1
|
Bak SM, Back SM, Kim DY, Jung S, Jeung NY, Kim NY, Han KH, Kim YB, Lee BS, Park JH, Cho HJ, Lee HG, Ozden O, Kim SK, Park SH. Differential genotoxicity of Polygoni Multiflori in rat and human: insights from Ames test and S9 metabolic activation system. Sci Rep 2024; 14:21433. [PMID: 39271730 PMCID: PMC11399298 DOI: 10.1038/s41598-024-72283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The Ames test is used worldwide to initially screen the mutagenic potential of new chemicals. In the standard Ames test, S. typhimurium strains (TA100, TA98, TA1535, and TA1537) and Escherichia coli (WP2uvrA) are treated with substances with/without cytochrome P450s (CYPs)-induced rat S9 fractions for identifying mutagens and pro-mutagens. However, many substances show completely different toxicity patterns depending on whether the liver S9 fraction belongs to rats or humans. The natural product Polygoni Multiflori Radix (PMR) can also show bacterial reverse mutation, followed by the rat or human liver S9 fraction. While PMR elicits reverse mutations in the TA1537 strain in rat liver S9 but not in human liver S9, this mechanism has not been verified yet. To explain this, the differences in metabolic enzymes compositions commonly observed between rats and humans have been implicated. This study aimed to explore the key factors that cause differences in the genotoxicity of PMR between rat and human liver S9 metabolic enzymes. The results of next-generation sequencing (NGS) analysis showed that both rat and human metabolic enzymes caused similar mutations in TA1537. However, when the metabolic enzymes in each S9 fraction were analyzed using ion mobility tandem mass spectrometry (IM-MS), rat- and human-specific enzymes were identified among the cytochrome (CYP) family, especially aryl hydrocarbon receptor (AHR)-related CYPs. These findings suggest that CYP1A1 isoforms contribute to the mechanism of PMR in the Ames test. Therefore, an in vitro Ames test might be more reliable in predicting genotoxicity for both rodents and humans. This will also help overcome the limitations of laboratory animal-based toxicity evaluations, which provide unreliable results due to interspecies differences between humans and rodents.
Collapse
Affiliation(s)
- Su-Min Bak
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seng-Min Back
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- College of Pharmacy, Chungnam National University, 9 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Da Yeon Kim
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Soyoung Jung
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Na-Young Jeung
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Nan-Young Kim
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kang-Hyun Han
- Regulatory Toxicology Research Division, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, 58245, South Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ozkan Ozden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 9 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Toxicology Mechanism Research Division, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Genetic Toxicology Research Group, Toxicology Mechanism Research Division, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
2
|
Jeon S, Lee EY, Nam SJ, Lim KM. Safety assessment of Paeonia lactiflora root extract for a cosmetic ingredient employing the threshold of toxicological concern (TTC) approach. Regul Toxicol Pharmacol 2024; 149:105620. [PMID: 38615840 DOI: 10.1016/j.yrtph.2024.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Botanical extracts, widely used in cosmetics, pose a challenge to safety assessment due to their complex compositions. The threshold of toxicological concern (TTC) approach, offering a safe exposure level for cosmetic ingredients, proves to be a promising solution for ensuring the safety of cosmetic ingredients with low exposure level. We assessed the safety of Paeonia lactiflora root extract (PLR), commonly used in skin conditioning products, with the TTC. We identified 50 constituents of PLR extract from the USDA database and literature exploration. Concentration of each constituent of PLR extract was determined with the information from USDA references, literature, and experimental analysis. The genotoxicity of PLR and its constituents was assessed in vitro and in silico respectively. Cramer class of the constituents of the PLR extract was determined with Toxtree 3.1 extended decision tree using ChemTunes®. Systemic exposure of each constituent from leave-on type cosmetic products containing PLR at a 1% concentration was estimated and compared with respective TTC threshold. Two constituents exceeding TTC threshold were further analyzed for dermal absorption using in silico tools, which confirmed the safety of PLR extract in cosmetics. Collectively, we demonstrated that the TTC is a useful tool for assessing botanical extract safety in cosmetics.
Collapse
Affiliation(s)
- Soha Jeon
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
3
|
Kim SY, Kim IY, Park SH, Hwangbo M, Hwangbo S. Novel ultrasonic technology for advanced oxidation processes of water treatment. RSC Adv 2024; 14:11939-11948. [PMID: 38623292 PMCID: PMC11017266 DOI: 10.1039/d4ra01665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Textile wastewater accounts for a significant proportion of industrial wastewater worldwide. In particular, dye wastewater accounts for a large proportion and consists of non-degradable dyes, which are substances resistant to biodegradation. Methylene blue is a representative example of such non-degradable dyes. It is not biologically degraded and exhibits toxicity. Various methods for their decomposition are currently being studied. Advanced oxidation processes (AOPs), which generate highly reactive hydroxyl radicals that oxidize and degrade pollutants, have been actively studied. Particularly, the photocatalytic degradation method using TiO2 nanoparticles is one of the most actively studied fields; however, there are still concerns regarding the toxicity of nanoparticles. Research is currently being conducted on AOPs using the cavitation phenomenon of ultrasonic waves. However, achieving high efficiency using existing ultrasonic equipment is difficult. Therefore, in this study, we evaluated a new water treatment technology through AOPs using a focused ultrasonic system with a cylindrical piezoelectric ceramic structure. After determining the optimal conditions for degradation, the degradation process was evaluated as a useful tool for mitigating the toxicity of methylene blue. We found that, under the optimal conditions of 100 W intensity at a frequency of 400 kHz, this system is a helpful instrument for degradation and a new water treatment technology suitable for removing ecotoxicity and genotoxicity.
Collapse
Affiliation(s)
- So Yul Kim
- R&D Center, Focused Ultra-Sonic Tech. Lab. (FUST Lab) 1 Techno-ro Yuseong-gu Daejeon 34015 Republic of Korea
| | - In Young Kim
- Nano-safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS) 267 Gajeong-ro Yuseong-gu Daejeon 34113 Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology 141 Gajeong-ro Yuseong-gu Daejeon 34114 Republic of Korea
| | - Minsung Hwangbo
- R&D Center, Focused Ultra-Sonic Tech. Lab. (FUST Lab) 1 Techno-ro Yuseong-gu Daejeon 34015 Republic of Korea
| | - Seonae Hwangbo
- R&D Center, Focused Ultra-Sonic Tech. Lab. (FUST Lab) 1 Techno-ro Yuseong-gu Daejeon 34015 Republic of Korea
| |
Collapse
|