1
|
Akomolafe SF, Ajayi OO, Agboola OE, Adewale OO. Comparative evaluation of the antidiabetic potential of three varieties of Ipomoea batatas L.. Toxicol Rep 2025; 14:102015. [PMID: 40230512 PMCID: PMC11995110 DOI: 10.1016/j.toxrep.2025.102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Sweet potato (Ipomoea batatas L.) is a nutrient-dense tuber often used in traditional diabetic treatment. This research compares the antidiabetic potential of three sweet potato varieties: orange-fleshed (OFSP), purple-peel white-fleshed (PPWSP), and white-peel white-fleshed (WPWSP), utilising in vitro and in vivo techniques. Sweet potatoes (OFSP, PPWSP, and WPWSP) boiled at 100°C for 20 minutes were incorporated into formulated diets and administered to streptozotocin-induced diabetic rats for 14 days. Aqueous extracts of the diets were tested in vitro for antioxidants and phytochemicals. Glycaemic control parameters, lipid profiles, oxidative stress indicators, and pancreatic histology were investigated. Gene expression analysis was performed on critical diabetes-related pathways. OFSP showed significant strong anti-diabetic benefits, including better glycemic control, weight maintenance, lower HOMA-IR scores, and lowered α-amylase and α-glucosidase activity. OFSP-fed rats had higher insulin, glycogen, and hexokinase activity than those given PPWSP and WPWSP. OFSP decreased mRNA expression of DPP-4 while increasing GLP-1 expression. OFSP also improved lipid profiles, increasing HDLc while decreasing LDLc and triglycerides more than other varieties. Histopathological examination revealed restorative effects in pancreatic beta cells. OFSP demonstrated more pronounced antidiabetic effects compared to PPWSP and WPWSP, particularly in terms of glycemic control, insulin regulation, and lipid profile improvement. These findings suggest that OFSP may offer significant potential for diabetes management. However, further clinical studies are needed to validate these results and explore the practical dietary applications of OFSP in diabetes control.
Collapse
Affiliation(s)
- Seun F. Akomolafe
- Department of Biochemistry, Ekiti State University, Ado Ekiti, Ekiti State, PMB 5363, Nigeria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland
| | - Oluwadamilare O. Ajayi
- Department of Biochemistry, Ekiti State University, Ado Ekiti, Ekiti State, PMB 5363, Nigeria
| | - Oluwaseun E. Agboola
- Institute for Drug Research and Development, Afe Babalola University, Ado Ekiti, Nigeria
- DamSem Scientific Laboratory and Research, Oke-Ila, Ado Ekiti, Nigeria
| | | |
Collapse
|
2
|
Li J, Yang Y, Yi Z, Zhu Y, Yang H, Chen B, Lobie PE, Ma S. Microdroplet-Engineered Skeletal Muscle Organoids from Primary Tissue Recapitulate Parental Physiology with High Reproducibility. RESEARCH (WASHINGTON, D.C.) 2025; 8:0699. [PMID: 40375923 PMCID: PMC12078942 DOI: 10.34133/research.0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/18/2025]
Abstract
Achieving high maturity and functionality in in vitro skeletal muscle models is essential for advancing our understanding of muscle biology, disease mechanisms, and drug discovery. However, current models struggle to fully recapitulate key features such as sarcomere structure, muscle fiber composition, and contractile function while also ensuring consistency and rapid production. Adult stem cells residing in muscle tissue are known for their powerful regenerative potential, yet tissue-derived skeletal muscle organoids have not been established. In this study, we introduce droplet-engineered skeletal muscle organoids derived from primary tissue using cascade-tubing microfluidics. These droplet-engineered organoids (DEOs) exhibit high maturity, including well-developed striated sarcomeres, spontaneous and stimulated contractions, and recapitulation of parental muscle fiber types. Notably, DEOs are produced in just 8 d without the need for primary cell culture-substantially accelerating the 50- to 60-d process required by classical organoid models. Additionally, the cascade-tubing microfluidics platform enables high-throughput production of hundreds of uniform DEO replicates from a small tissue sample, providing a scalable and reproducible solution for skeletal muscle research and drug screening.
Collapse
Affiliation(s)
- Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education,
Tsinghua University, Beijing 100084, China
- Meatoid Biotechnology Limited, Shenzhen 518107, China
| | - Yiming Yang
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
| | - Ziqi Yi
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education,
Tsinghua University, Beijing 100084, China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education,
Tsinghua University, Beijing 100084, China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education,
Tsinghua University, Beijing 100084, China
| | - Baiming Chen
- School of Medicine,
The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Peter E. Lobie
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS),
Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education,
Tsinghua University, Beijing 100084, China
- Key Lab of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes,
Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
3
|
Bin H, Wen W. Metformin attenuates endoplasmic reticulum stress in diabetic kidney disease: mechanistic insights and future perspectives. Int Urol Nephrol 2025:10.1007/s11255-025-04562-7. [PMID: 40343634 DOI: 10.1007/s11255-025-04562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes that can lead to end-stage renal failure. Emerging evidence suggests that endoplasmic reticulum (ER) stress plays a crucial role in the pathogenesis of DKD by affecting various renal parenchymal cells, including endothelial cells, podocytes, and mesangial cells. This review comprehensively examines the relationship between ER stress and DKD, focusing on how metformin, a first-line antidiabetic medication, ameliorates ER stress-induced kidney injury. Multiple factors, including reactive oxygen species (ROS), proteinuria, and advanced glycation end products (AGEs), contribute to ER stress in DKD. Metformin's renoprotective effects are primarily mediated through activation of the AMPK signaling pathway, which modulates ER stress response, reduction of oxidative stress and its impact on ER function, and improvement of mitochondrial function. These mechanisms collectively lead to decreased proteinuria, reduced cell apoptosis, and attenuated epithelial-mesenchymal transition in diabetic kidneys. Understanding these molecular mechanisms provides new insights into the therapeutic potential of metformin in DKD treatment. However, further research is needed to elucidate the precise molecular pathways through which metformin regulates ER stress in different renal cell types under diabetic conditions.
Collapse
Affiliation(s)
- Huang Bin
- Department of Endocrinology, Division of Life Science and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230000, China
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
4
|
Wadan AHS, Moshref AS, Emam AM, Bakry YG, Khalil BO, Chaurasia A, Ibrahim RAH, Badawy T, Mehanny SS. Mitochondrial dysfunction as a key player in aggravating periodontitis among diabetic patients: review of the current scope of knowledge. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04025-x. [PMID: 40272516 DOI: 10.1007/s00210-025-04025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Periodontitis is a prevalent inflammatory disease that leads to significant periodontal tissue destruction and compromised dental health, with its severity exacerbated in individuals with Diabetes Mellitus (DM). This review explores the complex relationship between mitochondrial dysfunction and periodontitis in diabetic patients. Recent studies indicate that the excessive production of reactive oxygen species (ROS), primarily generated by dysfunctional mitochondrial electron transport chain (ETC) complexes, contributes to oxidative stress (OS) and subsequent periodontal tissue damage. The interplay between impaired mitochondrial biogenesis, apoptosis of periodontal cells, and ROS accumulation highlights a critical area of concern in understanding the pathophysiology of diabetic periodontitis. Furthermore, altered glycemic control due to inflammatory processes associated with periodontitis may perpetuate a cyclical detriment to oral and systemic health. This review aims to highlight the mechanistic roles of mitochondrial dysfunction in the aggravation of periodontitis among diabetic patients, emphasizing further research to identify potential therapeutic targets and improve treatment efficacy for this dual pathology.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt.
| | | | | | | | | | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George'S Medical University, Lucknow, India
| | - Reham A H Ibrahim
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
| | - Tamer Badawy
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Li R, Lei Z, Wen Z, Zhou Y, Ma Y, Qin J, Huang X, Huang S, Peng S, Liang S, Zhong Y. Mendelian randomization study on the causal relationships among fasting blood glucose, plasma proteins, and squamous cell lung cancer. Discov Oncol 2025; 16:588. [PMID: 40263141 PMCID: PMC12014989 DOI: 10.1007/s12672-025-02237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Squamous cell lung cancer (SQCLC) represents the second most common subtype of lung cancer (LC) with characteristics of treatment resistance. Plasma proteins often influence levels of fasting blood glucose (FBG), consequently impacting LC. However, the precise role of FBG in this association remains unclear. OBJECTIVE To investigate the causal relationships of FBG with LC and its subtypes, plasma proteins, and SQCLC, as well as the mediating role of FBG. METHODS Mendelian randomization (MR) analysis was employed to assess the causal associations of FBG with LC and its subtypes, plasma proteins and SQCLC, and plasma proteins and FBG, using the two-step MR approach with the primary method being Inverse Variance Weighted (IVW). Protein-Protein Interaction (PPI) network was utilized to identify hub genes of plasma proteins causally linked to SQCLC. RESULTS FBG was a risk factor for SQCLC (OR: 1.376, 95% CI 1.017-1.862, P = 0.038) but had no significant causal associations with LC and other subtypes (P > 0.05). Furthermore, 54 plasma proteins had significant causal associations with SQCLC (P < 0.05). EEF2 K (OR: 1.111, 95% CI 1.015-1.216, P = 0.023) and SSR1 (OR: 0.546, 95% CI 0.487-0.613, P < 0.001) were identified as a risk and protective factor for FBG, respectively. Mediation analysis indicated a significant negative mediating effect of FBG in the causal relationship between SSR1 and SQCLC (B = - 0.193, 95% CI - 0.312-0.074, P = 0.001), with a mediation proportion of 44.4%. CONCLUSION Our study revealed FBG as a risk factor for SQCLC and demonstrated the mediating role of FBG in the causal association between SSR1 and SQCLC.
