells (MutaFlow®). Dunnett's test results showed similar qualitative outcomes within and between laboratories, that is, each chemical and each study demonstrated statistically significant, dose-related increases in mutant reticulocyte and erythrocyte frequencies. Benchmark dose analysis (PROAST software) provided a means to quantitatively analyze the results, and the relatively tight, overlapping benchmark dose confidence intervals observed for each of the two chemicals indicate that within and between laboratory reproducibility of the Pig-a assay are high, adding further support for the development of an OECD test guideline.
Collapse
Affiliation(s)
| | | | | | | | - Tamsanqa Tafara Hove
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Oliver O'Connell
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Hansjoerg Martus
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
8
|
Tian X, Chen Y, Nakamura J. Development of a novel PIG-A gene mutation assay based on a GPI-anchored fluorescent protein sensor. Genes Environ 2019; 41:21. [PMID: 31867084 PMCID: PMC6902599 DOI: 10.1186/s41021-019-0135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
Background Accumulation of somatic mutations caused by both endogenous and exogenous exposures is a high risk for human health, in particular, cancer. Efficient detection of somatic mutations is crucial for risk assessment of different types of exposures. Due to its requirement in the process of attaching glycosylphatidylinositol- (GPI-) anchored proteins to the cell surface, the PIG-A gene located on the X-chromosome is used in both in vivo and in vitro mutation assays. Loss-of-function mutations in PIG-A lead to the elimination of GPI-anchored proteins such that they can no longer be detected on the cell surface by antibodies. Historically, mutation assays based on the PIG-A gene rely on the staining of these cell-surface proteins by antibodies; however, as with any antibody-based assay, there are major limitations, especially in terms of variability and lack of specific antibodies. Results In the current study, we developed a modified PIG-A mutation assay that uses the expression of GPI-anchored fluorescent proteins (henceforth referred to as a GPI-sensor), whereby the presence of fluorescence on the cell membrane is dependent on the expression of wild-type PIG-A. Using our modified PIG-A mutation assay, we have achieved complete separation of wild type cells and spontaneously mutated cells, in which the presence of PIG-A mutations has been confirmed via proaerolysin resistance and gene sequencing. Conclusion This study establishes a novel PIG-A mutation assay using GPI-anchored fluorescent protein expression that eliminates the need for antibody-based staining. This GPI-sensor PIG-A mutation assay should be widely applicable for accurate and efficient testing of genotoxicity for use in many mammalian and vertebrate cells.
Collapse
Affiliation(s)
- Xu Tian
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Youjun Chen
- 2Department of Neurology, UNC Neuroscience center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Jun Nakamura
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,3Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
9
|
Dertinger SD, Avlasevich SL, Torous DK, Singh P, Khanal S, Kirby C, Drake A, MacGregor JT, Bemis JC. 3Rs friendly study designs facilitate rat liver and blood micronucleus assays and Pig-a gene mutation assessments: Proof-of-concept with 13 reference chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:704-739. [PMID: 31294869 PMCID: PMC8600442 DOI: 10.1002/em.22312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 05/16/2023]
Abstract
Regulatory guidance documents stress the value of assessing the most appropriate endpoints in multiple tissues when evaluating the in vivo genotoxic potential of chemicals. However, conducting several independent studies to evaluate multiple endpoints and/or tissue compartments is resource intensive. Furthermore, when dependent on visual detection, conventional approaches for scoring genotoxicity endpoints can be slow, tedious, and less objective than the ideal. To address these issues with current practices we attempted to (1) devise resource sparing treatment and harvest schedules that are compatible with liver and blood micronucleus endpoints, as well as the Pig-a gene mutation assay, and (2) utilize flow cytometry-based methods to score each of these genotoxicity biomarkers. Proof-of-principle experiments were performed with 4-week-old male and female Crl:CD(SD) rats exposed to aristolochic acids I/II, benzo[a]pyrene, cisplatin, cyclophosphamide, diethylnitrosamine, 1,2-dimethylhydrazine, dimethylnitrosamine, 2,6-dinitrotoluene, hydroxyurea, melphalan, temozolomide, quinoline, or vinblastine. These 13 chemicals were each tested in two treatment regimens: one 3-day exposure cycle, and three 3-day exposure cycles. Each exposure, blood collection, and liver harvest was accomplished during a standard Monday-Friday workweek. Key findings are that even these well-studied, relatively potent genotoxicants were not active in both tissues and all assays (indeed only cisplatin was clearly positive in all three assays); and whereas the sensitivity of the Pig-a assay clearly benefitted from three versus one treatment cycle, micronucleus assays yielded qualitatively similar results across both study designs. Collectively, these results suggest it is possible to significantly reduce animal and other resource requirements while improving assessments of in vivo genotoxicity potential by simultaneously evaluating three endpoints and two important tissue compartments using fit-for-purpose study designs in conjunction with flow cytometric scoring approaches. Environ. Mol. Mutagen., 60:704-739, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephen D. Dertinger
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger and Jeffrey C. Bemis, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, and
| | | | | | | | | | | | | | | | - Jeffrey C. Bemis
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger and Jeffrey C. Bemis, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, and
| |
Collapse
|
10
|
Albertini RJ, Nicklas JA, Vacek PM, Carter EW, McDiarmid M. Longitudinal study of t-cell somatic mutations conferring glycosylphosphatidylinositol-anchor deficiency in gulf war I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:494-504. [PMID: 30848527 DOI: 10.1002/em.22281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Fifty Veterans of the first Gulf War in 1991 exposed to depleted uranium (DU) were studied for glycosylphosphatidylinositol-anchor (GPIa) deficient T-cell mutants on three occasions during the years 2009, 2011, and 2013. GPIa deficiency was determined in two ways: cloning assays employing aerolysin selection and cytometry using the FLAER reagent for positive staining of GPIa cell surface proteins. Subsequent molecular analyses of deficient isolates recovered from cloning assays (Nicklas JA et al. [2019]: Environ Mol Mutagen) revealed apparent incomplete selection in some cloning assays, necessitating correction of original data to afford a more realistic estimate of GPIa deficient mutant frequency (MF) values. GPIa deficient variant frequencies (VFs) determined by cytometry were determined in the years 2011 and 2013. A positive but nonsignificant association was observed between MF and VF values determined on the same blood samples during 2013. Exposure to DU had no effect on either GPIa deficient MF or VFs. Environ. Mol. Mutagen. 60:494-504, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | - Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, DC
| |
Collapse
|
11
|
Kirkland D, Uno Y, Luijten M, Beevers C, van Benthem J, Burlinson B, Dertinger S, Douglas GR, Hamada S, Horibata K, Lovell DP, Manjanatha M, Martus HJ, Mei N, Morita T, Ohyama W, Williams A. In vivo genotoxicity testing strategies: Report from the 7th International workshop on genotoxicity testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403035. [PMID: 31699340 DOI: 10.1016/j.mrgentox.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster, LS24 0AS, United Kingdom.
