1
|
Cha MJ, Hong YJ, Park CH, Cha YJ, Kim TH, Kim C, Park CH. Utilities and Limitations of Cardiac Magnetic Resonance Imaging in Dilated Cardiomyopathy. Korean J Radiol 2023; 24:1200-1220. [PMID: 38016680 PMCID: PMC10700999 DOI: 10.3348/kjr.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 11/30/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common types of non-ischemic cardiomyopathy. DCM is characterized by left ventricle (LV) dilatation and systolic dysfunction without coronary artery disease or abnormal loading conditions. DCM is not a single disease entity and has a complex historical background of revisions and updates to its definition because of its diverse etiology and clinical manifestations. In cases of LV dilatation and dysfunction, conditions with phenotypic overlap should be excluded before establishing a DCM diagnosis. The differential diagnoses of DCM include ischemic cardiomyopathy, valvular heart disease, burned-out hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, and non-compaction. Cardiac magnetic resonance (CMR) imaging is helpful for evaluating DCM because it provides precise measurements of cardiac size, function, mass, and tissue characterization. Comprehensive analyses using various sequences, including cine imaging, late gadolinium enhancement imaging, and T1 and T2 mapping, may help establish differential diagnoses, etiological work-up, disease stratification, prognostic determination, and follow-up procedures in patients with DCM phenotypes. This article aimed to review the utilities and limitations of CMR in the diagnosis and assessment of DCM.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Ho Park
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Ansan, Republic of Korea.
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Clinical Utility of Strain Imaging in Assessment of Myocardial Fibrosis. J Clin Med 2023; 12:jcm12030743. [PMID: 36769393 PMCID: PMC9917743 DOI: 10.3390/jcm12030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Myocardial fibrosis (MF) is a non-reversible process that occurs following acute or chronic myocardial damage. MF worsens myocardial deformation, remodels the heart and raises myocardial stiffness, and is a crucial pathological manifestation in patients with end-stage cardiovascular diseases and closely related to cardiac adverse events. Therefore, early quantitative analysis of MF plays an important role in risk stratification, clinical decision, and improvement in prognosis. With the advent and development of strain imaging modalities in recent years, MF may be detected early in cardiovascular diseases. This review summarizes the clinical usefulness of strain imaging techniques in the non-invasive assessment of MF.
Collapse
|
3
|
Golukhova EZ, Alexandrova SA, Bulaeva NI, Mrikaev DV, Gromova OI, Berdibekov BS. Prognostic value of myocardial strain by magnetic resonance imaging in nonischemic dilated cardiomyopathy: a systematic review and meta-analysis. KARDIOLOGIIA 2022; 62:35-41. [DOI: 10.18087/cardio.2022.10.n2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Aim This study was aimed at performing a systematic review and meta-analysis to investigate the prognostic role of left ventricular (LV) myocardial strain variables as determined by magnetic-resonance imaging in non-ischemic dilated cardiomyopathy.Material and methods A search was performed in PubMed (MEDLINE), Google Scholar, and EMBASE databases for studies on the prognostic role of LV myocardial strain based on MR feature-tracking in non-ischemic dilated cardiomyopathy. Uncorrected odds ratio (OR) values reported by the studies where similar evaluation criteria of myocardial strain were available, were combined for a meta-analysis.Results Nine studies were selected from 351 publications for this systematic review and meta-analysis. The analysis included a totality of 2139 patients (mean age, 52.3 years; mean follow-up duration, 42.5 months). The meta-analysis showed that the worsening of the LV global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) was associated with increased risk of major adverse cardiovascular events (MACE): OR, 1.13 per each % of GLS; 95 % CI: 1.050–1.225; p=0.001; OR, 1.16 per each % of GCS; 95 % CI: 1.107–1.213; p<0.0001; OR, 0.95 per each % of GRS; 95 % CI: 0.92–0.97; p<0.0001.Conclusion The LV GLS, GCS, and GRS variables by MR feature-tracking data are powerful predictors for the development of MACE. Evaluation of myocardial strain can be used as an effective instrument for risk stratification in patients with non-ischemic dilated cardiomyopathy.