Collapse
Affiliation(s)
- Ronglin Li
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenniu Lei
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhaoke Wen
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yifan Zhou
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yunzhi Ma
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Junqi Qin
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiaoyan Huang
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shuping Huang
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shucong Peng
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shengjing Liang
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Yonglong Zhong
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
6
|
Subba A, Rai R, Prasad RK, Shilall I, Tamang AM. Network pharmacology and molecular docking of Fraxinus floribunda: validating ethnomedicinal applications in T2DM. In Silico Pharmacol 2025; 13:60. [PMID: 40255262 PMCID: PMC12003244 DOI: 10.1007/s40203-025-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/29/2025] [Indexed: 04/22/2025] Open
Abstract
The current study investigates the network pharmacology, molecular docking, and molecular dynamics (MD) simulation of Fraxinus floribunda Wall. (Oleaceae) to validate its ethnomedicinal applications in Type 2 Diabetes Mellitus (T2DM). Five major bioactive compounds were identified using IMPPAT and TCMSP databases, based on pharmacokinetic properties (OB > 20%, DL > 0.18). Target genes for these compounds were predicted using Swiss Target Prediction, focusing on human targets with a high confidence score. A protein-protein interaction (PPI) network was constructed using the STRING database, revealing significant interactions among 143 nodes and 1300 edges. Molecular docking analysis revealed strong binding affinities of quercetin (- 10.4 kcal/mol), tamarixetin (- 10.4 kcal/mol), and isorhamnetin (- 9.5 kcal/mol) with MMP9, forming hydrogen bonds with key residues such as ALA189, GLN227, and TYR248. Molecular dynamics (MD) simulations confirmed the stability of the quercetin-MMP9 and tamarixetin-MMP9 complexes, with low RMSD values (~ 0.151 nm). Further, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations revealed favorable binding free energies, with quercetin exhibiting the highest binding affinity (- 6.82 kJ/mol), followed by tamarixetin (4.60 kJ/mol) and isorhamnetin (10.16 kJ/mol), reinforcing their potential role as MMP9 inhibitors. The findings highlight the potential of F. floribunda's bioactive compounds in managing T2DM, bridging traditional medicinal knowledge with modern computational tools to accelerate drug discovery and development. This integrative approach underscores the multifaceted pharmacological properties of F. floribunda, including antioxidant, anti-inflammatory, and potentially anti-obesity effects, aligning with broader health benefits beyond diabetes management. Further research and clinical validation are warranted to harness these natural compounds effectively for therapeutic development against T2DM and related metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00348-y.
Collapse
Affiliation(s)
- Arunika Subba
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Rohit Rai
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Ranjan Kumar Prasad
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Isaac Shilall
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Aditya Moktan Tamang
- Department of Zoology, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| |
Collapse
|
7
|
Ding M, Yang S, Li J, Ma L, Xiong C, Zhang J. Clinical value of serum miR-214-3p expression in the diagnosis of type 2 diabetes mellitus and prediction of its chronic complications. BMC Endocr Disord 2025; 25:98. [PMID: 40229736 PMCID: PMC11995618 DOI: 10.1186/s12902-025-01916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The majority of diabetes cases fall into type 2 diabetes mellitus (T2DM), which is prone to chronic complications that have a long-term impact on patients. The aim of this study was to investigate the diagnostic potential of miR-214-3p in T2DM and its predictive value for chronic complications, providing a novel biomarker for the disease. METHODS A total of 156 patients with T2DM and 80 non-T2DM individuals were included. Serum miR-214-3p levels were measured by real-time reverse transcription quantitative PCR (RT-qPCR). The correlation of miR-214-3p with hemoglobin A1c (HbA1c) and low-density lipoprotein cholesterol (LDL-C) was analyzed by Spearman's rank correlation. The clinical value of miR-214-3p in T2DM was evaluated using the receiver operating characteristic (ROC) curve and logistic regression analysis. RESULTS The serum levels of miR-214-3p were decreased in T2DM patients compared to non-T2DM individuals. A negative correlation was identified between miR-214-3p expression and the levels of HbA1c and LDL-C. miR-214-3p could effectively differentiate T2DM patients from non-T2DM individuals with the area under ROC curve (AUC) of 0.884. Patients with low miR-214-3p expression had a higher incidence of chronic complications. The AUC for miR-214-3p in differentiating between T2DM patients with and without complications was 0.832. Low expression of miR-214-3p was a risk factor linked to the development of chronic complications in patients with T2DM. CONCLUSION Serum miR-214-3p was downregulated in T2DM and could differentiate T2DM patients from non-T2DM individuals. miR-214-3p was a promising biomarker for predicting the chronic complications of T2DM.
Collapse
Affiliation(s)
- Meng Ding
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Siyu Yang
- General Practice, The First Affiliated Hospital of Jilin University, Jilin, 130000, China
| | - Junli Li
- Endocrine and Metabolic Diseases Department, Yantai Mountain Hospital, Yantai, 264003, China
| | - Lie Ma
- Endocrinology Department, People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Cunyou Xiong
- General Practice Department, Longhua District, People's Hospital, Community Service Center, Minzhi Street, Shenzhen, 518131, China
| | - Jie Zhang
- Endocrinology Department, Nanjing Luhe People's Hospital, No. 28, Yan'an Road, Luhe District, Nanjing, 211500, China.
| |
Collapse
|
8
|
Singh S, Verma J, Gupta N, Pathak AK, Rajput MS, Tiwari V, Kulshrestha MR. Association of Arsenic and Nickel with Markers of Insulin Resistance and Beta Cell Dysfunction: A Case-Control Study in Indo Gangetic Plain. Biol Trace Elem Res 2025:10.1007/s12011-025-04574-5. [PMID: 40133720 DOI: 10.1007/s12011-025-04574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Environmental exposure to toxic metals/metalloids (TM) has been linked to type 2 diabetes mellitus (T2DM) via mechanisms involving insulin resistance and beta cell dysfunction, especially in regions with significant industrial and agricultural activities. This study assessed the relationship between serum toxic element levels and glycemic markers, including HbA1c, insulin resistance (HOMA-IR), and beta cell function (HOMA-β%). In total, 783 participants (480 T2DM patients and 303 controls) were recruited. TM (Ni, As, Al, Pb, Cd, and Hg) was quantified using inductively coupled plasma mass spectrometry. HbA1c was measured using ion exchange high-performance liquid chromatography, while fasting insulin and glucose levels were measured using a Cobas 6000 Roche autoanalyzer to calculate HOMA-IR and HOMA-β%. Among the tested TM, As (72.2%) and Ni (66.2%) were the most prevalent and associated with T2DM. On multivariate analysis, Ni and As levels were significantly positively correlated with HbA1c (Ni: β = 0.13, As: β = 0.16) and IR (Ni: β = 0.31, As: β = 0.24), and negatively correlated with β-cell function (Ni: β = -0.09, As: β = -0.19). A significant decline in beta cell function (Ni: Q1:55.96, Q4:34.27; As: Q1:58.61, Q4:27.88) and increased IR (Ni: Q1:2.75, Q4:3.97; As: Q1:2.77, Q4:3.76) was observed across exposure quartiles. Nonfiltered water consumption and smoking were associated with higher levels of Ni, As, and IR. The risk (adjusted odds ratio) of T2DM increased 2.18-fold and 6.81-fold with Ni and As exposure, respectively. The district with the highest exposure (Bahraich) to Ni (82%) and As (88%) had the highest prevalence (82%) of T2DM among the study population. Arsenic and nickel exposure are strongly associated with impaired glycemic markers in T2DM and correspond to drinking water in the Indo-Gangetic Plain. Smoking was also associated with high Ni and As levels.
Collapse
Affiliation(s)
- Shefali Singh
- Department of Biotechnology, Dr. A P J Abdul Kalam Technical University, Uttar Pradesh, Lucknow, India
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Juhi Verma
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Nikhil Gupta
- Department of General Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Uttar Pradesh, Lucknow, India
| | - Anumesh K Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Manish Singh Rajput
- Department of Biotechnology, Dr Ambedkar Institute of Technology for Divyangjan, Uttar Pradesh, Kanpur, India
| | - Vandana Tiwari
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India
| | - Manish Raj Kulshrestha
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Science, Uttar Pradesh, Lucknow, 226010, India.
| |
Collapse
|
9
|
Caturano A, Erul E, Nilo R, Nilo D, Russo V, Rinaldi L, Acierno C, Gemelli M, Ricotta R, Sasso FC, Giordano A, Conte C, Ürün Y. Insulin resistance and cancer: molecular links and clinical perspectives. Mol Cell Biochem 2025:10.1007/s11010-025-05245-8. [PMID: 40089612 DOI: 10.1007/s11010-025-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
The association between insulin resistance (IR), type 2 diabetes mellitus (T2DM), and cancer is increasingly recognized and poses an escalating global health challenge, as the incidence of these conditions continues to rise. Studies indicate that individuals with T2DM have a 10-20% increased risk of developing various solid tumors, including colorectal, breast, pancreatic, and liver cancers. The relative risk (RR) varies depending on cancer type, with pancreatic and liver cancers showing a particularly strong association (RR 2.0-2.5), while colorectal and breast cancers demonstrate a moderate increase (RR 1.2-1.5). Understanding these epidemiological trends is crucial for developing integrated management strategies. Given the global rise in T2DM and cancer cases, exploring the complex relationship between these conditions is critical. IR contributes to hyperglycemia, chronic inflammation, and altered lipid metabolism. Together, these factors create a pro-tumorigenic environment conducive to cancer development and progression. In individuals with IR, hyperinsulinemia triggers the insulin-insulin-like growth factor (IGF1R) signaling pathway, activating cancer-associated pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PIK3CA), which promote cell proliferation and survival, thereby supporting tumor growth. Both IR and T2DM are linked to increased morbidity and mortality in patients with cancer. By providing an in-depth analysis of the molecular links between insulin resistance and cancer, this review offers valuable insights into the role of metabolic dysfunction in tumor progression. Addressing insulin resistance as a co-morbidity may open new avenues for risk assessment, early intervention, and the development of integrated treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Enes Erul
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100, Potenza, Italy
| | - Maria Gemelli
- Medical Oncology Unit, IRCCS MultiMedica, Milan, Italy
| | | | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099, Milan, Italy
| | - Yüksel Ürün
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey.