| | - Yoshifumi Uno
- Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama, 335-8505, Japan
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Carol Beevers
- Exponent International Ltd., The Lenz, Hornbeam Park, Harrogate, HG2 8RE, United Kingdom
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Brian Burlinson
- Envigo, Huntingdon, Cambridgeshire, PE28 4HS, United Kingdom
| | | | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Shuichi Hamada
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Katsuyoshi Horibata
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - David P Lovell
- St George's Medical School, University of London, London, SW17 0RE, United Kingdom
| | | | | | - Nan Mei
- US FDA, National Center for Toxicological Research, Jefferson, AR, USA
| | - Takeshi Morita
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd., 5-11, Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Andrew Williams
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| |
Collapse
|
12
|
Bemis JC, Heflich RH. In vitro mammalian cell mutation assays based on the Pig-a gene: A report of the 7th International Workshop on Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403028. [PMID: 31699348 DOI: 10.1016/j.mrgentox.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Pig-a gene mutation assays enumerate cells with the glycosylphosphatidylinositol (GPI) anchor-deficient phenotype as a reporter of mutation in the endogenous Pig-a gene. Methods for measuring mutation in this gene are quite well established for in vivo systems. This approach to mutagenicity assessment has now been extended to in vitro mammalian cell-based systems. An expert workgroup from the 7th International Workshop on Genotoxicity Testing tasked with assessing the status of in vitro mammalian cell mutation assays has investigated the merits and limitations of in vitro Pig-a gene mutation assays. A review of the current status of these developing methodologies and the formation of consensus statements on the utility and application of these assays were performed to provide guidance for their potential use in genotoxicity hazard identification and risk assessment.
Collapse
Affiliation(s)
- J C Bemis
- Litron Laboratories, Rochester, NY, USA.
| | - R H Heflich
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
13
|
Chikura S, Kimoto T, Itoh S, Sanada H, Muto S, Horibata K. Standard protocol for the total red blood cell Pig-a assay used in the interlaboratory trial organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen Society. Genes Environ 2019; 41:5. [PMID: 30858897 PMCID: PMC6391751 DOI: 10.1186/s41021-019-0121-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
The Pig-a assay, a promising tool for evaluating in vivo genotoxicity, is based on flow cytometric enumeration of red blood cells (RBCs) that are deficient in glycosylphosphatidylinositol anchor protein. Various approaches for measuring Pig-a mutant cells have been developed, particularly focusing on measuring mutants in peripheral RBCs and reticulocytes (RETs). The Pig-a assay on concentrated RETs-the PIGRET assay-has the potential to detect genotoxicity in the early stages of a study. To verify the potential and usefulness of the PIGRET assay for short-term testing, we conducted an interlaboratory trial involving 16 laboratories organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen Society (MMS/JEMS). The collaborating laboratories assessed the mutagenicity of a total of 24 chemicals in rats using a single-treatment design and standard protocols for conducting the Pig-a assay on total RBCs (the RBC Pig-a assay) and the PIGRET assay. Here, we describe the standard protocol for the RBC Pig-a assay in detail.
