1
|
Ma Z, Cheng J, Lu L, Cheng M, Wang X, Wei D, Zhao X. The expression of repulsive guidance molecule a in the rat brain and the diffusion tensor imaging evaluation for crossed cerebellar diaschisis. Acta Radiol 2025; 66:198-207. [PMID: 39871792 DOI: 10.1177/02841851241299086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
BackgroundCerebral infarction is one of the most common diseases. Diffusion tensor imaging (DTI) has been used to evaluate for crossed cerebellar diaschisis (CCD) to observe the expression of repulsive guidance molecule a (RGMa), the axonal regeneration as well as the effect on neural functional recovery in the middle cerebral artery occlusion (MCAO) rat model.PurposeTo certify the expression pattern of RGMa in cerebral infarction and the mechanism of CCD to provide a new target for clinical therapy.Material and MethodsBuilding the MCAO rat model, every 16 rats were randomly divided into one of six groups. The brain was scanned over the time points above and the rats were sacrificed for immunohistochemistry staining and reverse transcription polymerase chain reaction (RT-PCR) to assay the RGMa expression.ResultsThe apparent diffusion coefficient (ADC) and fractional anisotropy (FA) value of MCAO rats declined and peaked at 12 h. The contralateral cerebellum had a lower parameter than the other side. The expression of RGMa kept climbing and achieved the maximum at 48 h (P < 0.05). The value of the protein in the cerebellum was higher (P < 0.05) compared with controls, especially the right cerebellum. The expression of RGMa was negative compared to the parameter of magnetic resonance imaging (MRI) and the axonal regeneration.ConclusionThe MRI and pathology parameters after MACO had significant differences compared to the controls, as well as the bilateral cerebellum, which provided evidence of CCD. RGMa was related to the axonal regeneration in the injured brain.
Collapse
Affiliation(s)
- Zhen Ma
- Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| | - Jingliang Cheng
- MRI Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| | - Lin Lu
- Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| | - Meiying Cheng
- Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| | - Xiao Wang
- MRI Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| | - Dong Wei
- Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| | - Xin Zhao
- Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China
| |
Collapse
|
2
|
Shao H, Liu Q, Saeed A, Liu C, Liu WV, Zhang Q, Huang S, Zhang G, Li L, Zhang J, Zhu W, Tang X. Feasibility of diffusion tensor imaging in cervical spondylotic myelopathy using MUSE sequence. Spine J 2024; 24:1352-1360. [PMID: 38556218 DOI: 10.1016/j.spinee.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND CONTEXT The most frequent type of spinal cord injury is cervical spondylotic myelopathy (CSM). Conventional structural magnetic resonance imaging (MRI) is the gold diagnosis standard for CSM. Diffusion tensor imaging (DTI) could reflect microstructural changes in the spinal cord by tracing water molecular diffusion in early stages of CSM. However, due to the complex local anatomical structure and small field of view of the spinal cord, the imaging effect of traditional DTI imaging on the spinal cord is limited. MUSE (MUltiplexed Sensitivity-Encoding) -DTI is a novel diffusion-weighted imaging (DWI) sequence that achieves higher signal intensity through multiple excitation acquisition. MUSE sequence may improve the quality of spinal cord DTI imaging. STUDY DESIGN Prospective study. PURPOSE This study aimed to investigate the clinical diagnosis value of a novel protocol of MUSE-DTI in patients with cervical spondylotic myelopathy (CSM). PATIENT SAMPLE From August 2021 to March 2022, a total of 60 subjects (22-71 years) were enrolled, including 51 CSM patients (22 males, 29 females) and 9 healthy subjects (4 males and 5 females). Each subject underwent a MUSE-DTI examination and a clinical Japanese Orthopedic Association (JOA) scale. OUTCOME MEASURES We measured values of FA (Fractional Anisotropy), MD (Mean Diffusivity), AD (Axial Diffusivity), and RD (Radial Diffusivity), and collected the clinical JOA scores of each subject before the MR examination. METHODS A 3.0T MR scanner (Signa Architect, GE Healthcare) performed the MUSE-DTI sequence on each subject. The cervical canal stenosis of subjects was classified from grade 0 to grade Ⅲ according to the method of an MRI grading system. FA, MD, AD, and RD maps were generated by postprocessing MUSE-DTI data on the GE workstation. Regions of interest (ROIs) were manually drawn at the C2 vertebral body level and C2/3-C6/7 intervertebral disc levels by covering the whole spinal cord. The clinical severity of myelopathy of subjects was assessed by the clinical Japanese Orthopedic Association scale (JOA). RESULTS MUSE-DTI can acquire a high-resolution diffusion image compared to traditional DTI. The FAMCL values showed a decreasing trend from grade 0 to grade Ⅲ, while the MDMCL, ADMCL, and RDMCL values showed an overall increasing trend. Significant differences in MDMCL, ADMCL, and RDMCL values were found between adjacent groups among grades Ⅰ-Ⅲ (p<.05). The ADC2 values in CSM patients (grade I-Ⅲ) were significantly lower than in healthy individuals (grade 0) (p=.019). The clinical JOA score has a significant correlation with FAMCL (p=.035), MDMCL (p<.001), ADMCL (p<.001), and RDMCL (p<.001) values. CONCLUSIONS MUSE-DTI displayed a better image quality compared to traditional DTI. MUSE-DTI parameters displayed a grade-dependent trend. All the MUSE-DTI parameters at MCL were correlated with the clinical JOA scores. The ADC2 values can reflect the secondary damage of distal spinal cord. Therefore, MUSE-DTI could be a reliable biomarker for clinical auxiliary diagnosis of spinal cord injury severity in cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Haoyue Shao
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiufeng Liu
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Azzam Saeed
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Qiya Zhang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuting Huang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Akimoto H, Suzuki H, Kan S, Funaba M, Nishida N, Fujimoto K, Ikeda H, Yonezawa T, Ikushima K, Shimizu Y, Matsubara T, Harada K, Nakagawa S, Sakai T. Resting-state functional magnetic resonance imaging indices are related to electrophysiological dysfunction in degenerative cervical myelopathy. Sci Rep 2024; 14:2344. [PMID: 38282042 PMCID: PMC10822854 DOI: 10.1038/s41598-024-53051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/27/2024] [Indexed: 01/30/2024] Open
Abstract
The age-related degenerative pathologies of the cervical spinal column that comprise degenerative cervical myelopathy (DCM) cause myelopathy due spinal cord compression. Functional neurological assessment of DCM can potentially reveal the severity and pathological mechanism of DCM. However, functional assessment by conventional MRI remains difficult. This study used resting-state functional MRI (rs-fMRI) to investigate the relationship between functional connectivity (FC) strength and neurophysiological indices and examined the feasibility of functional assessment by FC for DCM. Preoperatively, 34 patients with DCM underwent rs-fMRI scans. Preoperative central motor conduction time (CMCT) reflecting motor functional disability and intraoperative somatosensory evoked potentials (SEP) reflecting sensory functional disability were recorded as electrophysiological indices of severity of the cervical spinal cord impairment. We performed seed-to-voxel FC analysis and correlation analyses between FC strength and the two electrophysiological indices. We found that FC strength between the primary motor cortex and the precuneus correlated significantly positively with CMCT, and that between the lateral part of the sensorimotor cortex and the lateral occipital cortex also showed a significantly positive correlation with SEP amplitudes. These results suggest that we can evaluate neurological and electrophysiological severity in patients with DCM by analyzing FC strengths between certain brain regions.
