1
|
Alnasser SM. Revisiting the approaches to DNA damage detection in genetic toxicology: insights and regulatory implications. BioData Min 2025; 18:33. [PMID: 40329377 PMCID: PMC12054138 DOI: 10.1186/s13040-025-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic toxicology is crucial for evaluating the potential risks of chemicals and drugs to human health and the environment. The emergence of high-throughput technologies has transformed this field, providing more efficient, cost-effective, and ethically sound methods for genotoxicity testing. It utilizes advanced screening techniques, including automated in vitro assays and computational models to rapidly assess the genotoxic potential of thousands of compounds simultaneously. This review explores the transformation of traditional in vitro and in vivo methods into computational models for genotoxicity assessment. By leveraging advances in machine learning, artificial intelligence, and high-throughput screening, computational approaches are increasingly replacing conventional methods. Coupling conventional screening with artificial intelligence (AI) and machine learning (ML) models has significantly enhanced their predictive capabilities, enabling the identification of genotoxicity signatures tied to molecular structures and biological pathways. Regulatory agencies increasingly support such methodologies as humane alternatives to traditional animal models, provided they are validated and exhibit strong predictive power. Standardization efforts, including the establishment of common endpoints across testing approaches, are pivotal for enhancing comparability and fostering consensus in toxicological assessments. Initiatives like ToxCast exemplify the successful incorporation of HTS data into regulatory decision-making, demonstrating that well-interpreted in vitro results can align with in vivo outcomes. Innovations in testing methodologies, global data sharing, and real-time monitoring continue to refine the precision and personalization of risk assessments, promising a transformative impact on safety evaluations and regulatory frameworks.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.
| |
Collapse
|
2
|
Kowalczyk K, Roszak J, Sobańska Z, Stępnik M. Review of mechanisms of genotoxic action of dibenzo[def,p]chrysene (formerly dibenzo[a,l]pyrene). TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - J. Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Z. Sobańska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Łódź, Poland
| | | |
Collapse
|
3
|
Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O’Brien J, Marchetti F, Halappanavar S, Boyd M, Villeneuve D, Barton-Maclaren TS, Meek B, Anghel C, Heghes C, Barber C, Perkins E, Leblanc J, Burtt J, Laakso H, Laurier D, Lazo T, Whelan M, Thomas R, Cool D. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol 2021; 97:431-441. [PMID: 33539251 PMCID: PMC10711570 DOI: 10.1080/09553002.2021.1884314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other challenges in modernizing chemical health risk assessment, the Organisation for Economic Cooperation and Development (OECD) formalized the adverse outcome pathway (AOP) framework, an approach to consolidate knowledge into measurable key events (KEs) at various levels of biological organisation causally linked to disease based on the weight of scientific evidence (http://oe.cd/aops). Currently, AOPs have been considered predominantly in chemical safety but are relevant to radiation. In this context, the Nuclear Energy Agency's (NEA's) High-Level Group on Low Dose Research (HLG-LDR) is working to improve research co-ordination, including radiological research with chemical research, identify synergies between the fields and to avoid duplication of efforts and resource investments. To this end, a virtual workshop was held on 7 and 8 October 2020 with experts from the OECD AOP Programme together with the radiation and chemical research/regulation communities. The workshop was a coordinated effort of Health Canada, the Electric Power Research Institute (EPRI), and the Nuclear Energy Agency (NEA). The AOP approach was discussed including key issues to fully embrace its value and catalyze implementation in areas of radiation risk assessment. CONCLUSIONS A joint chemical and radiological expert group was proposed as a means to encourage cooperation between risk assessors and an initial vision was discussed on a path forward. A global survey was suggested as a way to identify priority health outcomes of regulatory interest for AOP development. Multidisciplinary teams are needed to address the challenge of producing the appropriate data for risk assessments. Data management and machine learning tools were highlighted as a way to progress from weight of evidence to computational causal inference.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | | | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Nathalie Delrue
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Francesco Marchetti
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sabina Halappanavar
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Michael Boyd
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA
| | - Daniel Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN, USA
| | | | - Bette Meek
- McLaughlin Centre, University of Ottawa, Ottawa, Canada
| | | | | | | | - Edward Perkins
- US Army Engineer Research and Development Center Jackson, Vicksburg, MS, USA
| | - Julie Leblanc
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Burtt
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Holly Laakso
- Canadian Nuclear Laboratories, Chalk River, Canada
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Ted Lazo
- Radiological Protection and Human Aspects of Nuclear Safety Division, OECD Nuclear Energy Agency, Paris, France
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Russell Thomas
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donald Cool
- Electric Power Research Institute, Charlotte, NC, USA
| |
Collapse
|
4
|
Totsuka Y, Watanabe M, Lin Y. New horizons of DNA adductome for exploring environmental causes of cancer. Cancer Sci 2021; 112:7-15. [PMID: 32978845 PMCID: PMC7780056 DOI: 10.1111/cas.14666] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Chemical carcinogenesis is focused on the formation of DNA adducts, a form of DNA damage caused by covalent binding of a chemical moiety to DNA. The detection of carcinogen-DNA adducts in human tissues, along with demonstration of mutagenicity/carcinogenicity in experimental systems, and validation of adducts as biomarkers of environmental exposure and indicators of cancer risk in molecular epidemiological studies suggests a pivotal role of DNA adducts in cancer development. However, accurate measurement of DNA adducts in varied biological samples is challenging. Advances in mass spectrometry have prompted the development of DNA adductome analysis, an emerging method that simultaneously screens for multiple DNA adducts and provides relevant structural information. In this review, we summarize the basic principle and applications of DNA adductome analysis that would contribute to the elucidation of the environmental causes of cancer. Based on parallel developments in several fields, including next-generation sequencing, we describe a new approach used to explore cancer etiology, which integrates analyses of DNA adductome data and mutational signatures derived from whole-genome/exome sequencing.
Collapse
Affiliation(s)
- Yukari Totsuka
- Department of Cancer Model DevelopmentNational Cancer Center Research InstituteTokyoJapan
| | | | - Yingsong Lin
- Department of Public HealthAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
5
|
Takeshita T, Kanaly RA. In vitro DNA/RNA Adductomics to Confirm DNA Damage Caused by Benzo[ a]pyrene in the Hep G2 Cell Line. Front Chem 2019; 7:491. [PMID: 31338364 PMCID: PMC6629907 DOI: 10.3389/fchem.2019.00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
In the development of new chemical substances, genetic toxicity evaluations are a high priority for safety risk management. Evaluation of the possibility of compound carcinogenicity with accuracy and at reasonable cost in the early stages of development by in vitro techniques is preferred. Currently, DNA damage-related in vitro genotoxicity tests are widely-used screening tools after which next generation toxicity testing may be applied to confirm DNA damage. DNA adductomics may be used to evaluate DNA damage in vitro, however confirmation of DNA adduct identities through comparison to authentic standards may be time-consuming and expensive processes. Considering this, a streamlined method for confirming putative DNA adducts that are detected by DNA adductomics may be useful. With this aim, in vitro DNA adductome methods in conjunction with in vitro RNA adductome methods may be proposed as a DNA adductome verification approach by which to eliminate false positive annotations. Such an approach was evaluated by conducting in vitro assays whereby Hep G2 cell lines that were exposed to or not exposed to benzo[a]pyrene were digested to their respective 2'-deoxynucleosides or ribonucleosides and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) by comparative DNA and RNA adductomics through neutral loss targeting of the [M + H]+ > [M + H - 116]+ or [M + H]+ > [M + H -132]+ transitions over predetermined ranges. Comparisons of DNA adductome maps revealed putative DNA adducts that were detected in exposed cells but not in unexposed cells. Similarly, comparisons of RNA adductome maps revealed putative RNA adducts in exposed cells but not in unexposed cells. Taken together these experiments revealed that analogous forms of putative damage had occurred in both DNA and RNA which supported that putative DNA adducts detected by DNA adductomics were DNA adducts. High resolution mass spectrometry (HRMS) was utilized to confirm that putative nucleic acid adducts detected in both DNA and RNA were derived from benzo[a]pyrene exposure and these putative adducts were identified as 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene- (B[a]PDE)-type adducts. Overall, this study demonstrates the usefulness of utilizing DNA/RNA adductomics to screen for nucleic acid damage.
Collapse
Affiliation(s)
| | - Robert A. Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|