Collapse
Affiliation(s)
- Satsuki Chikura
- Toxicology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512 Japan
| | - Takafumi Kimoto
- Toxicology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512 Japan
| | - Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, 1-16-13, Kitakasai, Edogawa-ku, Tokyo, 134-8630 Japan
| | - Hisakazu Sanada
- Drug Research Center, Kaken Pharmaceutical Co., LTD, 301, Gensuke, Fujieda-shi, Shizuoka, 426-8646 Japan
| | - Shigeharu Muto
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama, 335-8505 Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501 Japan
| |
Collapse
|
14
|
Avlasevich SL, Torous DK, Bemis JC, Bhalli JA, Tebbe CC, Noteboom J, Thomas D, Roberts DJ, Barragato M, Schneider B, Prattico J, Richardson M, Gollapudi BB, Dertinger SD. Suitability of Long-Term Frozen Rat Blood Samples for the Interrogation of Pig-a Gene Mutation by Flow Cytometry. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:47-55. [PMID: 30264522 DOI: 10.1002/em.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The rodent blood Pig-a assay has been undergoing international validation for use as an in vivo hematopoietic cell gene mutation assay, and given the promising results an Organization for Economic Co-operation and Development (OECD) Test Guideline is currently under development. Enthusiasm for the assay stems in part from its alignment with 3Rs principles permitting combination with other genotoxicity endpoint(s) and integration into repeat-dose toxicology studies. One logistical requirement and experimental design limitation has been that blood samples required antibody labeling and flow cytometric analysis within one week of collection. In the current report, we describe the performance of freeze-thaw reagents that enable storage and subsequent labeling and analysis of rat blood samples for at least seven months. Data generated from three laboratories are presented that demonstrate rat erythrocyte recoveries in the range of 80-90%. Despite some loss of erythrocytes, Pearson coefficients and Bland-Altman analyses based on fresh blood vs. frozen/thawed matched pairs indicate that mutant cell and reticulocyte frequencies are not significantly affected, as the measurements are highly correlated and exhibit low bias. Collectively, these data support the effectiveness and suitability of a freeze-thaw procedure that endows the assay with several new advantageous characteristics that include: flexibility in scheduling personnel/instrumentation; reliability when shipping samples from in-life facilities to analytical sites; 3Rs-friendly, as blood from positive control animals can be stored frozen to serve as analytical controls; and ability to defer a decision to generate Pig-a data until more toxicological information becomes available on a test substance. Environ. Mol. Mutagen. 60:47-55, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
|
15
|
Revollo JR, Pearce MG, Dad A, Petibone DM, Robison TW, Roberts D, Dobrovolsky VN. Analysis of mutation in the rat Pig-a assay: I) studies with bone marrow erythroid cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:722-732. [PMID: 30091272 DOI: 10.1002/em.22211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
We have established a flow cytometry-based Pig-a assay for rat bone marrow erythroid cells (BMEs). The BME Pig-a assay uses a DNA-specific stain and two antibodies: one against the transmembrane transferrin receptor (CD71 marker) and the other against the GPI-anchored complement inhibitory protein (CD59 marker). In F344 male rats treated acutely with a total of 120 mg/kg of N-ethyl-N-nitrosourea (ENU) the frequency of CD59-deficient phenotypically mutant BMEs increased approximately 24-fold compared to the rats concurrently treated with the vehicle. Such an increase of mutant BMEs coincides with increases of CD59-deficient reticulocytes measured in rats treated with similar doses of ENU. Sequence analysis of the endogenous X-linked Pig-a gene of CD59-deficient BMEs revealed that they are Pig-a mutants. The spectrum of ENU-induced Pig-a mutations in these BMEs was consistent with the in vivo mutagenic signature of ENU: 73% of mutations occurred at A:T basepairs, with the mutated T on the nontranscribed strand of the gene. T→A transversion was the most frequent mutation followed by T→C transition; no deletion or insertion mutations were present in the spectrum. Since BMEs are precursors of peripheral red blood cells, our findings suggest that CD59-deficient erythrocytes measured in the flow cytometric erythrocyte Pig-a assay develop from BMEs containing mutations in the Pig-a gene. Thus, the erythrocyte Pig-a assay detects mutation in the Pig-a gene. Environ. Mol. Mutagen. 59:722-732, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Timothy W Robison
- Division of Pulmonary, Allergy, and Rheumatology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Daniel Roberts
- Charles River Laboratories, Skokie, Illinois; Joint Graduate Program of Toxicology, Rutgers University, Piscataway, New Jersey
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
16
|
Itoh S, Hattori C. In vivo genotoxicity of 1,4-dioxane evaluated by liver and bone marrow micronucleus tests and Pig-a assay in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 837:8-14. [PMID: 30595213 DOI: 10.1016/j.mrgentox.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
1,4-Dioxane, used widely as a solvent in the manufacture of chemicals and as a laboratory reagent, induced liver adenomas and carcinomas in mice and rats, and nasal tumors in rats in several long-term studies. 1,4-Dioxane has been reported to be non-genotoxic in vitro, and there is no clear conclusion concerning its in vivo genotoxicity in rodents. In the present study, we investigated the ability of 1,4-dioxane to induce micronuclei in the liver and bone marrow of rats. For the liver micronucleus test, we performed the juvenile animal method and two methods using partial hepatectomy (PH), dosing before PH or dosing after PH. We also evaluated the in vivo mutagenicity of 1,4-dioxane by Pig-a gene mutation assay using rat peripheral blood. As a result, all methods of liver micronucleus test showed an increase in the frequency of micronucleated hepatocytes by 1,4-dioxane. The dosing before PH, a suitable method for detecting structural chromosome aberration inducers, showed the clearest response for micronucleated hepatocytes induction among the three methods. This finding is consistent with a previous report that 1,4-dioxane induces mainly chromosome breakage in the liver. Negative results were obtained in the bone marrow micronucleus test and Pig-a gene mutation assay in our study. These results suggested that 1,4-dioxane is clastogenic in the liver but not genotoxic in the bone marrow of rats.