Collapse
Affiliation(s)
- Hironobu Akimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hidenori Suzuki
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shigeyuki Kan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masahiro Funaba
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Fujimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Ikeda
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Teppei Yonezawa
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kojiro Ikushima
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoichiro Shimizu
- Department of Radiological Technology, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
4
|
Qi X, He Y, Wang Q, Ren S, Yao H, Cao W, Guan L. Diffusion tensor and kurtosis imaging reveal microstructural changes in the trigeminal nerves of patients with trigeminal neuralgia. Eur Radiol 2023; 33:8046-8054. [PMID: 37256350 DOI: 10.1007/s00330-023-09762-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVES To evaluate the use of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) for detection of microstructural changes in the trigeminal nerves of trigeminal neuralgia (TN) patients. METHODS Forty TN patients and 40 healthy controls were examined using 3 T magnetic resonance imaging (MRI) to evaluate DTI and DKI parameters in trigeminal nerves. One-way ANOVA was used to test the differences in age, sex, and DTI and DKI parameters between the TN-affected sides, TN-unaffected sides, and controls. For parameters with inter-group differences, pairwise comparisons were performed. Then, the difference ratios (DRs) of the parameters with statistical differences were calculated and used for the receiver operating characteristic (ROC) analysis to assess their diagnostic performance. In addition, for the DTI and DKI parameter values with differences, we used pure DTI and DKI values to perform the ROC analysis. RESULTS Compared to the unaffected sides and controls, the FA, MK, and Kr of the affected sides of TN patients were significantly reduced, while ADC was significantly increased (p < 0.05). The diagnostic efficiency of the FA DRs (AUC: 0.974; cutoff value: 0.038; sensitivity: 100%; specificity: 95.0%) was the highest among all DTI and DKI parameters. The DRs of FA and MK more efficiently diagnosed TN than pure FA and MK values. CONCLUSIONS DTI and DKI allowed detection of microstructural changes in TN-affected trigeminal nerves. FA DR was the best independent predictor of microstructural changes in TN. CLINICAL RELEVANCE STATEMENT Both DTI and DKI can be used for noninvasive quantitative evaluation of the changes in the microstructure of the cisternal segment of the cranial nerves in clinical practice. KEY POINTS • Diffusion tensor imaging (DTI) can be used to evaluate the in vivo integrity of white matter and nerve fiber pathway. • Diffusion kurtosis imaging (DKI) has been shown to be considerable sensitive to microstructural changes. • DTI combined with DKI can comprehensively evaluate the status of the TN-affected trigeminal nerve.
Collapse
Affiliation(s)
- Xixun Qi
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yunyun He
- Department of Radiology, Jingzhou Central Hospital, Jingzhou, 434020, China
| | - Qiushi Wang
- Department of Pain, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Sixie Ren
- Department of Radiology, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Haibo Yao
- Medical Records Office, Chengdu Women'S and Children'S Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wanyu Cao
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Liming Guan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
5
|
Deng X, Duan Z, Fang S, Wang S. Advances in The Application and Research of Magnetic Resonance Diffusion Kurtosis Imaging in The Musculoskeletal System. J Magn Reson Imaging 2023; 57:670-689. [PMID: 36200754 DOI: 10.1002/jmri.28463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance diffusion kurtosis imaging (DKI) is an emerging magnetic resonance imaging (MRI) technique that can reflect microstructural changes in tissue through non-Gaussian diffusion of water molecules. Compared to traditional diffusion weighted imaging (DWI), the DKI model has shown greater sensitivity for diagnosis of musculoskeletal diseases and can help formulate more reasonable treatment plans. Moreover, DKI is an important auxiliary examination for evaluation of the motor function of the musculoskeletal system. This article briefly introduces the basic principles of DKI and reviews the application and research of DKI in the evaluation of disorders of the musculoskeletal system (including bone tumors, soft tissue tumors, spinal lesions, chronic musculoskeletal diseases, musculoskeletal trauma, and developmental disorders) as well as the normal musculoskeletal tissues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Xiyang Deng
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Zhiqing Duan
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Shaobo Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Akshiitha J R, Gopinath G, Divya M, Paarthipan N. The Role of Diffusion Tensor Tractography in Assessment of Spondylotic Myelopathy. Cureus 2022; 14:e25778. [PMID: 35706439 PMCID: PMC9187187 DOI: 10.7759/cureus.25778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Cervical spondylotic myelopathy (CSM) describes a neurological deficit related to the spinal cord due to the changes in the facet joints and discs of the cervical spine as a result of degeneration. Diagnosis is mainly dependent on imaging. Diffusion tensor tractography (DTT), being a non-invasive technique, shows better sensitivity when compared to the conventional T2WI sequence in the early detection of cervical spondylotic myelopathy (CSM). The objective was to determine the diagnostic accuracy of the apparent diffusion coefficient (ADC) in predicting high T2 signals in CSM. Methods A prospective observational study was done on 47 subjects aged between 25 and 70 years, referred to the department of radiology with clinical and imaging evidence of CSM in a tertiary care institute in Chennai. Nurick classification system was used to assess severity clinically. Diffusion-weighted imaging and DTT were done with 1.5 Tesla MRI. The primary outcome variable was a high T2 signal. Mean fractional anisotropy (FA) at the stenotic level and ADC value at a stenotic level were considered explanatory variables. The sensitivity, specificity, predictive values, and diagnostic accuracy of the screening test with the decided cut-off values along with their 95% CI were presented. P-value <0.05 was considered statistically significant. SPSS version 22 (IBM Inc., Armonk, New York) was used for statistical analysis. Results The mean age was 48.26 ± 10.28 years. The majority (72.34%) were males, the majority (42.55%) had a Nurick score of two, and 25.53% had a Nurick score of one. Twenty-six (55.32%) reported a high T2 signal, 36 (76.60%) had elevated ADC, and 11 (23.40 %) had no elevated ADC. There was a statistically significant difference in mean FA and ADC values across groups categorized as non-stenotic level and stenotic level (p-value <0.05). The ADC value had a moderately high sensitivity (76.92%) and low specificity (23.81%) in predicting high T2 signals with a diagnostic accuracy of 53.19%. Conclusion DTI parameters at stenotic level (ADC and FA values) in patients with cervical spondylosis help in the early detection of cervical cord compressive myelopathy prior to the appearance of T2 signal changes in conventional MRI, thereby improving clinical outcome and patient management.