| |
Collapse
|
10
|
Mansour A, Sajjadi-Jazi SM, Gerami H, Khorasanian AS, Moalemzadeh B, Karimi S, Afrakoti NM, Mofid V, Mohajeri-Tehrani MR, Hekmatdoost A. The efficacy and safety of berberine in combination with cinnamon supplementation in patients with type 2 diabetes: a randomized clinical trial. Eur J Nutr 2025; 64:102. [PMID: 39998703 DOI: 10.1007/s00394-025-03618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Diabetes is a serious global health issue and increases the risk of several chronic diseases. However, if hyperglycemia and other metabolic abnormalities related to diabetes are controlled, fewer micro- and macrovascular complications may occur. OBJECTIVE To investigate whether daily supplementation with berberine in combination with cinnamon could have effect on cardiometabolic risk factors, such as impaired glucose regulation, dyslipidemia, and hypertension in patients with diabetes. METHODS Patients with type 2 diabetes were recruited to participate in a parallel, double-blind, placebo-controlled, randomized study. Participants were randomized into berberine in combination with cinnamon supplementation or placebo group. Participants were then asked to take a divided daily dose of 1200 mg berberine and 600 mg cinnamon or placebo for 12 weeks. ANCOVA was then performed to evaluate the differences between the two groups, controlling for the respective baseline values. RESULTS At the end of study, fasting blood sugar (FBS) (P = 0.031) and hemoglobin A1C (HbA1c) (P = 0.013) were significantly lower in participants taking berberine plus cinnamon than those taking the placebo capsules. The results of the serum lipid profile also indicated a significant difference in the level of low density lipoprotein cholesterol (LDL-C) (P = 0.039), while no difference was observed in the levels of total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglycerides between the study groups. In addition, there was no difference in other measured metabolic and anthropometric parameters between the two groups. CONCLUSION Twelve weeks of berberine plus cinnamon consumption reduced blood FBS, HbA1c and LDL-C concentration in patients with diabetes.
Collapse
Affiliation(s)
- Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Gerami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Atie Sadat Khorasanian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Moalemzadeh
- Department of Internal Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, West Arghavan St., Farahzadi Blvd., Shahrak Gharb, Tehran, Iran
| | - Nima Mohamadi Afrakoti
- Anesthesiology and Critical Care Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, West Arghavan St., Farahzadi Blvd., Shahrak Gharb, Tehran, Iran.
| |
Collapse
|
11
|
Shahzad A, Liu W, Hussain S, Ni Y, Cui K, Sun Y, Liu X, Duan Q, Xia J, Zhang J, Xu Z, Sai B, Zhu Y, Zhang Q, Yang Z. Integrated in vitro, in silico, and in vivo approaches to elucidate the antidiabetic mechanisms of Cicer arietinum and Hordeum vulgare extract and secondary metabolites. Sci Rep 2025; 15:6620. [PMID: 39994296 PMCID: PMC11850774 DOI: 10.1038/s41598-025-89642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus is a group of metabolic disorders that can lead to severe health problems, and the current treatments often have harmful side effects. Therefore, there is a growing interest in discovering new antidiabetic drugs with fewer adverse effects, and natural products are a promising source for this purpose. Cicer arietinum and Hordeum vulgare are plants with high levels of phytochemicals that have been shown to have therapeutic properties. This study investigates the anti-diabetic potential of C. arietinum and H. vulgare seeds and their secondary metabolites. We employed a comprehensive approach combining in vitro, in silico, and in vivo methods to evaluate the efficacy of the compounds. Our findings reveal that the extracts of C. arietinum (IC50 55.08 μg/mL) and H. vulgare (IC50 115.8 ± 5 μg/mL) demonstrated a stronger inhibitory effect on α-amylase compared to acarbose (standard drug) (IC50 196.3 ± 10 μg/mL). Similarly, both C. arietinum and H. vulgare exhibited significant inhibitory activity against α-glucosidase (IC50 100.2 ± 5 μg/mL and IC50 216.2 ± 5 μg/mL, respectively) compared to acarbose (IC50 246.5 ± 10 μg/mL). To further investigate their mechanism of action, a computational screening of 194 phytochemicals from these plants was conducted, followed by molecular docking with α-amylase (PDB ID#1B2Y) and α-Glucosidase (PDB ID# 5NN8) receptors. According to the binding affinities and molecular dynamics (MD) simulations, Medicagol, Euphol, Stigmasterol, and Beta-Sitosterol emerged as promising candidates for diabetes treatment. Molecular dynamics showed that Medicagol was a strong inhibitor against selected receptor proteins because the ligand-protein complexes remained stabilized during the entire simulation time of 100 ns. In vitro analysis also confirmed that Medicagol, stigmasterol, and Euphol have significant potential for type 2 diabetes prevention via inhibition of carbohydrates hydrolyzing enzymes. In vivo study demonstrated significant therapeutic effects in STZ-induced diabetes mice. Including reductions in hyperlipidemia, hyperglycemia, and insulin resistance. Histopathological analysis revealed that plant extracts mitigated STZ-induced pancreatic and liver damage. Additionally, extracts enhanced antioxidant defenses by increasing SOD, CAT, and GSH levels, while decreasing MDA levels in the liver, kidneys, and pancreas, highlighting their protective role against oxidative stress. These results support the potential of Cicer arietinum and Hordeum vulgare as natural sources for developing antidiabetic agents.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
- Departments of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Shoukat Hussain
- Departments of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua, , Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
12
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 PMCID: PMC12077258 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria; (A.J.J.); (E.D.A.)
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria; (A.J.J.); (E.D.A.)
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria;
| |
Collapse
|
13
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
14
|
Meng L, Wen W. Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential. J Inflamm Res 2025; 18:115-126. [PMID: 39810976 PMCID: PMC11730282 DOI: 10.2147/jir.s492041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis. We first explore the relationship between diabetes and mitochondrial dysfunction, then analyze the specific manifestations of mitochondrial dysfunction in diabetic periodontitis, including morphological changes, energy metabolism disorders, increased oxidative stress, and enhanced apoptosis. We further delve into the connections between mitochondrial dysfunction and the pathogenic mechanisms of diabetic periodontitis, such as exacerbated inflammatory responses, decreased tissue repair capacity, and autophagy dysregulation. Finally, we discuss potential therapeutic targets based on mitochondrial function, including antioxidant strategies, mitochondria-targeted drugs, and autophagy regulators. We also propose future research directions, emphasizing the need for in-depth exploration of molecular mechanisms, development of new diagnostic markers and therapeutic strategies, and personalized treatment approaches. This review provides new insights into understanding the pathogenic mechanisms of diabetic periodontitis and offers a theoretical basis for developing targeted prevention and treatment strategies to improve oral health in diabetic patients.
Collapse
Affiliation(s)
- Leilei Meng
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Department of Pathophysiology, Anhui Medical University, Hefei, 230000, People’s Republic of China
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| |
Collapse
|
15
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
16
|
Anand S, Patel TN. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discov Oncol 2024; 15:779. [PMID: 39692821 DOI: 10.1007/s12672-024-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The progressive globalization of sedentary lifestyles and diets rich in lipids and processed foods has caused two major public health hazards-diabetes and obesity. The strong interlink between obesity and type 2 diabetes mellitus and their combined burden encompass them into a single term 'Diabesity'. They have also been tagged as the drivers for the onset of cancer. The clinical association between diabetes, obesity, and several types of human cancer demands an assessment of vital junctions correlating the three. This review focuses on revisiting the molecular axis linking diabetes and obesity to cancer through pathways that get imbalanced owing to metabolic upheaval. We also attempt to describe the functional disruptions of DNA repair mechanisms due to overwhelming oxidative DNA damage caused by diabesity. Genomic instability, a known cancer hallmark results when DNA repair does not work optimally, and as will be inferred from this review the obtruded metabolic homeostasis in diabetes and obesity creates a favorable microenvironment supporting metabolic reprogramming and enabling malignancies. Altered molecular and hormonal landscapes in these two morbidities provide a novel connection between metabolomics and oncogenesis. Understanding various aspects of the tumorigenic process in diabesity-induced cancers might help in the discovery of new biomarkers and prompt targeted therapeutic interventions.
Collapse
Affiliation(s)
- Shrikirti Anand
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Al-Hassani I, Khan NA, Elmenyar E, Al-Hassani A, Rizoli S, Al-Thani H, El-Menyar A. The Interaction and Implication of Stress-Induced Hyperglycemia and Cytokine Release Following Traumatic Injury: A Structured Scoping Review. Diagnostics (Basel) 2024; 14:2649. [PMID: 39682557 PMCID: PMC11640098 DOI: 10.3390/diagnostics14232649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION This is a structured scoping review to assess whether there is a relationship between stress-induced hyperglycemia (SIH), cytokine interactions, and mortality in trauma patients in comparison to non-diabetic normoglycemia [NDN], diabetic normoglycemia [DN], and diabetic hyperglycemia [DH]. METHODS We conducted a literature search of MEDLINE (PubMed) databases from 2000 to 2022 using a search strategy to identify observational studies. Initially, 2879 articles were retrieved. Of these, 2869 were excluded due to insufficient variables, and non-trauma focuses. RESULTS Nine studies on the interaction between SIH and proinflammatory cytokines were analyzed. SIH was associated with the highest mortality rate (21.3%), followed by DH (5.4%), DN (2.8%), and NDN (2.3%) (p < 0.001). Furthermore, SIH patients exhibited an 11.28-fold higher likelihood of mortality compared to NDN patients (95% CI [9.13-13.93]; p < 0.001) and a 4.72-fold higher likelihood compared to DH patients (OR 4.72; 95% CI [3.55-6.27]; p < 0.001). CONCLUSIONS SIH patients had elevated IL-6 concentrations relative to NDN, DN, and DH patients. SIH is linked to higher mortality in trauma, with greater odds than NDN. However, the robustness of this association is still being determined due to statistical and clinical variability. Uncertainties about injury severity and IL-6 level similarities between SIH and DH patients require further investigation.