Collapse
Affiliation(s)
- Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Chiharu Hattori
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
17
|
Elhajouji A, Vaskova D, Downing R, Dertinger SD, Martus H. Induction ofin vivo Pig-agene mutation but not micronuclei by 5-(2-chloroethyl)-2ʹ-deoxyuridine, an antiviral pyrimidine nucleoside analogue. Mutagenesis 2018; 33:343-350. [DOI: 10.1093/mutage/gey029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/10/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Dagmara Vaskova
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Rebecca Downing
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Hansjeorg Martus
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
18
|
Multi-laboratory evaluation of 1,3-propane sultone, N -propyl- N -nitrosourea, and mitomycin C in the Pig-a mutation assay in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:62-68. [DOI: 10.1016/j.mrgentox.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
|
19
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
20
|
David R, Talbot E, Allen B, Wilson A, Arshad U, Doherty A. The development of an in vitro Pig-a assay in L5178Y cells. Arch Toxicol 2018; 92:1609-1623. [PMID: 29362862 DOI: 10.1007/s00204-018-2157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 12/01/2022]
Abstract
A recent flow cytometry-based in vivo mutagenicity assay involves the hemizygous phosphatidylinositol class A (Pig-a) gene. Pig-a forms the catalytic subunit of N-acetylglucosaminyltransferase required for glycophosphatidylinositol (GPI) anchor biosynthesis. Mutations in Pig-a prevent GPI-anchor synthesis resulting in loss of cell-surface GPI-linked proteins. The aim of the current study was to develop and validate an in vitro Pig-a assay in L5178Y mouse lymphoma cells. Ethyl methanesulfonate (EMS)-treated cells (186.24-558.72 µg/ml; 24 h) were used for method development and antibodies against GPI-linked CD90.2 and stably expressed CD45 were used to determine GPI-status by flow cytometry. Antibody concentration and incubation times were optimised (0.18 µg/ml, 30 min, 4 °C) and Zombie Violet™ (viability marker; 0.5%, 30 min, RT) was included. The optimum phenotypic expression period was 8 days. The low background mutation frequency of GPI-deficiency [GPI(-)] in L5178Y cells (0.1%) constitutes a rare event, thus flow cytometry acquisition parameters were optimised; 104 cells were measured at medium flow rate to ensure a CV ≤ 30%. Spiking known numbers of GPI(-) cells into a wild-type population gave high correlation between measured and spiked numbers (R2 0.999). We applied the in vitro Pig-a assay to a selection of well-validated genotoxic and non-genotoxic compounds. EMS, N-ethyl-N-nitrosourea and 4-nitroquinoline-N-oxide dose dependently increased numbers of GPI(-) cells, while etoposide, mitomycin C, and a bacterial-specific mutagen did not. Cycloheximide and sodium chloride were negative. Sanger sequencing revealed Pig-a mutations in the GPI(-) clones. In conclusion, this in vitro Pig-a assay could complement the in vivo version, and follow up weak Ames positives and late-stage human metabolites or impurities.
Collapse
Affiliation(s)
- Rhiannon David
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
| | - Emily Talbot
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Bethany Allen
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amy Wilson
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Usman Arshad
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Ann Doherty
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
21
|
Avlasevich SL, Labash C, Torous DK, Bemis JC, MacGregor JT, Dertinger SD. In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:30-37. [PMID: 28833575 PMCID: PMC5773054 DOI: 10.1002/em.22122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
22
|
Bemis JC, Avlasevich SL, Labash C, McKinzie P, Revollo J, Dobrovolsky VN, Dertinger SD. Glycosylphosphatidylinositol (GPI) anchored protein deficiency serves as a reliable reporter of Pig-a gene Mutation: Support from an in vitro assay based on L5178Y/Tk +/- cells and the CD90.2 antigen. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:18-29. [PMID: 29115020 PMCID: PMC5771857 DOI: 10.1002/em.22154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Lack of cell surface glycosylphosphatidylinositol (GPI)-anchored protein(s) has been used as a reporter of Pig-a gene mutation in several model systems. As an extension of this work, our laboratory initiated development of an in vitro mutation assay based on the flow cytometric assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk+/- . Cells were exposed to mutagenic and nonmutagenic compounds for 24 hr followed by washout and incubation for an additional 7 days. Following this mutant manifestation time, cells were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents indicated the presence of GPI-anchored proteins and general cell surface membrane receptor integrity, respectively. Instrument set-up was aided by parallel processing of a GPI anchor-deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of mutant phenotype cells, while the nonmutagens did not. Further modifications to the method, including application of a viability dye and an isotype control for instrument set-up, were investigated. As a means to verify that the GPI-anchored protein-negative phenotype reflects bona fide Pig-a gene mutation, sequencing was performed on 38 CD90.2-negative L5178Y/Tk+/- clones derived from cultures treated with ethyl methanesulfonate. All clones were found to have mutation(s) within the Pig-a gene. The continued investigation of L5178Y/Tk+/- cells, CD90.2 labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly supported by this work. These data also provide evidence of the reliability of using GPI anchor-deficiency as a valid reporter of Pig-a gene mutation. Environ. Mol. Mutagen. 59:18-29, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Page McKinzie
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Javier Revollo
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
23
|
Koyama N, Yonezawa Y, Nakamura M, Sanada H. Evaluation for a mutagenicity of aristolochic acid by Pig-a and PIGRET assays in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:80-85. [PMID: 27931820 DOI: 10.1016/j.mrgentox.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/29/2022]
Abstract
The Pig-a assay, which uses the endogenous phosphatidylinositol glycan, class A gene (Pig-a) as a reporter of mutation, has been developed as a method for evaluating in vivo mutagenicity. Pig-a gene mutation can be detected by identifying the presence of CD59, the glycosylphosphatidylinositol anchor protein, on the surface of erythrocytes (RBC Pig-a assay) and reticulocytes (PIGRET assay). The International Workshop on Genotoxicity Testing (IWGT) showed the usefulness of the RBC Pig-a assay through the evaluation of several compounds. Aristolochic acid (AA), one of the evaluated compounds in the IWGT workgroup, is a carcinogenic plant toxin that is a relatively strong gene mutagen both in vitro and in vivo, but a weak inducer of micronuclei in vivo. In the present study, we examined the mutagenicity of AA in the peripheral blood of rats treated orally with a single dose of AA using Pig-a assays. Furthermore, we evaluated the advantages of the PIGRET assay compared with the RBC Pig-a assay. The results showed that a statistically significant increase in mutant frequency of the Pig-a gene was detected at day 28 by the RBC Pig-a assay, and at days 7, 14 and 28 by the PIGRET assay. In addition, the mutant frequency by the PIGRET assay was higher than that by the RBC Pig-a assay. These results indicate that the mutagenicity of AA can be detected using the Pig-a assays, as reported by the IWGT, and the PIGRET assay can detect Pig-a mutants at an early time point compared with the RBC Pig-a assay.
