1
|
Yang Z, Arabinda M, Wang F, Chen LM, Gore JC. Layer-specific BOLD effects in gradient and spin-echo acquisitions in somatosensory cortex. Magn Reson Med 2025; 93:1314-1328. [PMID: 39370926 PMCID: PMC11680728 DOI: 10.1002/mrm.30326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Previous studies have shown varied BOLD signals with gradient echo (GE) across cortical depth. To interpret these variations, and understand the effects of vascular geometry and size, the magnitudes and layer distributions of GE and spin-echo (SE) BOLD functional MRI signals were compared in the somatosensory cortex of squirrel monkeys during tactile stimulation and in a resting state at high spatial resolution and high field. METHODS A block-design stimulation was used to identify tactile-evoked activation signals in somatosensory Areas 3b and 1. Layer-specific connectivities were calculated using resting-state data. Signal power spectra were compared by depth and pulse sequence. The measured ratios of transverse relaxation rate changes were compared with Anderson and Weiss's model. RESULTS SE signals showed a 26% lower percentage signal change during tactile stimulation compared with GE, along with a slower time course. SE signals remained consistent but weaker in lower layers, whereas GE signals decreased with cortical depth. This pattern extended to resting-state power spectra. Resting-state functional connectivity indicated larger connectivity between the top layers of Area 3b and Area 1 for GE, with minimal changes for SE. Comparisons with theory suggest vessel diameters ranging from 19.4 to 9 microns are responsible for BOLD effects across cortical layers at 9.4 T. CONCLUSION These results provide further evidence that at high field, SE BOLD signals are relatively free of contributions from sources other than microvascular changes in response to neural activity, whereas GE signals, even in the superficial layers, are not dominated by very large vessels.
Collapse
Affiliation(s)
- Zhangyan Yang
- Institute of Imaging ScienceVanderbilt University Medical Center
NashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Mishra Arabinda
- Institute of Imaging ScienceVanderbilt University Medical Center
NashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Feng Wang
- Institute of Imaging ScienceVanderbilt University Medical Center
NashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Li Min Chen
- Institute of Imaging ScienceVanderbilt University Medical Center
NashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - John C. Gore
- Institute of Imaging ScienceVanderbilt University Medical Center
NashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
2
|
Qu S, Shi S, Quan Z, Gao Y, Wang M, Wang Y, Pan G, Lai HY, Roe AW, Zhang X. Design and application of a multimodality-compatible 1Tx/6Rx RF coil for monkey brain MRI at 7T. Neuroimage 2023; 276:120185. [PMID: 37244320 DOI: 10.1016/j.neuroimage.2023.120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
OBJECTIVE Blood-oxygen-level-dependent functional MRI allows to investigte neural activities and connectivity. While the non-human primate plays an essential role in neuroscience research, multimodal methods combining functional MRI with other neuroimaging and neuromodulation enable us to understand the brain network at multiple scales. APPROACH In this study, a tight-fitting helmet-shape receive array with a single transmit loop for anesthetized macaque brain MRI at 7T was fabricated with four openings constructed in the coil housing to accommodate multimodal devices, and the coil performance was quantitatively evaluated and compared to a commercial knee coil. In addition, experiments over three macaques with infrared neural stimulation (INS), focused ultrasound stimulation (FUS), and transcranial direct current stimulation (tDCS) were conducted. MAIN RESULTS The RF coil showed higher transmit efficiency, comparable homogeneity, improved SNR and enlarged signal coverage over the macaque brain. Infrared neural stimulation was applied to the amygdala in deep brain region, and activations in stimulation sites and connected sites were detected, with the connectivity consistent with anatomical information. Focused ultrasound stimulation was applied to the left visual cortex, and activations were acquired along the ultrasound traveling path, with all time course curves consistent with pre-designed paradigms. The existence of transcranial direct current stimulation electrodes brought no interference to the RF system, as evidenced through high-resolution MPRAGE structure images. SIGNIFICANCE This pilot study reveals the feasibility for brain investigation at multiple spatiotemporal scales, which may advance our understanding in dynamic brain networks.
Collapse
Affiliation(s)
- Shuxian Qu
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Sunhang Shi
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Yang Gao
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Gang Pan
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
| | - Hsin-Yi Lai
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anna Wang Roe
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Yang Z, Lu M, Drake G, Wang F, Yang PF, Chen LM, Gore JC, Yan X. RF shielding designs for birdcage coils for preclinical MRI at 9.4 T. Magn Reson Imaging 2022; 94:1-6. [PMID: 36075493 DOI: 10.1016/j.mri.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
Birdcage coils are widely used in preclinical MRI as they perform well, allow for quadrature drive, and can provide a homogeneous transmit field. Unlike in larger bore scanners, an RF shield is essential to avoid strong cross-talk with gradient coils that are in close proximity. However, gradient switching induces eddy currents that heat the shield and coil and impair the temporal signal-to-noise ratio (tSNR). The motivation of this study is to investigate the performance of different designs of RF shields on a birdcage coil used for high resolution functional MRI of small primates at 9.4 T. We found the choice of materials for RF shields significantly affected ghosting and tSNR in fMRI scans. Both ultrathin foils and a slotted pattern reduce eddy currents and improve imaging quality. Our results also demonstrate that a 9-um-thick copper foil is sufficiently thin to reduce the eddy current effects for high-resolution fMRI scans and there is no need for high-cost 4-um-thick foil. For slotted shields, our results demonstrate that the number of slots should be carefully considered, and an excessive number of slots can lead to a lower SNR and tSNR. We believe the results from this study can be used as a reference to design future RF coil shields selection for preclinical scanners.
Collapse
Affiliation(s)
- Zhangyan Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - Gary Drake
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Seo JH, Chung JY. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T. SENSORS 2022; 22:s22041512. [PMID: 35214409 PMCID: PMC8875900 DOI: 10.3390/s22041512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) systems must undergo quantitative evaluation through daily and periodic performance assessments. In general, the reference or standard radiofrequency (RF) coils for these performance assessments of 1.5 to 7.0 T MRI systems have been low-pass-type birdcage (LP-BC) RF coils. However, LP-BC RF coils are inappropriate for use as reference RF coils because of their relatively lower magnetic field (B1-field) sensitivity than other types of BC RF coils, especially in ultrahigh-field (UHF) MRI systems above 3.0 T. Herein, we propose a hybrid-type BC (Hybrid-BC) RF coil as a reference RF coil with improved B1-field sensitivity in UHF MRI system and applied it to an 11.7 T MRI system. An electromagnetic field (EM-field) analysis on the Hybrid-BC RF coil was performed to provide the proper dimensions for its use as a reference RF coil. Commercial finite difference time-domain program was used in EM-field simulation, and home-made analysis programs were used in analysis. The optimal specifications of the proposed Hybrid-BC RF coils for them to qualify as reference RF coils are proposed based on their B1+-field sensitivity under unnormalized conditions, as well as by considering their B1+-field uniformity and RF safety under normalized conditions.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea;
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-822-5361; Fax: +82-32-822-8251
| |
Collapse
|