Collapse
Affiliation(s)
| | - Naushad Ahmad Khan
- Department of Surgery, Clinical Research, Trauma & Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Eman Elmenyar
- Faculty of Medicine, Bahcesehir University, Istanbul 34734, Türkiye;
| | - Ammar Al-Hassani
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.A.-H.); (S.R.)
| | - Sandro Rizoli
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.A.-H.); (S.R.)
| | - Hassan Al-Thani
- Department of Surgery, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Ayman El-Menyar
- Department of Surgery, Clinical Research, Trauma & Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- Department of Clinical Medicine, Weill Cornell Medical College, Doha P.O. Box 24144, Qatar
| |
Collapse
|
18
|
Shamanna P, Joshi S, Thajudeen M, Shah L, Poon T, Mohamed M, Mohammed J. Personalized nutrition in type 2 diabetes remission: application of digital twin technology for predictive glycemic control. Front Endocrinol (Lausanne) 2024; 15:1485464. [PMID: 39634180 PMCID: PMC11615876 DOI: 10.3389/fendo.2024.1485464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Type 2 Diabetes (T2D) is a complex condition marked by insulin resistance and beta-cell dysfunction. Traditional dietary interventions, such as low-calorie or low-carbohydrate diets, typically overlook individual variability in postprandial glycemic responses (PPGRs), which can lead to suboptimal management of the disease. Recent advancements suggest that personalized nutrition, tailored to individual metabolic profiles, may enhance the effectiveness of T2D management. Objective This study aims to present the development and application of a Digital Twin (DT) technology-a machine learning (ML)-powered platform designed to predict and modulate PPGRs in T2D patients. By integrating continuous glucose monitoring (CGM), dietary data, and other physiological inputs, the DT provides individualized dietary recommendations to improve insulin sensitivity, reduce hyperinsulinemia, and support the remission of T2D. Methods We developed a sophisticated DT platform that synthesizes real-time data from CGM, dietary logs, and other biometric inputs to create personalized metabolic models for T2D patients. The intervention is delivered via a mobile application, which dynamically adjusts dietary recommendations based on predicted PPGRs. This methodology is validated through a randomized controlled trial (RCT) assessing its impact on various metabolic markers, including HbA1c, metabolic-associated fatty liver disease (MAFLD), blood pressure, body weight, ASCVD risk, albuminuria, and diabetic retinopathy. Results Preliminary data from the ongoing RCT and real-world study demonstrate the DT's capacity to generate significant improvements in glycemic control and metabolic health. The DT-driven personalized nutrition plan has been associated with reductions in HbA1c, enhanced beta-cell function, and normalization of hyperinsulinemia, supporting sustained T2D remission. Additionally, the DT's predictions have contributed to improvements in MAFLD markers, blood pressure, and cardiovascular risk factors, highlighting its potential as a comprehensive management tool. Conclusion The DT technology represents a novel and scalable approach to personalized nutrition in T2D management. By addressing individual variability in PPGRs, this method offers a promising alternative to conventional dietary interventions, with the potential to improve long-term outcomes and reduce the global burden of T2D.
Collapse
Affiliation(s)
| | - Shashank Joshi
- Department of Diabetology and Endocrinology, Lilavati Hospital and Research Center, Mumbai, India
| | | | - Lisa Shah
- Twin Health, Mountain View, CA, United States
| | | | | | | |
Collapse
|
19
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
20
|
Klyosova E, Azarova I, Petrukhina I, Khabibulin R, Polonikov A. The rs2341471-G/G genotype of activating transcription factor 6 (ATF6) is the risk factor of type 2 diabetes in subjects with obesity or overweight. Int J Obes (Lond) 2024; 48:1638-1649. [PMID: 39134692 DOI: 10.1038/s41366-024-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Numerous studies have demonstrated that the onset of type 2 diabetes (T2D) is linked to the reduction in ß-cell mass caused by apoptosis, a process initiated by endoplasmic reticulum (ER) stress. The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the ATF6 gene (activating transcription factor 6), a key sensor of ER stress, and T2D susceptibility. METHODS The study involved 3229 unrelated individuals, including 1569 patients with T2D and 1660 healthy controls from Central Russia. Four functionally significant intronic SNPs, namely rs931778, rs90559, rs2341471, and rs7517862, were genotyped using the MassARRAY-4 system. RESULTS The rs2341471-G/G genotype of ATF6 was found to be associated with an increased risk of T2D (OR = 1.61, 95% CI 1.37-1.90, PFDR < 0.0001). However, a BMI-stratified analysis showed that this genotype and haplotypes CGGA and TAGA are associated with T2D risk exclusively in subjects with obesity or overweight (PFDR < 0.05). Despite these patients being found to have higher consumption of high-carbohydrate and high-calorie diets compared to normal-weight individuals (P < 0.0001), the influence of the rs7517862 polymorphism on T2D risk was observed independently of these dietary habits. Functional SNP annotation revealed the following: (1) the rs2341471-G allele is associated with increased ATF6 expression; (2) the SNP is located in a region exhibiting enhancer activity epigenetically regulated in pancreatic islets; (3) the rs2341471-G was predicted to create binding sites for 18 activating transcription factors that are part of gene-regulatory networks controlling glucose metabolism and maintaining proteostasis. CONCLUSIONS The present study revealed, for the first time, a strong association between the rs2341471-G/G ATF6 genotype and an increased risk of type 2 diabetes in people with obesity or overweight, regardless of known dietary risk factors. Further research is needed to support the potential of silencing the ATF6 gene as a means for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Irina Petrukhina
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Ramis Khabibulin
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia.
| |
Collapse
|
21
|
Samimi F, Baazm M, Nadi Z, Dastghaib S, Rezaei M, Jalali-Mashayekhi F. Evaluation of Antioxidant Effects of Coenzyme Q10 against Hyperglycemia-Mediated Oxidative Stress by Focusing on Nrf2/Keap1/HO-1 Signaling Pathway in the Liver of Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:661-670. [PMID: 39449772 PMCID: PMC11497326 DOI: 10.30476/ijms.2023.100078.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 10/26/2024]
Abstract
Background Hyperglycemia-induced oxidative stress can damage the liver and lead to diabetes complications. Coenzyme Q10 (CoQ-10) reduces diabetes-related oxidative stress. However, its molecular mechanisms are still unclear. This study aimed to examine CoQ-10's antioxidant capabilities against hyperglycemia-induced oxidative stress in the livers of diabetic rats, specifically targeting the Nrf2/Keap1/ARE signaling pathway. Methods This study was conducted between 2020-2021 at Arak University of Medical Sciences. A total of 30 male adult Wistar rats (8 weeks old) weighing 220-250 g were randomly assigned to five groups (n=6 in each group): control healthy, sesame oil (CoQ-10 solvent), CoQ-10 (10 mg/Kg), diabetic, and diabetic+CoQ-10. Liver oxidative stress indicators, including malondialdehyde, catalase, glutathione peroxidase, and glutathione, were estimated using the spectrophotometry method. Nrf2, Keap1, HO-1, and NQO1 gene expressions were measured using real-time PCR tests in the liver tissue. All treatments were conducted for 6 weeks. Statistical analysis was performed using SPSS software. One-way ANOVA followed by LSD's or Tukey's post hoc tests were used to compare the results of different groups. P<0.05 was considered statistically significant. Results The findings showed that induction of diabetes significantly increased Keap1 expression (2.1±0.9 folds, P=0.01), and significantly inhibited the mRNA expression of Nrf2 (0.38±0.2 folds, P=0.009), HO-1 (0.27±0.1 folds, P=0.02), and NQO1 (0.26±0.1 folds P=0.01), compared with the healthy group. In the diabetic group, the activity of glutathione peroxidase, catalase enzymes, and glutathione levels was decreased with an increase in malondialdehyde level. CoQ-10 supplementation significantly up-regulated the expressions of Nrf2 (0.85±0.3, P=0.04), HO-1 (0.94±0.2, P=0.04), NQO1 (0.88±0.5, P=0.03) genes, and inhibited Keap1 expression (1.1±0.6, P=0.02). Furthermore, as compared to control diabetic rats, CoQ-10 ameliorated oxidative stress by decreasing malondialdehyde levels and increasing catalase, glutathione peroxidase activities, and glutathione levels in the liver tissues of the treated rats in the treatment group. Conclusion The findings of this study revealed that CoQ-10 could increase the antioxidant capacity of the liver tissue in diabetic rats by modulating the Nrf2/Keap1/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Nadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Rezaei
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farideh Jalali-Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
22
|
Cheng Y, Chao H, Liu J, Liu J. Nontargeted metabolomic profiling analysis of patients with type 2 diabetes mellitus undergoing corn silk treatment. Medicine (Baltimore) 2024; 103:e39396. [PMID: 39151489 PMCID: PMC11332781 DOI: 10.1097/md.0000000000039396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
To explore the corn silk's effect and possible mechanism on patients with type 2 diabetes mellitus (T2DM) by untargeted metabolomics. Newly diagnosed patients with T2DM admitted to the endocrinology department of the author's hospital from March 2020 to September 2021 were chosen and then allocated to either the intervention or the control group (NC) randomly. Patients in the intervention group were administered corn silk in the same way as the patients in the NC were given a placebo. A hypoglycemic effect was observed, and an untargeted metabolomics study was done on patients of both groups. Compared with the NC, the glycosylated hemoglobin and fasting blood glucose of patients in the intervention group significantly decreased after 3 months of treatment (P < .05), identified using tandem mass spectrometry, and analyzed by orthogonal partial least squares-discriminant analysis. A total of 73 differential metabolites were screened under the conditions of variable important in projection value >1.0 and P < .05. Differential metabolites are mainly enriched in signaling pathways such as oxidative phosphorylation, purine metabolism, and endocrine resistance. Through untargeted metabolomic analysis, it is found that corn silk water extract may reduce blood glucose in patients with T2DM through multiple pathways, including oxidative phosphorylation and purine metabolism.