Collapse
|
7
|
Valošek J, Bednařík P, Keřkovský M, Hluštík P, Bednařík J, Svatkova A. Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review. J Clin Med 2022; 11:2301. [PMID: 35566426 PMCID: PMC9105390 DOI: 10.3390/jcm11092301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
Collapse
Affiliation(s)
- Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Petr Bednařík
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Miloš Keřkovský
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Radiology and Nuclear Medicine, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Bednařík
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Neurology, University Hospital Brno, 625 00 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Alena Svatkova
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Diffusional kurtosis imaging as a possible prognostic marker of cervical incomplete spinal cord injury outcome: a prospective pilot study. Acta Neurochir (Wien) 2022; 164:25-32. [PMID: 34671848 DOI: 10.1007/s00701-021-05018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is associated with substantial chronic morbidity and mortality. Routine imaging techniques such as T1- and T2-weighted magnetic resonance imaging (MRI) are not effective in predicting neurological deficiency grade or outcome. Diffusional kurtosis imaging (DKI) is an MR imaging technique that provides microstructural information about biological tissue. There are no longitudinal prospective studies assessing DKI metrics in acute traumatic SCI. Therefore, the purpose of this study was to establish a DKI protocol for acute SCI and correlate the DKI metrics to the functional neurological outcome of the patients. METHODS Eight consecutive SCI patients referred to our institution with cervical SCI were included in the study. An acute diagnostic MRI scan was supplemented with a novel fast, mean kurtosis DKI protocol, which describes the average deviation from Gaussian diffusional along nine different directions. Mean kurtosis values were measured at the injury site and normalized to the mean kurtosis values of a non-injured site. At discharge form specialized rehabilitation, patients were evaluated using the Spinal Cord Independence Measure-III (SCIM-III). The DKI metrics and SCIM-III were analysed using Spearman's rank correlation. RESULTS This pilot study found a significant correlation between decreasing mean kurtosis values at the injury site of the spinal cord and higher grade of disability measured by the SCIM-III (p = 0.002). CONCLUSION This pilot study found that DKI may be a valuable tool as a prognostic marker in the acute phase of SCI.
Collapse
|
9
|
Dauleac C, Bannier E, Cotton F, Frindel C. Effect of distortion corrections on the tractography quality in spinal cord diffusion-weighted imaging. Magn Reson Med 2021; 85:3241-3255. [PMID: 33475180 DOI: 10.1002/mrm.28665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To assess the impact of a different distortion correction (DC) method and patient geometry (sagittal balance) on the quality of spinal cord tractography rendering according to different tractography approaches. METHODS Forty-four adults free of spinal cord diseases underwent cervical diffusion-weighted imaging. The phase-encoding direction was head→foot. Sequence with opposed polarities (foot→head) was acquired to perform DC. Eddy-current, motion effects, and susceptibility artifact correction methods were used for DC, and two deterministic and one probabilistic tractography approaches were evaluated using MRtrix and DSI Studio tractography software. Fiber length and number of fibers were extracted to evaluate the quality of the tractography rendering. For each subject, cervical lordosis was measured to assess patient geometry. The angle between the main direction of the spinal cord and the orientation of the acquisition box were computed at each spine level to assess acquisition geometry and define an angle threshold for which a tractography of good quality is no longer possible. RESULTS There was a significant improvement in tractography quality after performing DC with susceptibility artifact correction using a deterministic approach based on tensor. Before DC, the angle threshold was defined at C6 (15.2°) compared with C7 (21.9°) after corrections, demonstrating the importance of spinal cord angulation for DC. CONCLUSION The impact of DC on tractography quality is greatly impacted by acquisition geometry. To obtain a good-quality tractography, we propose as a future perspective to adapt the acquisition geometry to that of the patient by automatically adjusting the acquisition box.
Collapse
Affiliation(s)
- Corentin Dauleac
- Department of Neurosurgery, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon I, Lyon, France.,Laboratoire CREATIS, CNRS UMR5220, INSA-Lyon, Université de Lyon I, Inserm U1206, Lyon, France
| | - Elise Bannier
- Université de Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn, France.,Department of Radiology, CHU de Rennes, Rennes, France
| | - François Cotton
- Université de Lyon, Université Claude Bernard Lyon I, Lyon, France.,Laboratoire CREATIS, CNRS UMR5220, INSA-Lyon, Université de Lyon I, Inserm U1206, Lyon, France.,Department of Radiology, Centre Hospitalier de Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Carole Frindel
- Université de Lyon, Université Claude Bernard Lyon I, Lyon, France.,Laboratoire CREATIS, CNRS UMR5220, INSA-Lyon, Université de Lyon I, Inserm U1206, Lyon, France
| |
Collapse
|
10
|
Tang Y, Wang M, Zheng T, Xiao Y, Wang S, Han F, Chen G. Structural and functional brain abnormalities in postherpetic neuralgia: A systematic review of neuroimaging studies. Brain Res 2020; 1752:147219. [PMID: 33358730 DOI: 10.1016/j.brainres.2020.147219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
In recent decades, an increasing number of neuroimaging studies utilizing magnetic resonance imaging (MRI) have explored the differential effects of postherpetic neuralgia (PHN) on brain structure and function. We systematically reviewed and integrated the findings from relevant neuroimaging studies in PHN patients. A total of 15 studies with 16 datasets were ultimately included in the present study, which were categorized by the different neuroimaging modalities. The results revealed that PHN was closely associated with structural/microstructural and functional abnormalities of the brain mainly located in the 'pain matrix', including the thalamus, insula, parahippocampus, amygdala, dorsolateral prefrontal cortex, precentral gyrus and inferior parietal lobe, as well as other regions, such as the precuneus, lentiform nucleus and brainstem. Furthermore, a disruption of multiple networks, including the default-mode network, salience network and limbic system, may contribute to the neurophysiological mechanisms underlying PHN. The findings indicate that the cerebral abnormalities of PHN were not restricted to the pain matrix but extended to other regions, profoundly affecting the regulation and moderation of pain processing in PHN. Future prospective and longitudinal neuroimaging studies with larger samples will elucidate the progressive trajectory of neural changes in the pathophysiological process of PHN.