Collapse
Affiliation(s)
- Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan.
| | - Yutaka Yonezawa
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Michi Nakamura
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Hisakazu Sanada
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| |
Collapse
|
24
|
Narumi K, Fujiishi Y, Okada E, Ohyama W. Detection of Pig-a gene mutants in rat peripheral blood following a single urethane treatment: A comparison of the RBC Pig-a and PIGRET assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:129-134. [PMID: 27931806 DOI: 10.1016/j.mrgentox.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
The rat red blood cell (RBC) Pig-a assay has been recommended by an expert working group of the International Workshop on Genotoxicity Testing as a potential new method to evaluate in vivo gene mutations in regulatory genotoxicity risk assessments. In a collaborative study in Japan, an improved Pig-a assay using reticulocytes (PIGRET assay) with magnetic enrichment of CD71-positive cells was evaluated, and it was revealed that this assay could detect the mutagenicity of chemicals earlier than the RBC Pig-a assay could. To verify further the suitability of the PIGRET assay for an in vivo short-term genotoxicity screening test, a joint research study was conducted by the Japanese Environmental Mutagen Society, and 24 compounds were evaluated. One of the compounds evaluated in this study was urethane, a multi-organ rodent carcinogen. Urethane (250, 500, and 1000mg/kg body weight) was orally administered once to 8-week-old male Crl:CD (SD) rats. Blood samples were collected at 1, 2, and 4 weeks after the administration and processed for the RBC Pig-a and PIGRET assays. In the PIGRET assay, the Pig-a mutant frequency (MF) significantly increased at both 2 and 4 weeks after the treatment of 1000mg/kg of urethane. However, in the RBC Pig-a assay, a significant increase in the Pig-a MF was observed only at 1 week after the treatment with 500mg/kg, but the MF value was within our historical control range; therefore, it was judged to be negative. These results suggest that the PIGRET assay might be useful for evaluating the in vivo mutagenicity more clearly than the RBC Pig-a assay after a single treatment of test compounds.
Collapse
Affiliation(s)
- Kazunori Narumi
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan.
| | - Yohei Fujiishi
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Emiko Okada
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Wakako Ohyama
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
25
|
Tsutsumi E, Momonami A, Hori H, Kitagawa Y. Evaluation of single-dose RBC Pig-a and PIGRET assays in detecting the mutagenicity of thiotepa in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:123-128. [PMID: 27931805 DOI: 10.1016/j.mrgentox.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
The Pig-a assay, which uses reticulocytes (PIGRET assay) as target cells, is anticipated to detect mutagenicity at earlier time points than the RBC Pig-a assay, which uses all red blood cells as target cells. As part of a collaborative study conducted by the Mammalian Mutagenicity Study (MMS) Group, we evaluated the PIGRET and RBC Pig-a assays to detect Pig-a gene mutations induced by the carcinogen thiotepa. A single dose of thiotepa at 7.5, 15, and 30mg/kg was administered to 8-week-old male Sprague-Dawley rats by oral gavage. PIGRET and RBC Pig-a assays were performed using peripheral blood collected from rats 7, 14, and 28days after thiotepa administration (Day 0 as the day of administration), and the resulting Pig-a mutant frequencies (MFs) were compared. Increased Pig-a MF was observed from Day 7 onwards using the PIGRET assay. Pig-a MF remained fairly constant thereafter until Day 28 in the 30mg/kg group, whereas it peaked on Day 14 in the 7.5 and 15mg/kg groups. Using the RBC Pig-a assay, on the other hand, no significant increase in MF was observed at any of the dosages on Days 7, 14, or 28. These findings show that Pig-a gene mutations following a single dose of thiotepa were detected using the PIGRET assay but not the RBC Pig-a assay, which suggests that PIGRET assay is more suitable than RBC Pig-a assay for evaluating the in vivo mutagenicity by a single dose.