Collapse
Affiliation(s)
| | | | - N. I. Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery
| | - D. V. Mrikaev
- Bakulev Scientific Center for Cardiovascular Surgery
| | - O. I. Gromova
- Bakulev Scientific Center for Cardiovascular Surgery
| | | |
Collapse
|
4
|
Evertz R, Schulz A, Lange T, Backhaus SJ, Vollmann D, Kowallick JT, von Haehling S, Hasenfuß G, Schuster A. Cardiovascular magnetic resonance imaging patterns of acute COVID-19 mRNA vaccine-associated myocarditis in young male patients: A first single-center experience. Front Cardiovasc Med 2022; 9:965512. [PMID: 36082124 PMCID: PMC9445185 DOI: 10.3389/fcvm.2022.965512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
Background The risk of myocarditis after mRNA vaccination against COVID-19 has emerged recently. Current evidence suggests that young male patients are predominantly affected. In the majority of the cases, only mild symptoms were observed. However, little is known about cardiac magnetic resonance (CMR) imaging patterns in mRNA-related myocarditis and their differences when compared to classical viral myocarditis in the acute phase of inflammation. Methods and results In total, 10 mRNA vaccination-associated patients with myocarditis were retrospectively enrolled in this study and compared to 10 patients suffering from viral myocarditis, who were matched for age, sex, comorbidities, and laboratory markers. All patients (n = 20) were hospitalized and underwent a standardized clinical examination, as well as an echocardiography and a CMR. Both, clinical and imaging findings and, in particular, functional and volumetric CMR assessments, as well as detailed tissue characterization using late gadolinium enhancement and T1 + T2-weighted sequences, were compared between both groups. The median age of the overall cohort was 26 years (group 1: 25.5; group 2: 27.5; p = 0.57). All patients described chest pain as the leading reason for their initial presentation. CMR volumetric and functional parameters did not differ significantly between both groups. In all cases, the lateral left ventricular wall showed late gadolinium enhancement without significant differences in terms of the localization or in-depth tissue characterization (late gadolinium enhancement [LGE] enlargement: group 1: 5.4%; group 2: 6.5%; p = 0.14; T2 global/maximum value: group 1: 38.9/52 ms; group 2: 37.8/54.5 ms; p = 0.79 and p = 0.80). Conclusion This study yielded the first evidence that COVID-19 mRNA vaccine-associated myocarditis does not show specific CMR patterns during the very acute stage in the most affected patient group of young male patients. The observed imaging markers were closely related to regular viral myocarditis in our cohort. Additionally, we could not find any markers implying adverse outcomes in this relatively little number of patients; however, this has to be confirmed by future studies that will include larger sample sizes.
Collapse
Affiliation(s)
- Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Dirk Vollmann
- Herz- and Gefäßzentrum Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| |
Collapse
|
5
|
Gröschel J, Bhoyroo Y, Blaszczyk E, Trauzeddel RF, Viezzer D, Saad H, Fenski M, Schulz-Menger J. Different Impacts on the Heart After COVID-19 Infection and Vaccination: Insights From Cardiovascular Magnetic Resonance. Front Cardiovasc Med 2022; 9:916922. [PMID: 35911510 PMCID: PMC9329612 DOI: 10.3389/fcvm.2022.916922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Myocarditis-like findings after COVID-19 (coronavirus disease 2019) infection and vaccination were reported by applying cardiovascular magnetic resonance (CMR). These results are very heterogenous and dependent on several factors such as hospital admission or outpatient treatment, timing of CMR, and symptomatic load. This retrospective study aimed to identify differences in myocardial damage in patients with persistent symptoms both after COVID-19 infection and vaccine by applying CMR. Materials and Methods This study entails a retrospective analysis of consecutive patients referred for CMR between August 2020 and November 2021 with persistent symptoms after COVID-19 infection or vaccination. Patients were compared to healthy controls (HC). All patients underwent a CMR examination in a 1.5-T scanner with a scan protocol including: cine imaging for biventricular function and strain assessment using feature tracking, T2 mapping for the quantification of edema, and T1 mapping for diffuse fibrosis and late gadolinium enhancement (LGE) for the detection and quantification of focal fibrosis. Patients were divided into a subacute COVID-19 (sCov) group with symptoms lasting < 12 weeks, post-COVID-19 (pCov) group with symptoms > 12 weeks, and patients after COVID-19 vaccination (CovVac). Results A total of 162 patients were recruited of whom 141 were included for analysis. The median age in years (interquartile range (IQR)) of the entire cohort was 45 (37–56) which included 83 women and 58 men. Subgroups were as follows (total patients per subgroup, median age in years (IQR), main gender): 34 sCov, 43 (37–52), 19 women; 63 pCov, 52 (39–58), 43 women; 44 CovVac, 43 (32–56), 23 men; 44 HC (41 (28–52), 24 women). The biventricular function was preserved and revealed no differences between the groups. No active inflammation was detected by T2 mapping. Global T1 values were higher in pCov in comparison with HC (median (IQR) in ms: pCov 1002ms (981–1023) vs. HC 987ms (963–1009; p = 0.005) with other parings revealing no differences. In 49/141 (34.6%) of patients, focal fibrosis was detectable with the majority having a non-ischemic pattern (43/141; 30.4%; patients) with the subgroups after infection having more often a subepicardial pattern compared with CovVac (total (% of group): sCov: 7/34(21%); pCov 13/63(21%); CovVac 2/44(5%); p = 0.04). Conclusion Patients after COVID-19 infection showed more focal fibrosis in comparison with patients after COVID-19 vaccination without alterations in the biventricular function.