Collapse
Affiliation(s)
- Yu Tang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Maohua Wang
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ting Zheng
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yan Xiao
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fugang Han
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guangxiang Chen
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
11
|
Liu Z, Bian B, Wang G, Tian C, Lv Z, Shao Z, Li D. Evaluation of microstructural changes in spinal cord of patients with degenerative cervical myelopathy by diffusion kurtosis imaging and investigate the correlation with JOA score. BMC Neurol 2020; 20:185. [PMID: 32404188 PMCID: PMC7218841 DOI: 10.1186/s12883-020-01752-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background To explore the feasibility of the metrics of diffusion kurtosis imaging (DKI) for investigations of the microstructural changes of spinal cord injury in patients with degenerative cervical myelopathy (DCM) and the correlation between Japan Orthopaedic Association (JOA) scores and DKI metrics. Methods Fifty-seven patients with DCM and 38 healthy volunteers underwent 3.0 T magnetic resonance (MR) imaging with routine MRI sequences and DKI from echo-planar imaging sequence. Based on the JOA score, DCM patients were divided into four subgroups. DKI metrics of the DCM group and control group were obtained and compared, separately for the white matter (WM) and the gray matter (GM). Results The FA values in WM were significantly lower (P = 0.020) in the DCM group than in the control group. The MK values in GM were lower (P = 0.011) in the DCM group than in the control group. The MD values in WM were significantly higher (P = 0.010) in the DCM group than in the control group. In GM, the JOA score was positively correlated with the MK values (r = 0.768, P < 0.05). In the WM, the JOA score was positively correlated with the FA values (r = 0.612, P < 0.05). Conclusion DKI provides quantitive evaluation to the characters of microstructure of the spinal cord damage in patients with DCM compared to conventional MR. MK values can reflect microstructural abnormalities of gray matter of the cervical spinal cord and provide more information beyond that obtained with routine diffusion metrics. In addition, MK values of GM and FA values of WM may as a be highly sensitive biomarker for the degree of cervical spinal cord damage.
Collapse
Affiliation(s)
- Zhuohang Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Bingyang Bian
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Gang Wang
- Department of Orthopedics, The Third Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Cheukying Tian
- Icahn School of Medicine at Mount Sinai, New York, 10001, USA
| | - Zhenshan Lv
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhiqing Shao
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
12
|
Dauleac C, Frindel C, Mertens P, Jacquesson T, Cotton F. Overcoming challenges of the human spinal cord tractography for routine clinical use: a review. Neuroradiology 2020; 62:1079-1094. [DOI: 10.1007/s00234-020-02442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
|
13
|
Chuhutin A, Hansen B, Wlodarczyk A, Owens T, Shemesh N, Jespersen SN. Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis. Neuroimage 2019; 208:116406. [PMID: 31830588 PMCID: PMC9358435 DOI: 10.1016/j.neuroimage.2019.116406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023] Open
Abstract
Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel
disease biomarkers and in combination with nervous tissue modeling, provides
access to microstructural parameters. Recently, DKI and subsequent estimation of
microstructural model parameters has been used for assessment of tissue changes
in neurodegenerative diseases and associated animal models. In this study, mouse
spinal cords from the experimental autoimmune encephalomyelitis (EAE) model of
multiple sclerosis (MS) were investigated for the first time using DKI in
combination with biophysical modeling to study the relationship between
microstructural metrics and degree of animal dysfunction. Thirteen spinal cords
were extracted from animals with varied grades of disability and scanned in a
high-field MRI scanner along with five control specimen. Diffusion weighted data
were acquired together with high resolution T2*
images. Diffusion data were fit to estimate diffusion and kurtosis tensors and
white matter modeling parameters, which were all used for subsequent statistical
analysis using a linear mixed effects model. T2*
images were used to delineate focal demyelination/inflammation. Our results
reveal a strong relationship between disability and measured microstructural
parameters in normal appearing white matter and gray matter. Relationships
between disability and mean of the kurtosis tensor, radial kurtosis, radial
diffusivity were similar to what has been found in other hypomyelinating MS
models, and in patients. However, the changes in biophysical modeling parameters
and in particular in extra-axonal axial diffusivity were clearly different from
previous studies employing other animal models of MS. In conclusion, our data
suggest that DKI and microstructural modeling can provide a unique contrast
capable of detecting EAE-specific changes correlating with clinical
disability.
Collapse
Affiliation(s)
| | | | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune Nørhøj Jespersen
- CFIN, Aarhus University, Aarhus, Denmark; Department of Physics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Yoshimura Y, Kuroda M, Sugianto I, Khasawneh A, Bamgbose BO, Hamada K, Barham M, Tekiki N, Kurozumi A, Matsushita T, Ohno S, Kanazawa S, Asaumi J. Development of a novel method for visualizing restricted diffusion using subtraction of apparent diffusion coefficient values. Mol Med Rep 2019; 20:2963-2969. [PMID: 31524240 DOI: 10.3892/mmr.2019.10523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/02/2019] [Indexed: 11/06/2022] Open
Abstract
In order to visualize restricted diffusion, the present study developed a novel method called 'apparent diffusion coefficient (ADC) subtraction method (ASM)' and compared it with diffusion kurtosis imaging (DKI). The diffusion-weighted images of physiological saline, in addtion to bio-phatoms of low cell density and the highest cell density were obtained using two sequences with different effective diffusion times. Then, the calculated ADC values were subtracted. The mean values and standard deviations (SD) of the ADC values of physiological saline, low cell density and the highest cell density phantoms were 2.95±0.08x10‑3, 1.90±0.35x10‑3 and 0.79±0.05x10‑3 mm2/sec, respectively. The mean kurtosis values and SD of DKI were 0.04±0.01, 0.44±0.13 and 1.27±0.03, respectively. The ASM and SD values were 0.25±0.20x104, 0.51±0.41x104 and 4.80±4.51x104 (sec/mm2)2, respectively. Using bio‑phantoms, the present study demonstrated that DKI exhibits restricted diffusion in the extracellular space. Similarly, ASM may reflect the extent of restricted diffusion in the extracellular space.