Collapse
Affiliation(s)
- Eri Tsutsumi
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Ayaka Momonami
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hisako Hori
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Yoshinori Kitagawa
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
26
|
Kyoya T, Hori M, Terada M. Evaluation of the in vivo mutagenicity of melamine by the RBC Pig-a assay and PIGRET assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:43-48. [PMID: 27931813 DOI: 10.1016/j.mrgentox.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The Pig-a assay is a new in vivo genotoxicity test for detecting mutagens in the bodies of animals, using the endogenous Pig-a gene as the target. There are two types of Pig-a assays: the red blood cell (RBC) Pig-a assay, which uses RBCs, and the PIGRET assay, which uses reticulocytes. The Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study Group collaborative study of the Pig-a assay was carried out to investigate the usefulness of the PIGRET assay. The mutagenicity of melamine was evaluated as part of this study. Eight-week-old male Crl:CD (SD) rats were administered a single gavage dose of melamine as a non-genotoxic bladder carcinogen. Blood samples were collected at the first, second and fourth weeks after administration, and the RBC Pig-a assay and PIGRET assays were conducted using these samples. Three dose levels were used in the study: the highest dose was 2000mg/kg, which is generally used as the maximum dose in in vivo genotoxicity testing, and 1000 and 500mg/kg were also used. As a positive control, a group of rats was administered a single dose of N-nitroso-N-ethylurea (ENU) by gavage at 40mg/kg. The Pig-a mutant frequencies (Pig-a MFs) did not increase in any of the melamine groups throughout the experimental period in either the RBC Pig-a assay or the PIGRET assay. Both the RBC Pig-a and PIGRET assays revealed significant increases in the Pig-a MFs in the ENU group, starting at day 7 after a single administration. Therefore, these two assays, when evaluated after a single administration, can be used to determine that melamine is non-mutagenic.
Collapse
Affiliation(s)
- Takahiro Kyoya
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan.
| | - Masami Hori
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan
| | - Megumi Terada
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan
| |
Collapse
|
27
|
Itoh S, Hattori C, Nakayama S, Hanamoto A. PIGRET assay can detect mutagenicity of ethyl methanesulfonate much earlier than RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:102-105. [PMID: 27931801 DOI: 10.1016/j.mrgentox.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The comparison between the original red blood cell (RBC) Pig-a assay, which measures Pig-a mutant RBCs, and the PIGRET assay, which uses reticulocytes, was conducted using in vivo mutagenesis by ethyl methanesulfonate (EMS) as a part of a collaborative study by the Mammalian Mutagenicity Study Group in the Japanese Environmental Mutagen Society. Three dose levels of EMS (180, 360, and 720mg/kg) were administered once by oral gavage to 8-week-old male Crl:CD(SD) rats, and peripheral blood was sampled at 0 (1 day before dosing), 1, 2, and 4 weeks after dosing with EMS. As a result, a statistically significant increase in the mutant frequency of the Pig-a gene was observed from 2 weeks after dosing and a higher value was obtained on week 4 at the highest dose only in the RBC Pig-a assay. In the PIGRET assay, on the other hand, a statistically significant increase in Pig-a mutant frequency was obtained at the highest dose from 1 week after dosing, and it decreased on weeks 2 and 4 compared to the value at week 1. The Pig-a mutant frequency appeared to reach a plateau 1 week after dosing in the PIGRET assay and it might continue to increase even after week 4 in the RBC Pig-a assay. These results indicate that the PIGRET assay can detect Pig-a mutants much earlier than the original RBC Pig-a assay, and it can enable judgement of mutagenicity of EMS within 1 week after a single dosing.
Collapse
Affiliation(s)
- Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Chiharu Hattori
- Biologics Pharmacology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shiho Nakayama
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Akiharu Hanamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
28
|
Sanada H, Ohsumi T, Koyama N, Miyashita T, Hashimoto K. Evaluation of the PIGRET assay in rats by single oral dosing with azidothymidine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:65-69. [PMID: 27931817 DOI: 10.1016/j.mrgentox.2016.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
In vivo phosphatidylinositol glycan, class A (Pig-a) gene mutation assay using peripheral blood is known to be a novel and useful tool to evaluate the mutagenicity of compounds. Recently, the rat PIGRET assay which is an improved method for measuring Pig-a mutant cells in reticulocytes with magnetic enrichment of CD71 positive cells has been developed. Several reports showed that the PIGRET assay could detect the increase of Pig-a mutant frequency earlier than the Pig-a assay in total red blood cells (RBC Pig-a assay). Therefore, as part of a collaborative study by the Mammalian Mutagenicity Study (MMS) Group of the Japanese Environmental Mutagen Society, the usefulness of the PIGRET assay in comparison to the RBC Pig-a assay has been assessed for 24 compounds with various mechanisms of action. In the present study, we performed the PIGRET assay and RBC Pig-a assay with a nucleoside analogue, azidothymidine (AZT), and compared the results in these assays. We administered a single dose of AZT to rats by oral gavage up to 2000mg/kg and examined Pig-a mutant frequencies at days 7, 14 and 28 by PIGRET and RBC Pig-a assays. No significant increases in mutant frequency were observed after administration of AZT in both the RBC Pig-a and PIGRET assays and comparable to the previous results of the International Workshop on Genotoxicity Testing (IWGT) workgroup. AZT has been thought to induce not only DNA chain termination as a pharmacological effect but also a large deletion on the genome DNA. The Pig-a assays may be less sensitive to compounds such as AZT which induce large deletions on the genome DNA.
Collapse
Affiliation(s)
- Hisakazu Sanada
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan.