Collapse
Affiliation(s)
- Yu Cheng
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hong Chao
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jinghua Liu
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
23
|
Stanciu SM, Jinga M, Miricescu D, Stefani C, Nica RI, Stanescu-Spinu II, Vacaroiu IA, Greabu M, Nica S. mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines 2024; 12:1802. [PMID: 39200267 PMCID: PMC11351979 DOI: 10.3390/biomedicines12081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Worldwide, diabetes mellitus (DM) and cardiovascular diseases (CVDs) represent serious health problems associated with unhealthy diet and sedentarism. Metabolic syndrome (MetS) is characterized by obesity, dyslipidemia, hyperglycemia, insulin resistance (IR) and hypertension. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase with key roles in glucose and lipid metabolism, cell growth, survival and proliferation. mTOR hyperactivation disturbs glucose metabolism, leading to hyperglycemia and further to IR, with a higher incidence in the Western population. Metformin is one of the most used hypoglycemic drugs, with anti-inflammatory, antioxidant and antitumoral properties, having also the capacity to inhibit mTOR. mTOR inhibitors such as rapamycin and its analogs everolimus and temsirolimus block mTOR activity, decrease the levels of glucose and triglycerides, and reduce body weight. The link between mTOR dysregulation, IR, hypertension and mTOR inhibitors has not been fully described. Therefore, the main aim of this narrative review is to present the mechanism by which nutrients, proinflammatory cytokines, increased salt intake and renin-angiotensin-aldosterone system (RAAS) dysregulation induce mTOR overactivation, associated further with IR and hypertension development, and also mTOR inhibitors with higher potential to block the activity of this protein kinase.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
| | - Remus Iulian Nica
- Surgery Department, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanotari Blvd, 054474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
- Department of Emergency and First Aid, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|
24
|
Ahmad Hairi H, Ibrahim NI, Sadikan MZ, Jayusman PA, Shuid AN. Deciphering the role of classical oestrogen receptor in insulin resistance and type 2 diabetes mellitus: From molecular mechanism to clinical evidence. BIOIMPACTS : BI 2024; 15:30378. [PMID: 40256228 PMCID: PMC12008500 DOI: 10.34172/bi.30378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 04/22/2025]
Abstract
The biological actions of oestrogen are mediated by the oestrogen receptor α or β (ERα or ERβ), which are members of a broad nuclear receptor superfamily. Numerous in vivo and in vitro studies have demonstrated that loss of circulating oestrogen modulated by classical ERα and ERβ led to rapid changes in pancreatic β-cell and islet function, GLUT4 expression, insulin sensitivity and glucose tolerance, dysfunctional lipid homeostasis, oxidative stress, and inflammatory cascades. Remarkably, 17β-oestradiol (E2) can completely reverse these effects. This review evaluates the current understanding of the protective role of classical ER in critical pathways and molecular mechanisms associated with insulin resistance and type 2 diabetes mellitus (T2DM). It also examines the effectiveness of menopausal hormone therapy (MHT) in reducing the risk of developing T2DM in menopausal women. Clinical trials have shown the protective effects of MHT on glucose metabolism, which may be useful to treat T2DM in perimenopausal women. However, there are concerns about E2's potential side effects of obesity and hyperlipidaemia in menopausal women. Further studies are warranted to gain understanding and find other oestrogen alternatives for treatment of insulin resistance and T2DM in postmenopausal women.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia
| | - Nurul Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
25
|
Zhang B, Song C, Tang X, Tian M, Liu Y, Yan Z, Duan R, Liu Y. Type 2 diabetes microenvironment promotes the development of Parkinson's disease by activating microglial cell inflammation. Front Cell Dev Biol 2024; 12:1422746. [PMID: 39050892 PMCID: PMC11266050 DOI: 10.3389/fcell.2024.1422746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, and type 2 diabetes (T2DM) and PD are influenced by common genetic and environmental factors. Mitochondrial dysfunction and inflammation are common pathogenic mechanisms of both diseases. However, the close association between PD and T2DM and the specific relationship between them are not yet clear. This study aimed to reveal the specific connection between the two diseases by establishing a mouse model of comorbid PD and T2DM, as well as a Bv2 cell model. Methods C57BL/6 mouse were used to construct a model of PD with T2DM using streptozotocin and rotenone, while Bv2 cells were used to simulate the microenvironment of PD and T2DM using rotenone and palmitate. Behavioral tests were conducted to assess any differences in motor and cognitive functions in mouse. Immunohistochemistry was used to analyze the number of dopaminergic neurons in the substantia nigra region of mouse. Western blotting was used to detect the expression levels of TH, P-NFκB, NFκB, Cyclic GMP-AMP synthase (cGAS), and Stimulator of interferon genes (STING) proteins in the substantia nigra region of mouse and Bv2 cells. qRT-PCR was used to analyze the expression levels of IL1β, IL6, and TNF-α. Seahorse technology was used to assess mitochondrial function in Bv2 cells. Results T2DM exacerbated the motor and cognitive symptoms in mouse with PD. This effect may be mediated by disrupting mitochondrial function in microglial cells, leading to damaged mtDNA leakage into the cytoplasm, subsequently activating the cGAS-STING pathway and downstream P-NFκB/NFκB proteins, triggering an inflammatory response in microglial cells. Microglial cells release inflammatory factors such as IL1β, IL6, and TNF-α, exacerbating neuronal damage caused by PD. Conclusion Our study results suggest that T2DM may exacerbate the progression of PD by damaging mitochondrial function, and activating microglial cell inflammation. The detrimental effects on Parkinson's disease may be achieved through the activating of the cGAS-STING protein pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruonan Duan
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
26
|
Qiao Y, Sun C, Kan S, He L, Wang Y, Gao H, Zhang Y, Cheng Y, Wang S, Zhao L, Niu W. SRS 16-86 promotes diabetic nephropathy recovery by regulating ferroptosis. Exp Physiol 2024; 109:1199-1210. [PMID: 38812118 PMCID: PMC11215488 DOI: 10.1113/ep091520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus (DM), and cell death plays an important role. Ferroptosis is a recently discovered type of iron-dependent cell death and one that is different from other kinds of cell death including apoptosis and necrosis. However, ferroptosis has not been described in the context of DN. This study explored the role of ferroptosis in DN pathophysiology and aimed to confirm the efficacy of the ferroptosis inhibitor SRS 16-86 on DN. Streptozotocin injection was used to establish the DM and DN animal models. To investigate the presence or occurrence of ferroptosis in DN, we assessed the concentrations of iron, reactive oxygen species and specific markers associated with ferroptosis in a rat model of DN. Additionally, we performed haematoxylin-eosin staining, blood biochemistry, urine biochemistry and kidney function analysis to evaluate the efficacy of the ferroptosis inhibitor SRS 16-86 in ameliorating DN. We found that SRS 16-86 could improve the recovery of renal function after DN by upregulating glutathione peroxidase 4, glutathione and system xc -light chain and by downregulating the lipid peroxidation markers and 4-hydroxynonenal. SRS 16-86 treatment could improve renal organization after DN. The inflammatory cytokines interleukin 1β and tumour necrosis factor α and intercellular adhesion molecule 1 were significantly decreased following SRS 16-86 treatment after DN. The results indicate that there is a strong connection between ferroptosis and the pathological mechanism of DN. The efficacy of the ferroptosis inhibitor SRS 16-86 in DN repair supports its use as a new therapeutic treatment for DN.
Collapse
Affiliation(s)
- Yingchun Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Chao Sun
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Shunli Kan
- Department of Spine SurgeryTianjin Union Medical CenterTianjinChina
| | - Lu He
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Yawen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Huajun Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Yingying Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - You Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Shuai Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| | - Long Zhao
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Wenyan Niu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Clinical LaboratoryChu Hsien‐I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical UniversityTianjinChina
| |
Collapse
|
27
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. A Review of Fetal Development in Pregnancies with Maternal Type 2 Diabetes Mellitus (T2DM)-Associated Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation: Possible Links to Pregestational Prediabetes. Biomedicines 2024; 12:1372. [PMID: 38927579 PMCID: PMC11201628 DOI: 10.3390/biomedicines12061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Research has identified fetal risk factors for adult diseases, forming the basis for the Developmental Origins of Health and Disease (DOHaD) hypothesis. DOHaD suggests that maternal insults during pregnancy cause structural and functional changes in fetal organs, increasing the risk of chronic diseases like type 2 diabetes mellitus (T2DM) in adulthood. It is proposed that altered maternal physiology, such as increased glucocorticoid (GC) levels associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis in maternal stress and T2DM during pregnancy, exposes the fetus to excess GC. Prenatal glucocorticoid exposure reduces fetal growth and programs the fetal HPA axis, permanently altering its activity into adulthood. This programmed HPA axis is linked to increased risks of hypertension, cardiovascular diseases, and mental disorders in adulthood. With the global rise in T2DM, particularly among young adults of reproductive age, it is crucial to prevent its onset. T2DM is often preceded by a prediabetic state, a condition that does not show any symptoms, causing many to unknowingly progress to T2DM. Studying prediabetes is essential, as it is a reversible stage that may help prevent T2DM-related pregnancy complications. The existing literature focuses on HPA axis dysregulation in T2DM pregnancies and its link to fetal programming. However, the effects of prediabetes on HPA axis function, specifically glucocorticoid in pregnancy and fetal outcomes, are not well understood. This review consolidates research on T2DM during pregnancy, its impact on fetal programming via the HPA axis, and possible links with pregestational prediabetes.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4001, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
28
|
Shamim T, Asif HM, Abida Ejaz S, Hussain Z, Wani TA, Sumreen L, Abdullah M, Ahmed Z, Iqbal J, Kim SJ, Shah MK. Investigations of Limeum Indicum Plant for Diabetes Mellitus and Alzheimer's Disease Dual Therapy: Phytochemical, GC-MS Chemical Profiling, Enzyme Inhibition, Molecular Docking and In-Vivo Studies. Chem Biodivers 2024; 21:e202301858. [PMID: 38608202 DOI: 10.1002/cbdv.202301858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Type 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, β-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05 μg/mL), methanol extract against β-glucosidase (IC50=91.12±0.07 μg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02 μg/mL), ethanol extract against BChE (28.41±0.01 μg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31 μg/mL) and methanol extract for MAO-B (IC50=75.95±0.13 μg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40 mg/dl) after 21 days treatment at dose level of 250 and 500 mg/Kg. Histopathological findings further supported the in-vivo studies.