Collapse
Affiliation(s)
- Jan Gröschel
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Yashraj Bhoyroo
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Edyta Blaszczyk
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ralf Felix Trauzeddel
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Darian Viezzer
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hadil Saad
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Maximilian Fenski
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- *Correspondence: Jeanette Schulz-Menger,
| |
Collapse
|
6
|
Mirmojarabian SA, Lammentausta E, Liukkonen E, Ahvenjärvi L, Junttila J, Nieminen MT, Liimatainen T. Myocardium Assessment by Relaxation along Fictitious Field, Extracellular Volume, Feature Tracking, and Myocardial Strain in Hypertensive Patients with Left Ventricular Hypertrophy. Int J Biomed Imaging 2022; 2022:9198691. [PMID: 35782296 PMCID: PMC9246602 DOI: 10.1155/2022/9198691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous research has shown impaired global longitudinal strain (GLS) and slightly elevated extracellular volume fraction (ECV) in hypertensive patients with left ventricular hypertrophy (HTN LVH). Up to now, only little attention has been paid to interactions between macromolecules and free water in hypertrophied myocardium. Purpose To evaluate the feasibility of relaxation along a fictitious field with rank 2 (RAFF2) in HTN LVH patients. Study Type. Single institutional case control. Subjects 9 HTN LVH (age, 69 ± 10 years) and 11 control subjects (age, 54 ± 12 years). Field Strength/Sequence. Relaxation time mapping (T 1, T 1ρ , and T RAFF2 with 11.8 μT maximum radio frequency field amplitude) was performed at 1.5 T using a Siemens Aera (Erlangen, Germany) scanner equipped with an 18-channel body array coil. Assessment. ECV was calculated using pre- and postcontrast T 1, and global strains parameters were assessed by Segment CMR (Medviso AB Co, Sweden). The parametric maps of T 1ρ and T RAFF2 were computed using a monoexponential model, while the Bloch-McConnell equations were solved numerically to model effect of the chemical exchange during radio frequency pulses. Statistical Tests. Parametric maps were averaged over myocardium for each subject to be used in statistical analysis. Kolmogorov-Smirnov was used as the normality test followed by Student's t-test and Pearson's correlation to determine the difference between the HTN LVH patients and controls along with Hedges' g effect size and the association between variables, respectively. Results T RAFF2 decreased statistically (83 ± 2 ms vs 88 ± 6 ms, P < 0.031), and global longitudinal strain was impaired (GLS, -14 ± 3 vs - 18 ± 2, P < 0.002) in HTN LVH patients compared to the controls, respectively. Also, significant negative correlation was found between T RAFF2 and GLS (r = -0.53, P < 0.05). Data Conclusion. Our results suggest that T RAFF2 decrease in HTN LVH patients may be explained by gradual collagen accumulation which can be reflected in GLS changes. Most likely, it increases the water proton interactions and consequently decreases T RAFF2 before myocardial scarring.
Collapse
Affiliation(s)
| | | | - Esa Liukkonen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Lauri Ahvenjärvi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics, And Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics, And Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
7
|
Song Y, Bi X, Chen L, Yang K, Chen X, Dong Z, Wang J, Kong X, Zhao K, Wang H, Duru F, Lu M, Ma L, Qiao S, Zhao S. Reduced myocardial septal function assessed by cardiac magnetic resonance feature tracking in patients with hypertrophic obstructive cardiomyopathy: associated with histological myocardial fibrosis and ventricular arrhythmias. Eur Heart J Cardiovasc Imaging 2022; 23:1006-1015. [PMID: 35167663 DOI: 10.1093/ehjci/jeac032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
AIMS Echocardiographic studies suggest that strain is related to myocardial fibrosis (MF) and ventricular arrhythmias (VA) in hypertrophic cardiomyopathy (HCM) patients. Cardiac magnetic resonance feature tracking (CMR-FT) also allows strain analysis, but little is known whether it provides incremental value to late gadolinium enhancement imaging (LGE). This study aimed to explore the relationship between CMR-FT-derived strain parameters and histopathology MF and VA and its incremental value to LGE in obstructive HCM (HOCM) patients undergoing septal myectomy. METHODS AND RESULTS One hundred and twenty-three symptomatic HOCM patients underwent CMR examination, followed by septal myectomy. The abnormally increased histological MF was defined as higher than the mean + 2 standard deviation (SD) of nine control autopsy subjects who had no history of cardiovascular disease. Septal strain parameters and septal LGE were evaluated at the site of surgical myectomy. Among HOCM patients without LGE, septal circumferential (P = 0.003), longitudinal (P = 0.001), and radial (P = 0.02) strains were significantly impaired in patients with increased histological MF than those without. Histological MF was significantly associated with septal circumferential strain (r = 0.32, P < 0.001), septal longitudinal strain (r = 0.42, P < 0.001), and septal radial strain (r = -0.27, P = 0.003). On multivariate analysis, septal longitudinal strain was independently associated with histological MF [β, 0.19 (0.05-0.34); P = 0.01], and VA [odds ratio, 1.10 (1.01-1.19); P = 0.02]. Moreover, septal longitudinal strain was incremental to septal %LGE in detecting increased MF (P = 0.001) and VA (P = 0.048). CONCLUSIONS Septal longitudinal strain at CMR is independently related to histological MF and occurrence of VA in HOCM patients. Moreover, it provides incremental value over LGE in detecting increased MF and VA.