Collapse
Affiliation(s)
- Yuuki Yoshimura
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 7008558, Japan
| | - Masahiro Kuroda
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 7008558, Japan
| | - Irfan Sugianto
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Abdullah Khasawneh
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Babatunde O Bamgbose
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Kentaro Hamada
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 7008558, Japan
| | - Majd Barham
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Nouha Tekiki
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Akira Kurozumi
- Central Division of Radiology, Okayama University Hospital, Okayama 7008558, Japan
| | - Toshi Matsushita
- Central Division of Radiology, Okayama University Hospital, Okayama 7008558, Japan
| | - Seiichiro Ohno
- Central Division of Radiology, Okayama University Hospital, Okayama 7008558, Japan
| | - Susumu Kanazawa
- Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Junichi Asaumi
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| |
Collapse
|
15
|
Welton T, Maller JJ, Lebel RM, Tan ET, Rowe DB, Grieve SM. Diffusion kurtosis and quantitative susceptibility mapping MRI are sensitive to structural abnormalities in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2019; 24:101953. [PMID: 31357149 PMCID: PMC6664242 DOI: 10.1016/j.nicl.2019.101953] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Objective To construct a clinical diagnostic biomarker using state-of-the-art microstructural MRI in the motor cortex of people with amyotrophic lateral sclerosis (ALS). Methods Clinical and MRI data were obtained from 21 ALS patients (aged 54 ± 14 years, 33% female) and 63 age- and gender-matched controls (aged 48 ± 18 years, 43% female). MRI was acquired at 3T and included T1-weighted scan (for volumetrics), arterial spin labelling (for cerebral blood flow), susceptibility-weighted angiography (for iron deposition) and multiband diffusion kurtosis imaging (for tissue microstructure). Group differences in imaging measures in the motor cortex were tested by general linear model and relationships to clinical variables by linear regression. Results The ALS group had mild-to-moderate impairment (disease duration: 1.8 ± 0.8 years; ALS functional rating scale 40.2 ± 6.0; forced vital capacity 83% ± 22%). No age or gender differences were present between groups. We found significant group differences in diffusion kurtosis metrics (apparent, mean, radial and axial kurtosis: p < .01) and iron deposition in the motor cortex (p = .03). Within the ALS group, we found significant relationships between motor cortex volume, apparent diffusion and disease duration (adjusted R2 = 0.27, p = .011); and between the apparent and radial kurtosis metrics and ALS functional rating scale (adjusted R2 = 0.25, p = .033). A composite imaging biomarker comprising kurtosis and iron deposition measures yielded a maximal diagnostic accuracy of 83% (81% sensitivity, 85% specificity) and an area-under-the-curve of 0.86. Conclusion Diffusion kurtosis is sensitive to early changes present in the motor region in ALS. We propose a composite imaging biomarker reflecting tissue microstructural changes in early ALS that may provide clinically valuable diagnostic information. A biomarker based on diffusion kurtosis imaging achieved an accuracy of 83%. Kurtosis-based measures were more abnormal in ALS than tensor-based measures. Motor cortex in the symptomatic hemisphere was smaller and had greater iron concentration. There was a 1 mL volume loss per year in ALS motor cortex.
Collapse
Affiliation(s)
- Thomas Welton
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, University of Sydney, Australia.
| | - Jerome J Maller
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, University of Sydney, Australia; GE Healthcare, Richmond, Victoria, Australia.
| | | | - Ek T Tan
- GE Global Research, Niskayuna, NY, USA.
| | - Dominic B Rowe
- MND Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia; Macquarie University Hospital, Macquarie, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, University of Sydney, Australia; Macquarie University Hospital, Macquarie, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
16
|
Differentiation between malignant and benign musculoskeletal tumors using diffusion kurtosis imaging. Skeletal Radiol 2019; 48:285-292. [PMID: 29740660 DOI: 10.1007/s00256-018-2946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate differences in parameters of diffusion kurtosis imaging (DKI) and minimum apparent diffusion coefficient (ADCmin) between benign and malignant musculoskeletal tumors. MATERIALS AND METHODS In this prospective study, 43 patients were scanned using a DKI protocol on a 3-T MR scanner. Eligibility criteria were: non-fatty, non-cystic soft tissue or osteolytic tumors; > 2 cm; location in the retroperitoneum, pelvis, leg, or neck; and no prior treatment. They were clinically or histologically diagnosed as benign (n = 27) or malignant (n = 16). In the DKI protocol, diffusion-weighted imaging was performed using four b values (0-2000 s/mm2) and 21 diffusion directions. Mean kurtosis (MK) values were calculated on the MR console. A recently developed software application enabling reliable calculation was used for DKI analysis. RESULTS MK showed a strong correction with ADCmin (Spearman's rs = 0.95). Both MK and ADCmin values differed between benign and malignant tumors (p < 0.01). For benign and malignant tumors, the mean MK values (± SD) were 0.49 ± 0.17 and 1.14 ± 0.30, respectively, and ADCmin values were 1.54 ± 0.47 and 0.49 ± 0.17 × 10-3 mm2/s, respectively. At cutoffs of MK = 0.81 and ADCmin = 0.77 × 10-3 mm2/s, the specificity and sensitivity for diagnosis of malignant tumors were 96.3 and 93.8% for MK and 96.3 and 93.8% for ADCmin, respectively. The areas under the curve were 0.97 and 0.99 for MK and ADCmin, respectively (p = 0.31). CONCLUSIONS MK and ADCmin showed high diagnostic accuracy and strong correlation, reflecting the accuracy of MK. However, no clear added value of DKI could be demonstrated in differentiating musculoskeletal tumors.
Collapse
|
17
|
Furuya S, Iwasaki M, Yokohama T, Ohura D, Okuaki T. Highly Accurate Analysis of the Cervical Neural Tract of the Elderly Using ZOOM DTI. Neurospine 2018; 15:169-174. [PMID: 29991247 PMCID: PMC6104736 DOI: 10.14245/ns.1836116.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022] Open
Abstract
Background/Aims To investigate the fractional anisotropy (FA) values of the cervical spinal cord in elderly individuals using zonally magnified oblique multislice (ZOOM) diffusion tensor imaging (DTI).