Collapse
Affiliation(s)
- Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2452, 11451, Riyadh, Saudi Arabia
| | - Laila Sumreen
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zubair Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Song Ja Kim
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, 32588, Gongju, South Korea
| | - Muhammad Kamal Shah
- Faculty of Veterinary and Animal Sciences, Gomal University, 29220, Dera Ismail Khan, Pakistan
| |
Collapse
|
29
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
30
|
Erukainure OL, Chukwuma CI. Coconut ( Cocos nucifera (L.)) Water Improves Glucose Uptake with Concomitant Modulation of Antioxidant and Purinergic Activities in Isolated Rat Psoas Muscles. PLANTS (BASEL, SWITZERLAND) 2024; 13:665. [PMID: 38475510 DOI: 10.3390/plants13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The present study investigated the effect of coconut water on glucose uptake and utilization, and metabolic activities linked to hyperglycemia in isolated rat psoas muscles. Coconut water was subjected to in vitro antioxidant and antidiabetic assays, which cover 2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), and inhibition of α-glucosidase and α-amylase activities. Psoas muscles were isolated from male Sprague Dawley rats and incubated with coconut water in the presence of glucose. Control consisted of muscles incubated with glucose only, while normal control consisted of muscles not incubated in coconut water and/or glucose. The standard antidiabetic drug was metformin. Incubation with coconut water led to a significant increase in muscle glucose uptake, with concomitant exacerbation of glutathione level, and SOD and catalase activities, while suppressing malondialdehyde level, and ATPase and E-NTDase activities. Coconut water showed significant scavenging activity against DPPH, and significantly inhibited α-glucosidase and α-amylase activities. LC-MS analysis of coconut water revealed the presence of ellagic acid, butin, quercetin, protocatechuic acid, baicalin, and silibinin. Molecular docking analysis revealed potent molecular interactions between the LC-MS-identified compounds, and AKT-2 serine and PI-3 kinase. These results indicate the potential of coconut water to enhance glucose uptake, while concomitantly improving antioxidative and purinergic activities. They also indicate the potential of coconut water to suppress postprandial hyperglycemia. These activities may be attributed to the synergistic effects of the LC-MS-identified compounds.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| |
Collapse
|
31
|
Bi Y, Yang Y, Yuan X, Wang J, Wang T, Liu Z, Tian S, Sun C. Association between liver enzymes and type 2 diabetes: a real-world study. Front Endocrinol (Lausanne) 2024; 15:1340604. [PMID: 38444589 PMCID: PMC10913017 DOI: 10.3389/fendo.2024.1340604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Aim This study aimed to examine the association of liver enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl-transferase (GGT), with type 2 diabetes (T2D) risk, particularly their dose-response relationship. Methods This cross-sectional study enrolled participants aged >20 years old who underwent physical examination at our local hospital from November 2022 to May 2023. A generalized additive model (GAM) was fit to assess the dose-response relationship between liver enzymes and T2D risk. Furthermore, data from the UK Biobank (n=217,533) and National Health and Nutrition Examination Survey (NHANES 2011-2018; n= 15,528) were analyzed to evaluate whether the dose-response relationship between liver enzymes and T2D differed by population differences. Results A total of 14,100 participants were included (1,155 individuals with T2D and 12,945 individuals without diabetes) in the analysis. GAM revealed a non-linear relationship between liver enzymes and T2D risk (P non-linear < 0.001). Specifically, T2D risk increased with increasing ALT and GGT levels (range, <50 IU/L) and then plateaued when ALT and GGT levels were >50 IU/L. Elevated AST within a certain range (range, <35 IU/L) decreased the risk of T2D, whereas mildly elevated AST (>35 IU/L) became a risk factor for T2D. The UK Biobank and NHANES data analysis also showed a similar non-linear pattern between liver enzymes and T2D incidence. Conclusion Liver enzymes were non-linearly associated with T2D risk in different populations, including China, the UK, and the US. Elevated ALT and GGT levels, within a certain range, could increase T2D risk. More attention should be given to liver enzyme levels for early lifestyle intervention and early T2D prevention. Further studies are necessary to explore the mechanism of the non-linear association between liver enzymes and T2D risk.
Collapse
Affiliation(s)
- Yaru Bi
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Health Examination Center, First Hospital of Jilin University, Changchun, China
| | - Xiaojie Yuan
- Department of Clinical Nutrition, First Hospital of Jilin University, Changchun, China
| | - Jiping Wang
- Department of Clinical Nutrition, First Hospital of Jilin University, Changchun, China
| | - Tuo Wang
- Center for Applied Statistical Research, School of Mathematics, Jilin University, Changchun, China
| | - Zhiyuan Liu
- Department of Clinical Medicine, Yanbian University, Yanji, China
| | - Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Hua W, Du Z, Lu T, Tian L. Effect of glycemic control on cognitive function in patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Syst Rev 2024; 13:10. [PMID: 38167509 PMCID: PMC10763190 DOI: 10.1186/s13643-023-02433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND It is controversial whether the level of glycemic control in patients with type 1 diabetes mellitus (T1DM) correlates with reduced cognitive function. This study explored the influence of glycemic management quality on cognitive function in T1DM patients by examining the association between glycemic control level and impaired cognitive function. METHODS The electronic databases PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, China Science and Technology Journal database, Wanfang database, and China Biology Medicine disc database were systematically searched to identify eligible studies published before January 2023. Search, selection, and data extraction were performed by two independent reviewers. RevMan 5.4 software was used for meta-analysis, and standardized mean difference (SMD) between groups was calculated. RESULTS Six studies involving 351 patients with T1DM were included in this study. Compared with T1DM subjects with good glycemic control, those with poor glycemic control performed worse in full-scale intellectual quotient (P = 0.01, SMD = -0.79, 95%CI = -1.42 to -0.17), but no significant differences were observed in verbal intellectual quotient (P = 0.08, SMD = -1.03, 95%CI = -2.20 to 0.13), memory (P = 0.05, SMD = -0.41, 95%CI = -0.82 to 0.00), and attention (P = 0.23, SMD = -0.26, 95%CI = -0.69 to 0.16). CONCLUSIONS T1DM patients with suboptimal glycemic control may have a worse cognitive function, mainly focusing on the full-scale intellectual quotient. The current study highlights the significance of maintaining satisfactory glycemic control in T1DM patients to improve their health status and quality of life. Standardized tests should be employed in clinical neuropsychological practice to provide early and complete cognitive assessment of individuals with poor glycemic control. SYSTEMATIC REVIEW REGISTRATION The study protocol has been registered in the PROSPERO database (CRD42023390456).
Collapse
Affiliation(s)
- Wenting Hua
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, Lanzhou, 730000, China
| | - Zouxi Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, Lanzhou, 730000, China
| | - Tingting Lu
- Institution of Clinical Research and Evidence-Based Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Clinical Research Center for Metabolic Diseases, Gansu Province, Lanzhou, 730000, China.
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
33
|
Mehra A, Mittal A, Vishwakarma PK. Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment. Curr Drug Metab 2024; 25:355-380. [PMID: 39108115 DOI: 10.2174/0113892002321919240801065905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives. OBJECTIVE The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes. METHODS Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity. RESULTS Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity. CONCLUSION Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its high binding affinity, favorable ADMET (adjusted drug metabolic equivalents), minimal toxicity, and favorable pharmacokinetic profile warrants consideration for progress to in vitro testing. Nevertheless, to uncover potential therapeutic implications, particularly in the context of type 2 diabetes, thorough investigations and in-vivo evaluations are necessary for benchmarking before therapeutic use, especially experiments involving the STZ diabetic rat model.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Prakhar Kumar Vishwakarma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| |
Collapse
|
34
|
Coulter-Parkhill A, Tanday N, Cobice D, McLaughlin CM, McClean S, Gault VA, Irwin N. Sustained metabolic benefits of ΔTRTX-Ac1, a tarantula venom-derived peptide, when administered together with exenatide in high-fat fed mice. Diabetes Obes Metab 2024; 26:329-338. [PMID: 37818589 DOI: 10.1111/dom.15319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
AIM The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.
Collapse
Affiliation(s)
| | - Neil Tanday
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | - Diego Cobice
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | | | | | - Victor A Gault
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, UK
| |
Collapse
|
35
|
Rohilla M, Rishabh, Bansal S, Garg A, Dhiman S, Dhankhar S, Saini M, Chauhan S, Alsubaie N, Batiha GES, Albezrah NKA, Singh TG. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169:115881. [PMID: 37989030 DOI: 10.1016/j.biopha.2023.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and β-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and β-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.
Collapse
Affiliation(s)
- Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India
| | - Rishabh
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula, Haryana 134118, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India; M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nisreen Khalid Aref Albezrah
- Obstetric and Gynecology Department, Medicine College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
36
|
Khumalo B, Siboto A, Akinnuga AM, Sibiya N, Khathi A, Ngubane PS. Momordica balsamina improves glucose handling in a diet-induced prediabetic rat model. PLoS One 2023; 18:e0295498. [PMID: 38096150 PMCID: PMC10721073 DOI: 10.1371/journal.pone.0295498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Prolonged exposure to high energy diets has been implicated in the development of pre-diabetes, a long-lasting condition that precedes type 2 diabetes mellitus (T2DM). A combination of pharmacological treatment and dietary interventions are recommended to prevent the progression of pre-diabetes to T2DM. However, poor patient compliance leads to negligence of the dietary intervention and thus reduced drug efficiency. Momordica balsamina (MB) has been reported to possess anti-diabetic effects in type 1 diabetic rats. However, the effects of this medicinal plant in conjunction with dietary intervention on pre-diabetes have not yet been established. Consequently, this study sought to evaluate the effects of MB on glucose homeostasis in a diet-induced pre-diabetes rat model in the presence and absence of dietary intervention. Pre-diabetes was induced on male Sprague Dawley rats by a high fat high carbohydrate (HFHC) diet for a period of 20 weeks. Pre-diabetic male Sprague Dawley rats were treated with MB (250 mg/kg p.o.) in both the presence and absence of dietary intervention once a day every third day for a period of 12 weeks. The administration of MB with and without dietary intervention resulted in significantly improved glucose homeostasis through reduced caloric intake, body weights, with reduced plasma ghrelin concentration and glycated hemoglobin by comparison to the pre-diabetic control. MB administration also improved insulin sensitivity as evidenced by the expression of glucose transporter 4 (GLUT 4) and glycogen synthase on the prediabetic treated animals. These results suggest that MB has the potential to be used to manage pre-diabetes and prevent the progression to overt type 2 diabetes as it demonstrated the ability to restore glucose homeostasis even in the absence of dietary and lifestyle intervention.