| | - Tomoka Ohsumi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Taishi Miyashita
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| | - Kazuto Hashimoto
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda-shi, Shizuoka 426-8646, Japan
| |
Collapse
|
29
|
Pyrene did not induce gene mutation in red blood cell Pig-a assay and PIGRET assay in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:49-53. [PMID: 27931814 DOI: 10.1016/j.mrgentox.2016.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022]
Abstract
A new in vivo gene mutation assay has been developed based on the phosphatidylinositol glycan anchor biosynthesis, Class A gene (Pig-a in rodents) as an endogenous reporter. Although a large number of chemicals have been evaluated in the rat Pig-a assay in 28-day repeat dose regimens, there was limited reporting of rat Pig-a assay after a single dose. A collaborative study by the Mammalian Mutagenicity Study group, which is a subgroup of the Japanese Environmental Mutagen Society, was conducted to verify the usefulness of the rat Pig-a assay after a single dose as a short-term genotoxicity test. As a part of this collaborative study, the in vivo mutagenicity of a single dose of pyrene (Pyr) was investigated in the red blood cell (RBC Pig-a assay) and in reticulocytes (PIGRET) of rats. Eight-week old male rats were orally dosed with Pyr at 500, 1000, and 2000 mg/kg or ethylnitrosourea (ENU) at 10 and 40 mg/kg as a positive control. The animals in each group were examined for Pig-a mutant frequencies (MF) except for animals in the 2000mg/kg group because of mortality or severe toxicity. The Pig-a MF in RBCs and reticulocytes, as CD59 negative cells, were evaluated once a week for 4 weeks after the dosing. With a single exposure to ENU, the Pig-a MF in both RBCs and reticulocytes increased in a time- and dose-dependent manner. In contrast, no statistically significant effect was observed in rats dosed with Pyr at 500 and 1000 mg/kg. Therefore, Pyr was concluded to be negative in the RBC Pig-a assay and the PIGRET assay after a single oral administration in rats. The result was consistent with previously reported Pig-a assays with repeat dose regimens.
Collapse
|
30
|
Adachi H, Uematsu Y, Yamada T. Evaluation of the RBC Pig-a and PIGRET assays using single doses of hydroxyurea and melphalan in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:35-42. [PMID: 27931812 DOI: 10.1016/j.mrgentox.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
To evaluate the suitability of the rat Pig-a assay on reticulocytes (PIGRET assay) as a short-term test, red blood cell (RBC) Pig-a and PIGRET assays after single doses with hydroxyurea (HU) and melphalan (L-PAM) were conducted and the results of both assays were compared. HU was administered once orally to male SD rats at 250, 500 and 1000mg/kg, and both assays were conducted using peripheral blood withdrawn from the jugular vein at 1, 2 and 4 weeks after dosing. L-PAM was administered at 1.25, 2.5 and 5mg/kg in the same manner. L-PAM produced significant dose-dependent increases in mutant frequencies in the PIGRET assay after single oral doses, but did not produce dose-dependent increases in mutant frequencies in the RBC Pig-a assay. These results suggest that the PIGRET assay is more sensitive for the evaluation of the mutagenic potential of L-PAM than the RBC Pig-a assay. In contrast, HU, a clastogenic but not DNA-reactive compound, gave negative results in both assays. The results with these 2 chemicals indicate that the single-dose PIGRET assay in rats has the potential to properly detect DNA-reactive compounds that directly cause DNA damage in a short-term assay.
Collapse
Affiliation(s)
- Hideki Adachi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-0022, Japan.
| | - Yasuaki Uematsu
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-0022, Japan
| | - Toru Yamada
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
31
|
Kikuzuki R, Sato H, Fujiwara A, Takahashi T, Ogiwara Y, Sugiura M. Evaluation of the RBC Pig-a assay and the PIGRET assay using benzo[a]pyrene in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:86-90. [PMID: 27931821 DOI: 10.1016/j.mrgentox.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022]
Abstract
The red blood cell (RBC) Pig-a assay has the potential to detect the in vivo mutagenicity of chemicals. Recently, use of the Pig-a assay with reticulocytes (the PIGRET assay) reportedly enabled the in vivo mutagenicity of chemicals to be detected earlier than using the RBC Pig-a assay. To evaluate whether the PIGRET assay is useful and effective as a short-term test, compared with the RBC Pig-a assay, we performed both assays using benzo[a]pyrene (BP), which is a well-known mutagen. BP was used to dose 8-week-old male rats orally at 0, 75.0, 150, and 300mg/kg administered as a single administration. Peripheral blood samples were then collected on days 0, 7, 14, and 28 after treatment and were used in both assays. In the treatment groups receiving 150mg/kg of BP or more, both the RBC Pig-a assay and the PIGRET assay detected the in vivo mutagenicity of BP. In the 300mg/kg treatment group, in which a significant increase in the mutant frequency (MF) was observed at all the sampling points using both the RBC Pig-a assay and the PIGRET assay, the reticulocyte (RET) Pig-a MF was higher than the RBC Pig-a MF on days 7 and 14 after treatment; nevertheless, the negative control RET Pig-a MF was comparable to the negative control RBC Pig-a MF. In addition, the RET Pig-a MF began to increase after day 7 and reached a maximum value on day 14 after treatment, whereas the RBC Pig-a MF increased continuously from day 7 until day 28 after treatment. These results indicate that the PIGRET assay has a higher sensitivity than the RBC Pig-a assay and that the PIGRET assay is useful for the earlier detection of the in vivo mutagenicity of chemicals, compared with the RBC Pig-a assay.