Methods Fourteen healthy elderly volunteers (group E) and 10 young volunteers (group Y) were enrolled. We assessed the FA, apparent diffusion coefficient (ADC), and λ1–λ3 values using 3-T magnetic resonance imaging. The region of interest was contoured entirely inside the spinal cord, with no gray/white matter distinction, in order to avoid including the cerebrospinal fluid.
Results As lower cervical levels were approached, the FA values gradually decreased, while the ADC values increased. The mean FA values at each cervical level were as follows in groups E and Y: 0.71 and 0.70 at the C2/3 level, 0.66 and 0.66 at the C3/4 level, 0.63 and 0.62 at the C4/5 level, 0.57 and 0.57 at the C5/6 level, and 0.58 and 0.57 at the C6/7 level, respectively. The mean ADC values in groups E and Y were 1.06 and 0.99 at the C2/3 level, 1.05 and 1.06 at the C3/4 level, 1.14 and 1.06 at the C4/5 level, 1.18 and 1.21 at the C5/6 level, and 1.39 and 1.46 at the C6/7 level, respectively. There were no significant differences between the elderly and young participants.
Conclusion In both asymptomatic elderly and young individuals, the FA values gradually decreased and the ADC values increased moving towards lower cervical levels. Age did not affect the FA values, even though mild cord compression was evident due to spondylotic changes. ZOOM DTI has the potential to provide more information than conventional DTI.
Collapse
Affiliation(s)
- Sho Furuya
- Department of Neurosurgery, Otaru General Hospital, Otaru, Japan
| | - Motoyuki Iwasaki
- Department of Neurosurgery, Otaru General Hospital, Otaru, Japan
| | - Takumi Yokohama
- Department of Radiology, Otaru General Hospital, Otaru, Japan
| | - Daisuke Ohura
- Department of Radiology, Otaru General Hospital, Otaru, Japan
| | | |
Collapse
|
18
|
Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018; 182:169-183. [PMID: 29635029 DOI: 10.1016/j.neuroimage.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/02/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
In vivo histology using magnetic resonance imaging (MRI) is a newly emerging research field that aims to non-invasively characterize tissue microstructure. The implications of in vivo histology are many, from discovering novel biomarkers to studying human development, to providing tools for disease diagnosis and monitoring the effects of novel treatments on tissue. This review focuses on quantitative MRI (qMRI) techniques that are used to map spinal cord microstructure. Opening with a rationale for non-invasive imaging of the spinal cord, this article continues with a brief overview of the existing MRI techniques for axon and myelin imaging, followed by the specific challenges and potential solutions for acquiring and processing such data. The final part of this review focuses on histological validation, with suggested tissue preparation, acquisition and processing protocols for large-scale microscopy.
Collapse
Affiliation(s)
- J Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
19
|
Rao A, Soliman H, Kaushal M, Motovylyak O, Vedantam A, Budde MD, Schmit B, Wang M, Kurpad SN. Diffusion Tensor Imaging in a Large Longitudinal Series of Patients With Cervical Spondylotic Myelopathy Correlated With Long-Term Functional Outcome. Neurosurgery 2018. [DOI: 10.1093/neuros/nyx558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Fractional anisotropy (FA) of the high cervical cord correlates with upper limb function in acute cervical cord injury. We investigated the correlation between preoperative FA at the level of maximal compression and functional recovery in a group of patients after decompressive surgery for cervical spondylotic myelopathy (CSM).
OBJECTIVE
To determine the usefulness of FA as a biomarker for severity of CSM and as a prognostic biomarker for improvement after surgery.
METHODS
Patients received diffusion tensor imaging (DTI) scans preoperatively. FA values of the whole cord cross-section at the level of maximal compression and upper cervical cord (C1-2) were calculated. Functional status was measured using the modified Japanese Orthopedic Association (mJOA) scale preoperatively and at follow-up up to 2 yr. Regression analysis between FA and mJOA was performed. DTI at C4-7 was obtained in controls.
RESULTS
Forty-four CSM patients enrolled prior to decompression were compared with 24 controls. FA at the level of maximal compression correlated positively with preoperative mJOA score. Preoperative FA correlated inversely with recovery throughout the postoperative period. This was statistically significant at 12 mo postoperation and nearly so at 6 and 24 mo. Patients with preoperative FA <0.55 had a statistically significant difference in outcome compared to FA >0.55.
CONCLUSION
In the largest longitudinal study of this kind, FA promises a valid biomarker for severity of CSM and postoperative improvement. FA is an objective measure of function and could provide a basis for prognosis. FA is particularly useful if preoperative values are less than 0.55.
Collapse
Affiliation(s)
- Avinash Rao
- University of Wisconsin School of Medi-cine and Public Health, Madison, Wisconsin
| | - Hesham Soliman
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mayank Kaushal
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Olesya Motovylyak
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Aditya Vedantam
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Marjorie Wang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
20
|
Li D, Wang X. Diffusion Kurtosis Imaging and Pathology in Spinal Cord Ischemia/Reperfusion Injury in Rabbits: A Case-Control Study. Med Sci Monit 2017; 23:3996-4003. [PMID: 28820864 PMCID: PMC5572784 DOI: 10.12659/msm.902986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The aim of this study was to evaluate the application of diffusion kurtosis imaging (DKI) in spinal cord ischemia/reperfusion (SCI/R) injury and to explore its association with pathology. Material/Methods Japanese male long-eared rabbits were chosen and divided into 7 groups (8 rabbits in each group): control group (C group), sham-operation control group (S group), and 5 experimental groups (E-2 h group, E-24 h group, E-48 h group, E-7 d group, and E-14 d group). Tarlov scoring and immunohistochemical staining were used to assess hindlimb motor function and observe the expression of glial fiber acidic protein (GFAP), respectively. The correlation between DKI and pathology after SCI/R injury was compared by 3.0TMR scanning DKI. Result Neuroethology in each time point of E groups was significantly different from that in C and S groups (P<0.05). The E-24 h group had the lowest value (P<0.05), and the hindlimb motor function began to recover after 24 h. The expression of GFAP was gradually increased after SCI/R injury, and the maximum value was in the E-7 d group (P<0.05). MK (mean kurtosis) had a linear negative correlation with average optical density (OD) (r=−0.115, P<0.05) and was positively correlated with integral OD (IOD) (r=0.204, P<0.05), in which MD (mean dispersion) was positively correlated with OD and IOD, but without a significant difference (r=0.618, r=251, P>0.05). Conclusions DKI can be used to monitor the changes in SCI/R injury, and fractional anisotropy (FA) can reflect change in white matter structure. The changes in expression of MK and GFAP were related to the myelin sheath injury repair process.
