1
|
Karmanova EE, Chernikov AV, Popova NR, Sharapov MG, Ivanov VE, Bruskov VI. Metformin mitigates radiation toxicity exerting antioxidant and genoprotective properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2449-2460. [PMID: 36961549 PMCID: PMC10036983 DOI: 10.1007/s00210-023-02466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
The antidiabetic drug metformin (MF) exhibits redox-modulating effects in various pathologies associated with oxidative stress and mitigates ionizing radiation-induced toxicity, but the underlying mechanisms remain to be elucidated. Thus, we studied some radiomitigatory effects of MF and explored the possible mechanisms behind them. Highly sensitive luminescence methods and non-competitive enzyme-linked immunosorbent assay (ELISA) were used in in vitro studies, and in vivo the damage to bone marrow cells and its repair were assessed by the micronucleus test. In a solution, MF at concentrations exceeding 0.1 µM effectively intercepts •OH upon X-ray-irradiation, but does not react directly with H2O2. MF accelerates the decomposition of H2O2 catalyzed by copper ions. MF does not affect the radiation-induced formation of H2O2 in the solution of bovine gamma-globulin (BGG), but has a modulating effect on the generation of H2O2 in the solution of bovine serum albumin (BSA). MF at 0.05-1 mM decreases the radiation-induced formation of 8-oxoguanine in a DNA solution depending on the concentration of MF with a maximum at 0.25 mM. MF at doses of 3 mg/kg body weight (bw) and 30 mg/kg bw administered to mice after irradiation, but not before irradiation, reduces the frequency of micronucleus formation in polychromatophilic erythrocytes of mouse red bone marrow. Our work has shown that the radiomitigatory properties of MF are mediated by antioxidant mechanisms of action, possibly including its ability to chelate polyvalent metal ions.
Collapse
Affiliation(s)
- Ekaterina E Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anatoly V Chernikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia.
| | - Nelli R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vladimir E Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Karmanova E, Chernikov A, Usacheva A, Ivanov V, Bruskov V. Metformin counters oxidative stress and mitigates adverse effects of radiation exposure: An overview. Fundam Clin Pharmacol 2023. [PMID: 36852652 DOI: 10.1111/fcp.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Metformin (1,1-dimethylbiguanidine hydrochloride) (MF) is a drug that has long been in use for the treatment of type 2 diabetes mellitus and recently is coming into use in the radiation therapy of cancer and other conditions. Exposure to ionizing radiation disturbs the redox homeostasis of cells and causes damage to proteins, membranes, and mitochondria, destroying a number of biological processes. After irradiation, MF activates cellular antioxidant and repair systems by signaling to eliminate the harmful consequences of disruption of redox homeostasis. The use of MF in the treatment of the negative effects of irradiation has great potential in medical patients after radiotherapy and in victims of nuclear accidents or radiologic terrorism.
Collapse
Affiliation(s)
- Ekaterina Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Chernikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna Usacheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vadim Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Da F, Guo J, Yao L, Gao Q, Jiao S, Miao X, Liu J. Pretreatment with metformin protects mice from whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:618-625. [PMID: 33912960 PMCID: PMC8273805 DOI: 10.1093/jrr/rrab012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Metformin, a first-line oral drug for type II diabetes mellitus, not only reduces blood glucose levels, but also has many other biological effects. Recent studies have been conducted to determine the protective effect of metformin in irradiation injuries. However, the results are controversial and mainly focus on the time of metformin administration. In this study, we aimed to investigate the protective effect of metformin in BALB/c mice exposed to 6 Gy or 8 Gy of a 60Co source of γ-rays for total body irradiation (TBI). Survival outcomes were assessed following exposure to 8 Gy or 6 Gy TBI, and hematopoietic damage and intestinal injury were assessed after exposure to 6 Gy TBI. Metformin prolonged the survival of mice exposed to 8 Gy TBI and improved the survival rate of mice exposed to 6 Gy TBI only when administered before exposure to irradiation. Moreover, pretreatment with metformin reduced the frequency of micronuclei (MN) in the bone marrow of mice exposed to 6 Gy TBI. Pretreatment of metformin also protected the intestinal morphology of mice, reduced inflammatory response and decreased the number of apoptotic cells in intestine. In conclusion, we demonstrated that pretreatment with metformin could alleviate irradiation injury.
Collapse
Affiliation(s)
- Fei Da
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
- Pharmaceutical Preparation Section, The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian 116041, China
| | - Juan Guo
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Lin Yao
- Department of Pharmaceutical chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Shengyuan Jiao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Xia Miao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Junye Liu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Bykov VN, Grebenyuk AN, Ushakov IB. The Use of Radioprotective Agents to Prevent Effects Associated with Aging. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Nanomelanin Potentially Protects the Spleen from Radiotherapy-Associated Damage and Enhances Immunoactivity in Tumor-Bearing Mice. MATERIALS 2019; 12:ma12101725. [PMID: 31137873 PMCID: PMC6567087 DOI: 10.3390/ma12101725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
Radiotherapy side-effects present serious problems in cancer treatment. Melanin, a natural polymer with low toxicity, is considered as a potential radio-protector; however, its application as an agent against irradiation during cancer treatment has still received little attention. In this study, nanomelanin particles were prepared, characterized and applied in protecting the spleens of tumor-bearing mice irradiated with X-rays. These nanoparticles had sizes varying in the range of 80–200 nm and contained several important functional groups such as carboxyl (-COO), carbonyl (-C=O) and hydroxyl (-OH) groups on the surfaces. Tumor-bearing mice were treated with nanomelanin at a concentration of 40 mg/kg before irradiating with a single dose of 6.0 Gray of X-ray at a high dose rate (1.0 Gray/min). Impressively, X-ray caused mild splenic fibrosis in 40% of nanomelanin-protected mice, whereas severe fibrosis was observed in 100% of mice treated with X-ray alone. Treatment with nanomelanin also partly rescued the volume and weight of mouse spleens from irradiation through promoting the transcription levels of splenic Interleukin-2 (IL-2) and Tumor Necrosis Factor alpha (TNF-α). More interestingly, splenic T cell and dendritic cell populations were 1.91 and 1.64-fold higher in nanomelanin-treated mice than those in mice which received X-ray alone. Consistently, the percentage of lymphocytes was also significantly greater in blood from nanomelanin-treated mice. In addition, nanomelanin might indirectly induce apoptosis in tumor tissues via activation of TNF-α, Bax, and Caspase-3 genes. In summary, our results demonstrate that nanomelanin protects spleens from X-ray irradiation and consequently enhances immunoactivity in tumor-bearing mice; therefore, we present nanomelanin as a potential protector against damage from radiotherapy in cancer treatment.
Collapse
|