Collapse
Affiliation(s)
- Ryuta Kikuzuki
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | - Haruka Sato
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Ai Fujiwara
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Tomoko Takahashi
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Yosuke Ogiwara
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Mihoko Sugiura
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| |
Collapse
|
32
|
Chikura S, Okada Y, Kimoto T, Kaneko H, Miura D, Kasahara Y. The rat Pig-a assay using an erythroid HIS49 antibody in a single dose study of isopropyl p-toluenesulfonate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:110-116. [DOI: 10.1016/j.mrgentox.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
|
33
|
Muto S, Yamada K, Kato T, Ando M, Inoue Y, Iwase Y, Uno Y. Evaluation of the mutagenicity of alkylating agents, methylnitrosourea and temozolomide, using the rat Pig-a assay with total red blood cells or reticulocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:117-122. [DOI: 10.1016/j.mrgentox.2016.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/24/2023]
|
34
|
Evaluation of a single-dose PIGRET assay for cisplatin in rats compared with the RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:97-101. [DOI: 10.1016/j.mrgentox.2016.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 10/21/2022]
|
35
|
Shigano M, Ishii N, Takashima R, Harada H, Takasawa H, Hamada S. Results of rat Pig-a/PIGRET assay with a single dose regimen of 1,3-propane sultone and 2-acetyl aminofluorene. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:75-79. [DOI: 10.1016/j.mrgentox.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
36
|
Evaluation of mutagenicity of acrylamide using RBC Pig-a and PIGRET assays by single peroral dose in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:54-59. [DOI: 10.1016/j.mrgentox.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
|
37
|
Evaluation of the PIGRET assay as a short-term test using a single dose of diethylnitrosamine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:70-74. [DOI: 10.1016/j.mrgentox.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
|
38
|
Maeda A, Takahashi K, Tsuchiyama H, Oshida K. Evaluation of red blood cell Pig-a assay and PIGRET assay in rats using chlorambucil. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:91-96. [DOI: 10.1016/j.mrgentox.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
39
|
Evaluation of in vivo gene mutation with etoposide using Pig-a and PIGRET assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:29-34. [DOI: 10.1016/j.mrgentox.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022]
|
40
|
Johnson GE, Yamamoto M, Suzuki Y, Adachi H, Kyoya T, Takasawa H, Horibata K, Tsutsumi E, Wada K, Kikuzuki R, Yoshida I, Kimoto T, Maeda A, Narumi K. Measuring reproducibility of dose response data for the Pig-a assay using covariate benchmark dose analysis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:135-139. [PMID: 27931807 DOI: 10.1016/j.mrgentox.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
The reproducibility of the in vivo Pig-a gene mutation test system was assessed across 13 different Japanese laboratories. In each laboratory rats were exposed to the same dosing regimen of N-nitroso-N-ethylurea (ENU), and red blood cells (RBCs) and reticulocytes (RETs) were collected for mutant phenotypic analysis using flow cytometry. Mutant frequency dose response data were analysed using the PROAST benchmark dose (BMD) statistical package. Laboratory was used as a covariate during the analysis to allow all dose responses to be analysed at the same time, with conserved shape parameters. This approach has recently been shown to increase the precision of the BMD analysis, as well as providing a measure of equipotency. This measure of equipotency was used here to demonstrate a reasonable level of interlaboratory reproducibility. Increased reproducibility could have been achieved by increasing the number of cells scored, as this would reduce the number of zero values within the mutant frequency data. Overall, the interlaboratory trial was successful, and these findings support the transferability of the in vivo Pig-a gene mutation assay.
Collapse
Affiliation(s)
- George E Johnson
- Swansea University Medical School, Swansea University, SA2 8PP, United Kingdom.
| | - Mika Yamamoto
- Drug Development Toxicology, Drug Safety Research Laboratories, Drug Discovery Research Division, Astellas Pharma Inc., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Yuta Suzuki
- Gotemba Laboratory, BoZo Research Center Inc., Gotemba-shi, Shizuoka 412-0039, Japan
| | - Hideki Adachi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Takahiro Kyoya
- Toxicology Laboratory, Life Science Research Institute, Kumiai Chemical Industry, Co., Ltd., 3360 Kamo, Kikugawa-shi, Shizuoka 439-0031, Japan
| | - Hironao Takasawa
- Safety Assessment Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Eri Tsutsumi
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Kunio Wada
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Ryuta Kikuzuki
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi 331-9530, Japan
| | - Ikuma Yoshida
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Kimoto
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Akihisa Maeda
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kazunori Narumi
- Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
41
|
Itoh S, Hattori C, Nakayama S, Hanamoto A. Evaluation of in vivo mutagenicity of isopropyl methanesulfonate by RBC Pig-a and PIGRET assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 811:106-109. [PMID: 27931802 DOI: 10.1016/j.mrgentox.2015.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
A comparison between the original red blood cell (RBC) Pig-a assay, which measures Pig-a mutant cells in RBCs, and the PIGRET assay, which uses reticulocytes, was conducted using the in vivo mutagenesis assay with isopropyl methanesulfonate (iPMS) as a part of a collaborative study by the Mammalian Mutagenicity Study Group in the Japanese Environmental Mutagen Society. Three dose levels of iPMS (50, 100, and 200mg/kg) were administered once intraperitoneally to 8-week-old male Crl:CD(SD) rats, and peripheral blood was sampled at 0 (1 day before dosing), and 1, 2, and 4 weeks after dosing with iPMS. As a result, a time-dependent increase in the mutant frequency of Pig-a mutant RBCs was observed in the RBC Pig-a assay, and a statistically significant increase was observed from 2 weeks after dosing. In the PIGRET assay, on the other hand, a statistically significant increase in Pig-a mutant frequency was obtained from 1 week after dosing at all dose levels, and the Pig-a mutant frequency at the highest dose level had already reached a plateau on week 1. The maximum Pig-a mutant frequency induced by a single treatment with iPMS at 200mg/kg in the PIGRET assay was approximately two times higher than that in the RBC Pig-a assay. These results indicate that the PIGRET assay can detect Pig-a mutants much earlier and with a higher value in Pig-a mutant frequency compared with the original RBC Pig-a assay, and it can enable judgement of mutagenicity of iPMS within 1 week after a single dose.
Collapse
Affiliation(s)
- Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Chiharu Hattori
- Biologics Pharmacology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shiho Nakayama
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Akiharu Hanamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|