Collapse
Affiliation(s)
- Daowei Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Radiology, The People's Hospital of China Medical University and The People's Hospital of Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
21
|
Panara V, Navarra R, Mattei PA, Piccirilli E, Cotroneo AR, Papinutto N, Henry RG, Uncini A, Caulo M. Spinal cord microstructure integrating phase-sensitive inversion recovery and diffusional kurtosis imaging. Neuroradiology 2017; 59:819-827. [PMID: 28676888 DOI: 10.1007/s00234-017-1864-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this prospective study was to determine the feasibility in terms of repeatability and reproducibility of diffusional kurtosis imaging (DKI) for microstructural assessment of the normal cervical spinal cord (cSC) using a phase-sensitive inversion recovery (PSIR) sequence as the anatomical reference for accurately defining white-matter (WM) and gray-matter (GM) regions of interests (ROIs). METHODS Thirteen young healthy subjects were enrolled to undergo DKI and PSIR sequences in the cSC. The repeatability and reproducibility of kurtosis metrics and fractional anisotropy (FA) were calculated in GM, WM, and cerebral-spinal-fluid (CSF) ROIs drawn by two independent readers on PSIR images of three different levels (C1-C4). The presence of statistically significant differences in DKI metrics for levels, ROIs (GM, WM, and CSF) repeatability, reproducibility, and inter-reader agreement was evaluated. RESULTS Intra-class correlation coefficients between the two readers ranged from good to excellent (0.75 to 0.90). The inferior level consistently had the highest concordance. The lower values of scan-rescan variability for all DKI parameters were found for the inferior level. Statistically significant differences in kurtosis values were not found in the lateral white-matter bundles of the spinal cord. CONCLUSION The integration of DKI and PSIR sequences in a clinical MR acquisition to explore the regional microstructure of the cSC in healthy subjects is feasible, and the results obtainable are reproducible. Further investigation will be required to verify the possibility to translate this method to a clinical setting to study patients with SC involvement especially in the absence of MRI abnormalities on standard sequences.
Collapse
Affiliation(s)
- V Panara
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. "D'Annunzio", Chieti, Italy. .,ITAB Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", Via Luigi Polacchi, 11 66100, Chieti, Italy.
| | - R Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. "D'Annunzio", Chieti, Italy.,ITAB Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", Via Luigi Polacchi, 11 66100, Chieti, Italy
| | - P A Mattei
- ITAB Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", Via Luigi Polacchi, 11 66100, Chieti, Italy.,Department of Medicine and Science of Aging, Ophthalmology Clinic, University "G. d'Annunzio", Chieti, Italy
| | - E Piccirilli
- ITAB Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", Via Luigi Polacchi, 11 66100, Chieti, Italy
| | - A R Cotroneo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. "D'Annunzio", Chieti, Italy
| | - N Papinutto
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - R G Henry
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - A Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. "D'Annunzio", Chieti, Italy
| | - M Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. "D'Annunzio", Chieti, Italy.,ITAB Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", Via Luigi Polacchi, 11 66100, Chieti, Italy
| |
Collapse
|
22
|
Takemura MY, Hori M, Yokoyama K, Hamasaki N, Suzuki M, Kamagata K, Kamiya K, Suzuki Y, Kyogoku S, Masutani Y, Hattori N, Aoki S. Alterations of the optic pathway between unilateral and bilateral optic nerve damage in multiple sclerosis as revealed by the combined use of advanced diffusion kurtosis imaging and visual evoked potentials. Magn Reson Imaging 2017; 39:24-30. [DOI: 10.1016/j.mri.2016.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 01/13/2023]
|
23
|
Li D, Wang X. Application value of diffusional kurtosis imaging (DKI) in evaluating microstructural changes in the spinal cord of patients with early cervical spondylotic myelopathy. Clin Neurol Neurosurg 2017; 156:71-76. [DOI: 10.1016/j.clineuro.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 03/17/2017] [Indexed: 11/29/2022]
|
24
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Guo YL, Li SJ, Zhang ZP, Shen ZW, Zhang GS, Yan G, Wang YT, Rao HB, Zheng WB, Wu RH. Parameters of diffusional kurtosis imaging for the diagnosis of acute cerebral infarction in different brain regions. Exp Ther Med 2016; 12:933-938. [PMID: 27446298 PMCID: PMC4950828 DOI: 10.3892/etm.2016.3390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Diffusional kurtosis imaging (DKI) is a new type diffusion-weighted sequence which measures the non-Gaussianity of water diffusion. The present study aimed to investigate whether the parameters of DKI could distinguish between differences in water molecule diffusion in various brain regions under the conditions of acute infarction and to identify the optimal DKI parameter for locating ischemic lesions in each brain region. A total of 28 patients with acute ischemic stroke in different brain regions were recruited for the present study. The relative values of DKI parameters were selected as major assessment indices, and the homogeneity of background image and contrast of adjacent structures were used as minor assessment indices. According to the brain region involved in three DKI parametric maps, including mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr), 112 groups of regions of interest were outlined in the following regions: Corpus callosum (n=17); corona radiata (n=26); thalamus (n=21); subcortical white matter (n=24); and cerebral cortex (n=24). For ischemic lesions in the corpus callosum and corona radiata, significant increases in relative Ka were detected, as compared with the other parameters (P<0.05). For ischemic lesions in the thalamus, subcortical white matter and cerebral cortices, an increase in the three parameters was detected, however this difference was not significant. Minor assessment indices demonstrated that Ka lacked tissue contrast and the background of Kr was heterogeneous; thus, MK was the superior assessment parameter for ischemic lesions in these regions. In conclusion, Ka is better suited for the diagnosis of acute ischemic lesions in highly anisotropic brain regions, such as the corpus callosum and corona radiate. MK may be appropriate for the lesions in low anisotropic or isotropic brain regions, such as the thalamus, subcortical white matter and cerebral cortices.