Collapse
Affiliation(s)
- Bongiwe Khumalo
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Angezwa Siboto
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Akinjide Moses Akinnuga
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, Cross River University of Technology, Okuku Campus, Cross River, Nigeria
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Andile Khathi
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Phikelelani Siphosethu Ngubane
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
37
|
Hu J, Feng Y, Li B, Wang F, Qian Q, Tian W, Niu L, Wang X. Identification of quality markers for Cyanotis arachnoidea and analysis of its physiological mechanism based on chemical pattern recognition, network pharmacology, and experimental validation. PeerJ 2023; 11:e15948. [PMID: 37719108 PMCID: PMC10501370 DOI: 10.7717/peerj.15948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Cyanotis arachnoidea C. B. Clarke is a traditional Chinese medicinal herb that has a limited clinical use in the treatment of diabetes mellitus (DM) in minority areas of Guizhou in China. However, few prior reports are available on the quality control of Cyanotis arachnoidea, and its quality markers and hypoglycemic mechanism are still unclear. The purpose of this study is to explore the quality markers (Q-markers) of Cyanotis arachnoidea and predict its hypoglycemic mechanism. In this study, ultra-high-performance liquid chromatography (UHPLC) fingerprint combined with chemical pattern recognition were performed, and four differential components were screened out as quality markers, including 20-Hydroxyecdysone, 3-O-acetyl-20-hydroxyecdysone, Ajugasterone C, and 2-O-acetyl-20-hydroxyecdysone. Network pharmacology analysis revealed 107 therapeutic target genes of Cyanotis arachnoidea in DM treatment, and the key targets were Akt1, TNF, IL-6, MAPK3, and JUN. The hypoglycemic mode of action of Cyanotis arachnoidea may be mediated by tumor necrosis factor (TNF) signaling, cancer, insulin resistance, and JAK-STAT pathways. Molecular docking analysis disclosed that the foregoing quality markers effectively bound their key target genes. An in vitro experiment conducted on pancreatic islet β-cells indicated that the forenamed active components of Cyanotis arachnoidea had hypoglycemic efficacy by promoting PI3K/Akt and inhibiting MAPK signaling. UHPLC also accurately quantified the quality markers. The identification and analysis of quality markers for Cyanotis arachnoidea is expected to provide references for the establishment of a quality control evaluation system and clarify the material basis and hypoglycemic mechanisms of this traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Jingnan Hu
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Feng
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Baolin Li
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fengxia Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qi Qian
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| | - Wei Tian
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| | - Liying Niu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| | - Xinguo Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
38
|
Liu J, Wang X, Zhu Y, Deng H, Huang X, Jayavanth P, Xiao Y, Wu J, Jiao R. Theabrownin from Dark Tea Ameliorates Insulin Resistance via Attenuating Oxidative Stress and Modulating IRS-1/PI3K/Akt Pathway in HepG2 Cells. Nutrients 2023; 15:3862. [PMID: 37764646 PMCID: PMC10536292 DOI: 10.3390/nu15183862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Dark tea has great potential in regulating glycolipid metabolism, and theabrownin (TB) is considered to be the characteristic and bioactive constituent of dark tea. This study evaluated the ability of TB1 (fermented for 7 days) and TB2 (fermented for 14 days) isolated from dark tea to reverse insulin resistance (IR) in HepG2 cells. The results indicated that TB significantly ameliorated oxidative stress by improving mitochondrial function. In addition, TB improved glycogen synthesis and glucose consumption, and inhibited gluconeogenesis and fatty acid synthesis, by regulating GSK3β (Glycogen synthase kinase 3β), G6Pase (Glucose-6-phosphatase), GCK (Glucokinase), PEPCK1 (Phosphoenolpyruvate carboxy kinase 1), SREBP-1C (sterol regulatory element-binding protein 1C), FASN (fatty acid synthase), and ACC (Acetyl-CoA carboxylase). Additionally, the results of Western blot and real-time PCR experiments demonstrated that TB modulated glucolipid metabolism through the IRS-1 (Insulin receptor substrate 1)/PI3K (phosphatidylinositol-3 kinase)/Akt (protein kinase B) signaling pathway. Treatment with the PI3K inhibitor demonstrated a favorable correlation between PI3K activation and TB action on glycolipid metabolism. Notably, we observed that TB2 had a greater effect on improving insulin resistance compared with TB1, which, due to its prolonged fermentation time, increased the degree of oxidative polymerization of TB.
Collapse
Affiliation(s)
- Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, China; (X.W.); (J.W.)
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Xin Huang
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Pallavi Jayavanth
- International School, Jinan University, 601 Huangpu Road, Guangzhou 510632, China;
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, China;
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, China; (X.W.); (J.W.)
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| |
Collapse
|
39
|
Davis MG, Shurney D, Stone T, Bowman D. HEALing Our Nation - Health Equity Achieved Through Lifestyle Medicine Capturing Highlights From the "HEALing Our Nation" Session at LM2023 and Outlining the Important Work of the HEAL Initiative. Am J Lifestyle Med 2023; 17:694-703. [PMID: 37711350 PMCID: PMC10498977 DOI: 10.1177/15598276231178742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Since the COVID-19 pandemic, health equity has been placed front and center in the conversations surrounding healthcare as well other fields. This conversation has also been occurring in the field of lifestyle medicine with an intentional focus on developing solutions at the intersection of lifestyle medicine and health equity. Initiated by a call to action by ACLM Past President Dexter Shurney at the 2019 Lifestyle Medicine conference, the HEAL Initiative was created with that intention, to address health disparities and advance health equity through lifestyle medicine. Since 2019, the HEAL initiative has grown considerably in its work and impact, creating solutions aligned with the AMA strategic planning recommendations as well developing projects that are examples of community engaged-lifestyle medicine. The work of the HEAL initiative culminated in a full circle moment at the 2023 Lifestyle Medicine Conference which featured an interview (facilitated by Dr. Dexter Shurney) with former US Surgeon General Dr. Jerome Adams and review of HEAL's work over the past 3 years. This article will capture the key highlights of the HEALing our Nation opening session and the cumulative work of HEAL Initiative.
Collapse
Affiliation(s)
- Marsha-Gail Davis
- Piedmont Primary Care at Fischer Marketplace, Piedmont Healthcare Inc., Sharpsburg, GA, USA
| | | | | | | |
Collapse
|
40
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
41
|
Liu N, Li R, Cao J, Song X, Ma W, Liu T, Wang L, Zou J, Zhang B, Liu Z, Liang R, Zheng R, Wang S. The inhibition of FKBP5 protects β-cell survival under inflammation stress via AKT/FOXO1 signaling. Cell Death Discov 2023; 9:247. [PMID: 37452039 PMCID: PMC10349081 DOI: 10.1038/s41420-023-01506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The FK506-binding protein 51 (FKBP51, encoded by FKBP5 gene) has emerged as a critical regulator of mammalian endocrine stress responses and as a potential pharmacological target for metabolic disorders, including type 2 diabetes (T2D). However, in β cells, which secrete the only glucose-lowering hormone-insulin, the expression and function of FKBP5 has not been documented. Here, using human pancreatic tissue and primary human islets, we demonstrated the abundant expression of FKBP5 in β cells, which displayed an responsive induction upon acute inflammatory stress mimicked by in vitro treatment with a cocktail of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α). To explore its function, siRNAs targeting FKBP5 and pharmacological inhibitor SAFit2 were applied both in clonal NIT-1 cells and primary human/mice islets. We found that FKBP5 inhibition promoted β-cell survival, improved insulin secretion, and upregulated β-cell functional gene expressions (MAFA and NKX6.1) in acute-inflammation stressed β cells. In primary human and mice islets, which constitutively suffer from inflammation stress during isolation and culture, FKBP5 inhibition also presented decent performance in improving islet function, in accordance with its protective effect against inflammation. Molecular studies found that FKBP5 is an important regulator for FOXO1 phosphorylation at Serine 256, and silencing of FOXO1 abrogated the protective effect of FKBP5 inhibition, suggesting that it is the key downstream effector of FKBP5 in β cells. At last, in situ detection of FKBP5 protein expression on human and mice pancreases revealed a reduction of FKBP5 expression in β cells in human T2D patients, as well as T2D mice model (db/db), which may indicate a FKBP5-inhibition-mediated pro-survival mechanism against the complex stresses in T2D milieus.
Collapse
Affiliation(s)
- Na Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Li
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Xinyao Song
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Wenmiao Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
42
|
Bartel I, Koszarska M, Strzałkowska N, Tzvetkov NT, Wang D, Horbańczuk JO, Wierzbicka A, Atanasov AG, Jóźwik A. Cyanidin-3-O-glucoside as a Nutrigenomic Factor in Type 2 Diabetes and Its Prominent Impact on Health. Int J Mol Sci 2023; 24:ijms24119765. [PMID: 37298715 DOI: 10.3390/ijms24119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes (T2D) accounts for a global health problem. It is a complex disease as a result of the combination of environmental as well as genetic factors. Morbidity is still increasing across the world. One of the possibilities for the prevention and mitigation of the negative consequences of type 2 diabetes is a nutritional diet rich in bioactive compounds such as polyphenols. This review is focused on cyanidin-3-O-glucosidase (C3G), which belongs to the anthocyanins subclass, and its anti-diabetic properties. There are numerous pieces of evidence that C3G exerts positive effects on diabetic parameters, including in vitro and in vivo studies. It is involved in alleviating inflammation, reducing blood glucose, controlling postprandial hyperglycemia, and gene expression related to the development of T2D. C3G is one of the beneficial polyphenolic compounds that may help to overcome the public health problems associated with T2D.