Collapse
Affiliation(s)
- Yanyan Song
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Xuanye Bi
- Department of Cardiovascular Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Liang Chen
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Xiuyu Chen
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Zhixiang Dong
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Jiaxin Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Xiangyong Kong
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1 Swan Lake Road, Hefei 230001, Anhui, China
| | - Kankan Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
| | - Hongyue Wang
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Likun Ma
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1 Swan Lake Road, Hefei 230001, Anhui, China
| | - Shubin Qiao
- Department of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China
| |
Collapse
|
8
|
Zhou H, An DA, Ni Z, Xu J, Fang W, Lu R, Ying L, Huang J, Yao Q, Li D, Chen B, Shen J, Jin H, Wei Y, Hu J, Fahmy LM, Wesemann L, Qi S, Wu LM, Mou S. Texture Analysis of Native T1 Images as a Novel Method for Noninvasive Assessment of Uremic Cardiomyopathy. J Magn Reson Imaging 2021; 54:290-300. [PMID: 33604934 DOI: 10.1002/jmri.27529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Noncontrast cardiac T1 times are increased in dialysis patients which might indicate fibrotic alterations in uremic cardiomyopathy. PURPOSE To explore the application of the texture analysis (TA) of T1 images in the assessment of myocardial alterations in dialysis patients. STUDY TYPE Case-control study. POPULATION A total of 117 subjects, including 22 on hemodialysis, 44 on peritoneal dialysis, and 51 healthy controls. FIELD STRENGTH A 3 T, steady-state free precession (SSFP) sequence, modified Look-Locker imaging (MOLLI). ASSESSMENT Two independent, blinded researchers manually delineated endocardial and epicardial borders of the left ventricle (LV) on midventricular T1 maps for TA. STATISTICAL TESTS Texture feature selection was performed, incorporating reproducibility verification, machine learning, and collinearity analysis. Multivariate linear regressions were performed to examine the independent associations between the selected texture features and left ventricular function in dialysis patients. Texture features' performance in discrimination was evaluated by sensitivity and specificity. Reproducibility was estimated by the intraclass correlation coefficient (ICC). RESULTS Dialysis patients had greater T1 values than normal (P < 0.05). Five texture features were filtered out through feature selection, and four showed a statistically significant difference between dialysis patients and healthy controls. Among the four features, vertical run-length nonuniformity (VRLN) had the most remarkable difference among the control and dialysis groups (144 ± 40 vs. 257 ± 74, P < 0.05), which overlap was much smaller than Global T1 times (1268 ± 38 vs. 1308 ± 46 msec, P < 0.05). The VRLN values were notably elevated (cutoff = 170) in dialysis patients, with a specificity of 97% and a sensitivity of 88%, compared with T1 times (specificity = 76%, sensitivity = 60%). In dialysis patients, VRLN was significantly and independently associated with left ventricular ejection fraction (P < 0.05), global longitudinal strain (P < 0.05), radial strain (P < 0.05), and circumferential strain (P < 0.05); however, T1 was not. DATA CONCLUSION The texture features obtained by TA of T1 images and VRLN may be a better parameter for assessing myocardial alterations than T1 times. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhua Lu
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Ying
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Huang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuying Yao
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dawei Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binghua Chen
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiao Shen
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijiao Jin
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehan Wei
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Lara M Fahmy
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Luke Wesemann
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Shouliang Qi
- Sino-Dutch Biomedical and Information Engineering School of Northeastern University, Shenyang, Liaoning, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|