Collapse
Affiliation(s)
- Yue-Lin Guo
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Su-Juan Li
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | | | - Zhi-Wei Shen
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Gui-Shan Zhang
- College of Engineering, Shantou University, Shantou, Guangdong 515000, P.R. China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Yan-Ting Wang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Hai-Bing Rao
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Wen-Bin Zheng
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Ren-Hua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Professor Ren-Hua Wu, Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, 69 Dong Xia Bei Road, Shantou, Guangdong 515000, P.R. China, E-mail:
| |
Collapse
|
26
|
Conklin CJ, Middleton DM, Alizadeh M, Finsterbusch J, Raunig DL, Faro SH, Shah P, Krisa L, Sinko R, Delalic JZ, Mulcahey MJ, Mohamed FB. Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord. NEUROIMAGE-CLINICAL 2016; 11:61-67. [PMID: 26909329 PMCID: PMC4735660 DOI: 10.1016/j.nicl.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/24/2015] [Accepted: 01/09/2016] [Indexed: 11/24/2022]
Abstract
Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms. Diffusion Kurtosis Imaging (DKI) was performed on pediatric subjects using a tilted 2D RF reduced field of view sequence. Results show statistically significant differences in FA, MK, Krad, and Drad between healthy subjects and patients with SCI. DKI provides additional structural information that when paired with DTI metrics could be used as a novel imaging biomarker.
Collapse
Affiliation(s)
- Chris J Conklin
- Electrical Engineering, Temple University, Philadelphia, PA, United States; Radiology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Devon M Middleton
- Radiology, Temple University, Philadelphia, PA, United States; Bioengineering, Temple University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Radiology, Temple University, Philadelphia, PA, United States; Bioengineering, Temple University, Philadelphia, PA, United States
| | - Jürgen Finsterbusch
- Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Scott H Faro
- Radiology, Temple University, Philadelphia, PA, United States; Bioengineering, Temple University, Philadelphia, PA, United States
| | - Pallav Shah
- Radiology, Temple University, Philadelphia, PA, United States
| | - Laura Krisa
- Physical Therapy, Thomas Jefferson University, Philadelphia, PA, United States; Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rebecca Sinko
- Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joan Z Delalic
- Electrical Engineering, Temple University, Philadelphia, PA, United States
| | - M J Mulcahey
- Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Bioengineering, Temple University, Philadelphia, PA, United States; Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Diffusion-tensor-based method for robust and practical estimation of axial and radial diffusional kurtosis. Eur Radiol 2015; 26:2559-66. [PMID: 26443602 PMCID: PMC4927605 DOI: 10.1007/s00330-015-4038-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/23/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022]
Abstract
Objectives A new method that can estimate diffusional kurtosis image (DKI), estimated DKI (eDKI), parallel and perpendicular to neuronal fibres from greatly limited image data was designed to enable quick and practical assessment of DKI in clinics. The purpose of this study was to discuss the potential of this method for clinical use. Methods Fourteen healthy volunteers were examined with a 3-Tesla MRI. The diffusion-weighting parameters included five different b-values (0, 500, 1,500, 2,000 and 2,500 s/mm2) with 64 different encoding directions for each of the b-values. K values were calculated by both conventional DKI (convDKI) and eDKI from these complete data, and also from the data that the encoding directions were abstracted to 32, 21, 15, 12 and 6. Error-pixel ratio and the root mean square error (RMSE) compared with the standard were compared between the methods (Wilcoxon signed-rank test: P < 0.05 was considered significant). Results Error-pixel ratio was smaller in eDKI than in convDKI and the difference was significant. In addition, RMSE was significantly smaller in eDKI than in convDKI, or otherwise the differences were not significant when they were obtained from the same data set. Conclusion eDKI might be useful for assessing DKI in clinical settings. Key Points • A method to practically estimate axial/radial DKI from limited data was developed. • The high robustness of the proposed method can greatly improve map images. • The accuracy of the proposed method was high. • Axial/radial K maps can be calculated from limited diffusion-encoding directions. • The proposed method might be useful for assessing DKI in clinical settings.
Collapse
|
28
|
Yu X, Liu M, Meng L, Xiang L. Classifying cervical spondylosis based on X-ray quantitative diagnosis. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Guan X, Fan G, Wu X, Gu G, Gu X, Zhang H, He S. Diffusion tensor imaging studies of cervical spondylotic myelopathy: a systemic review and meta-analysis. PLoS One 2015; 10:e0117707. [PMID: 25671624 PMCID: PMC4363894 DOI: 10.1371/journal.pone.0117707] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
A meta-analysis was conducted to assess alterations in measures of diffusion tensor imaging (DTI) in the patients of cervical spondylotic myelopathy (CSM), exploring the potential role of DTI as a diagnosis biomarker. A systematic search of all related studies written in English was conducted using PubMed, Web of Science, EMBASE, CINAHL, and Cochrane comparing CSM patients with healthy controls. Key details for each study regarding participants, imaging techniques, and results were extracted. DTI measurements, such as fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusivity (MD) were pooled to calculate the effect size (ES) by fixed or random effects meta-analysis. 14 studies involving 479 CSM patients and 278 controls were identified. Meta-analysis of the most compressed levels (MCL) of CSM patients demonstrated that FA was significantly reduced (ES -1.52, 95% CI -1.87 to -1.16, P < 0.001) and ADC was significantly increased (ES 1.09, 95% CI 0.89 to 1.28, P < 0.001). In addition, a notable ES was found for lowered FA at C2-C3 for CSM vs. controls (ES -0.83, 95% CI -1.09 to -0.570, P < 0.001). Meta-regression analysis revealed that male ratio of CSM patients had a significant effect on reduction of FA at MCL (P = 0.03). The meta-analysis of DTI studies of CSM patients clearly demonstrated a significant FA reduction and ADC increase compared with healthy subjects. This result supports the use of DTI parameters in differentiating CSM patients from health subjects. Future researches are required to investigate the diagnosis performance of DTI in cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Xiaofei Guan
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Guoxin Fan
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Xinbo Wu
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Guangfei Gu
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Xin Gu
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Hailong Zhang
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People’s
Hospital, Tongji University School of Medicine, Shanghai,
China
| |
Collapse
|
30
|
Zhang C, Das SK, Yang DJ, Yang HF. Application of magnetic resonance imaging in cervical spondylotic myelopathy. World J Radiol 2014; 6:826-832. [PMID: 25349665 PMCID: PMC4209427 DOI: 10.4329/wjr.v6.i10.826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/03/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Cervical spondylotic myelopathy (CSM) is the most common cause of spinal cord dysfunction and is caused by static or dynamic repeated compression of the spinal cord resulting from degenerative arthritis of the cervical spine and some biological injuries to the cervical spine. The T2 signal change on conventional magnetic resonance imaging (MRI) is most commonly associated with neurological deficits. Diffusion tensor imaging and MR spectroscopy show altered microstructure and biochemistry that reflect patient-specific pathogenesis and can be used to predict neurological outcome and response to intervention. Functional MRI can help to assess the neurological functional recovery after decompression surgery for CSM.
Collapse
|