Collapse
Affiliation(s)
- Iga Bartel
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Magdalena Koszarska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Nina Strzałkowska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
43
|
Zhang H, Yue K, Jiang Z, Wu X, Li X, Luo P, Jiang X. Incidence of Stress-Induced Hyperglycemia in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13040556. [PMID: 37190521 DOI: 10.3390/brainsci13040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this study was to systematically evaluate the incidence of stress-induced hyperglycemia (SIH) in acute ischemic stroke (AIS). Studies that reported SIH incidence in AIS and examined risk factors for SIH and non-SIH patients were systematically searched in PubMed, Embase, Cochrane Library, and Web of Science from the inception of each database to December 2021. Article screening and data extraction were performed by two independent reviewers according to the inclusion and exclusion criteria. The quality of the included studies was assessed using the Newcastle–Ottawa Scale (NOS), and meta-analysis was performed using Stata. A total of 13 studies involving 4552 patients (977 in the SIH group and 3575 in the non-SIH group) were included. Meta-analysis showed that the incidence of SIH was 24% (95% CI: 21–27%) in the total population, 33% (14–52%) in North America, 25% (20–29%) in Europe, and 21% (12–29%) in Asia. Subgroup analysis by year of publication revealed that the pooled incidence of SIH was 27% (22–32%) in studies published before 2010 and 19% (14–24%) in those published after 2010. SIH is relatively common in AIS and poses a serious public health problem. Therefore, more emphasis should be placed on the prevention and control of SIH in AIS.
Collapse
|
44
|
Lian L, Le Z, Wang Z, Chen YA, Jiao X, Qi H, Hejtmancik JF, Ma X, Zheng Q, Ren Y. SIRT1 Inhibits High Glucose-Induced TXNIP/NLRP3 Inflammasome Activation and Cataract Formation. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 36881408 PMCID: PMC10007902 DOI: 10.1167/iovs.64.3.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Purpose To determine whether SIRT1 regulates high glucose (HG)-induced inflammation and cataract formation through modulating TXNIP/NLRP3 inflammasome activation in human lens epithelial cells (HLECs) and rat lenses. Methods HG stress from 25 to 150 mM was imposed on HLECs, with treatments using small interfering RNAs (siRNAs) targeting NLRP3, TXNIP, and SIRT1, as well as a lentiviral vector (LV) for SIRT1. Rat lenses were cultivated with HG media, with or without the addition of NLRP3 inhibitor MCC950 or SIRT1 agonist SRT1720. High mannitol groups were applied as the osmotic controls. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of SIRT1, TXNIP, NLRP3, ASC, and IL-1β. Reactive oxygen species (ROS) generation, cell viability, and death were also assessed. Results HG stress induced a decline in SIRT1 expression and caused TXNIP/NLRP3 inflammasome activation in a concentration-dependent manner in HLECs, which was not observed in the high mannitol-treated groups. Knocking down NLRP3 or TXNIP inhibited NLRP3 inflammasome-induced IL-1β p17 secretion under HG stress. Transfections of si-SIRT1 and LV-SIRT1 exerted inverse effects on NLRP3 inflammasome activation, suggesting that SIRT1 acts as an upstream regulator of TXNIP/NLRP3 activity. HG stress induced lens opacity and cataract formation in cultivated rat lenses, which was prevented by MCC950 or SRT1720 treatment, with concomitant reductions in ROS production and TXNIP/NLRP3/IL-1β expression levels. Conclusions The TXNIP/NLRP3 inflammasome pathway promotes HG-induced inflammation and HLEC pyroptosis, which is negatively regulated by SIRT1. This suggests viable strategies for treating diabetic cataract.
Collapse
Affiliation(s)
- Lili Lian
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenmin Le
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying-Ao Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hang Qi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaoyin Ma
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yueping Ren
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Wang H, Ni X, Dong W, Qin W, Xu L, Jiang Y. Accurately quantified plasma free glycine concentration as a biomarker in patients with acute ischemic stroke. Amino Acids 2023; 55:385-402. [PMID: 36697969 DOI: 10.1007/s00726-023-03236-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method to study the change of plasma levels of free glycine (Gly) in patients with acute ischemic stroke (AIS). Twenty-four patients with AIS confirmed by diffusion-weighted imaging (DWI) were enrolled. During the study period, the patients did not receive any supplemental amino acids therapy that could affect the obtained results. Our results showed that although AIS patients adopted different methods of treatment (thrombolytic and non-thrombolytic), the clinical NIHSS score of AIS showed a downward trend whereas Gly concentration showed increased trend. Moreover, plasma free Gly concentration was positively correlated with ASPECTS score. The correlation between Gly levels and infarct volume showed a statistical significance. That is to say, higher Gly level predicted smaller infarct size. Thus, the change of free Gly level in plasma could be considered as a potential biomarker of AIS.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaoyu Ni
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Weichong Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Weiman Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Lei Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
46
|
Thangrom W, Roopsawang I, Aree-Ue S. Prevalence and Related Factors of Lower Urinary Tract Infection in Frail Older Adults Undergoing Major Noncardiac Surgery. Geriatrics (Basel) 2023; 8:33. [PMID: 36960988 PMCID: PMC10037596 DOI: 10.3390/geriatrics8020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Urinary tract infections are the most common complication after surgery in older adults, resulting in poor operative outcomes and reduced quality of life after discharge. However, there is limited research investigating the relationships between urinary tract infection and associated factors in frail older surgical patients, particularly in Thailand. This retrospective study included 220 frail older patients aged ≥ 60 years who had undergone major noncardiac surgery at a tertiary care hospital in Thailand from January 2015 to December 2019. The sample was recruited using the criteria indicated in the modified Frailty Index-11 and having the blood glucose level determined within 2 h before surgery. The prevalence of lower urinary tract infections was 15% post-surgery. Firth's logistic regression analysis revealed that the equation could predict the accuracy of lower urinary tract infections by 88.5%. Frailty, blood glucose levels, complication during admission, and personal factors together predicted the variability of lower urinary tract infections. Adjusting for other variables, being an older adult with severe frailty and complications during hospital admission significantly increased the risk of developing lower urinary tract infections (odds ratio = 3.46, p < 0.05; odds ratio = 9.53, p < 0.001, respectively).
Collapse
Affiliation(s)
| | - Inthira Roopsawang
- Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
47
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients 2022; 14:5222. [PMID: 36558381 PMCID: PMC9786127 DOI: 10.3390/nu14245222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder characterized by insulin deficiency and insulin resistance. Recently, it has become a significant threat to public health. Polygonatum sibiricum saponin (PSS) has potential hypoglycemic effects, but its specific mechanism needs further study. In this study, PSS significantly decreased the level of blood glucose, water intake, and the organ index in diabetic mice. Meanwhile, PSS effectively reduced the content of total triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood, and increased the content of high-density lipoprotein cholesterol (HDL-C). This suggests that PSS could reduce the content of blood lipids and initially improve the damage of hepatocytes. We found that PSS alleviated hepatic insulin resistance, repaired islet beta cells, and enabled insulin to play its biological role normally. It also improved oral glucose tolerance and abated serum lipopolysaccharide (LPS) and glycosylated hemoglobin (HbA1c) levels in T2DM mice. Furthermore, studies have found that PSS increased the content of phosphorylated protein kinase B (AKT), thereby promoting the effect of glucose transporter 4 (GLUT-4), and activating glycogen synthase kinase 3beta (GSK-3β) and glycogen synthase (GS) proteins to promote hepatic glycogen synthesis. Finally, we found that PSS could promote the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, reduce the growth of harmful bacteria such as Enterococcus and Enterobacter, and preliminarily improve the composition of important bacteria in the intestine. These studies indicate that PSS has an excellent hypoglycemic effect, which provides a potential new treatment for T2DM and guidance for more in-depth research.
Collapse
Affiliation(s)
- Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingjie Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
48
|
Hughes FM, Odom MR, Cervantes A, Purves J. Inflammation triggered by the NLRP3 inflammasome is a critical driver of diabetic bladder dysfunction. Front Physiol 2022; 13:920487. [PMID: 36505062 PMCID: PMC9733912 DOI: 10.3389/fphys.2022.920487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes is a rapidly expanding epidemic projected to affect as many as 1 in 3 Americans by 2050. This disease is characterized by devastating complications brought about high glucose and metabolic derangement. The most common of these complications is diabetic bladder dysfunction (DBD) and estimates suggest that 50-80% of patients experience this disorder. Unfortunately, the Epidemiology of Diabetes Interventions and Complications Study suggests that strict glucose control does not decrease ones risk for incontinence, although it does decrease the risk of other complications such as retinopathy, nephropathy and neuropathy. Thus, there is a significant unmet need to better understand DBD in order to develop targeted therapies to alleviate patient suffering. Recently, the research community has come to understand that diabetes produces a systemic state of low-level inflammation known as meta-inflammation and attention has focused on a role for the sterile inflammation-inducing structure known as the NLRP3 inflammasome. In this review, we will examine the evidence that NLRP3 plays a central role in inducing DBD and driving its progression towards an underactive phenotype.
Collapse
Affiliation(s)
- Francis M. Hughes
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | | | | |
Collapse
|
49
|
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment.
Collapse
|
50
|
Li Z, Yue Q, Chen Y, Zhang Y, Wan Y. Quantitative Assessment of Pancreatic Fat by Quantitative CT in Type 2 Diabetes Mellitus. Int J Gen Med 2022; 15:7977-7984. [PMID: 36337672 PMCID: PMC9629247 DOI: 10.2147/ijgm.s383783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Objective To characterize the pancreatic fat deposition (PFD) in patients with type 2 diabetes mellitus (T2DM) by quantitative computed tomography (QCT) and investigate the relationship between PFD and clinical metabolic parameters and islet function. Materials and Methods A total of 150 patients with T2DM and 93 age-matched healthy subjects underwent QCT to quantify PFD were included. PFD and various biochemical parameters were correlated by statistical methods and multiple stepwise linear regression modeling. Results PFD measured by QCT in the T2DM group was statistically higher than that in the healthy control group, and the pancreatic CT value was statistically lower than that in the control group. The QCT measured PFD was negatively correlated with the pancreatic CT values (P < 0.001), and positively correlated with triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), visceral fat area (VAT) and insulin resistance index (HOMA-IR) (P < 0.05) in the T2DM patients. Multiple stepwise linear regression analysis identified PFD as the dependent variable factor for T2DM. Conclusion This study suggests QCT as a reliable technique in measuring PFD in T2DM. High PFD is positively correlated with the degree of insulin resistance and may play an important role in islet cell dysfunction in T2DM.
Collapse
Affiliation(s)
- Zhizhen Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Qingmei Yue
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Yunjin Chen
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Yifan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Yamin Wan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Yamin Wan, Email
| |
Collapse
|