1
|
Ma Y, Tang Q, Cheng X, Athertya JS, Coughlin D, Chang EY, Johnson CE, Cui J, Gu Z, Du J. UTE MRI for assessing demyelination in an mTBI mouse model: An open-field low-intensity blast study. Neuroimage 2025; 310:121103. [PMID: 40024556 DOI: 10.1016/j.neuroimage.2025.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of long-term disability. Following mTBI, secondary chemical cascades and neuroinflammation can result in myelin damage, significantly impairing cognitive function. This study aims to assess demyelination in mice with mTBI induced by open-field low-intensity blast (LIB) using a novel three-dimensional short repetition time adiabatic inversion recovery UTE (3D STAIR-UTE) magnetic resonance imaging (MRI) sequence. Thirty male C57BL/6 mice, with 15 experiencing mTBI and 15 serving as sham controls, were included in this study. Behavioral tests were performed starting at 5 days post-injury to assess motor activity and anxiety-like responses followed by STAIR-UTE imaging using a pre-clinical 3T MRI scanner. Additionally, a proton density-weighted UTE sequence was scanned alongside the STAIR-UTE for quantification of myelin proton fraction (MPF). Luxol fast blue (LFB) staining was performed to evaluate myelin changes between the mTBI group and the control group. The behavioral tests indicated decreased motor activity in the center zone and increased anxiety-like response in the mTBI mice compared to sham controls. The STAIR-UTE sequence revealed significantly lower MPFs in the corpus callosum of mTBI mice (8.4 ± 0.4 % vs. 8.7 ± 0.4 %; P = 0.003), consistent with the myelin reduction observed in the LFB staining (0.77 ± 0.22 vs. 1.09 ± 0.15; P = 0.004). Our findings demonstrate that the STAIR-UTE sequence facilitates quantitative myelin imaging at 3T MRI, enabling the detection of demyelination in the white matter of the mouse brain associated with alterations in motor and anxiety domains post-LIB exposure.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California San Diego, CA, USA.
| | - Qingbo Tang
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA
| | - Xin Cheng
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California San Diego, CA, USA
| | - David Coughlin
- Department of Neurosciences, University of California San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA
| | - Catherine E Johnson
- Department of Explosive Engineering, Missouri University of Science and Technology, MO, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri, MO, USA; Research Division, Harry S Truman Memorial Hospital, Columbia, MO, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, MO, USA; Research Division, Harry S Truman Memorial Hospital, Columbia, MO, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA; Department of Bioengineering, University of California San Diego, CA, USA.
| |
Collapse
|
2
|
Athertya JS, Shin SH, Malhi BS, Lo J, Sedaghat S, Jang H, Ma Y, Du J. Water phase transition and signal nulling in 3D dual-echo adiabatic inversion-recovery UTE (IR-UTE) imaging of myelin. Magn Reson Med 2024; 92:2464-2472. [PMID: 39119819 PMCID: PMC11436297 DOI: 10.1002/mrm.30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. METHODS The inversion recovery (IR)-based UTE (IR-UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual-echo IR-UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual-echo IR-UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains. RESULTS An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used. CONCLUSION The results suggest that the IR-UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.
Collapse
Affiliation(s)
- Jiyo S Athertya
- Department of Radiology, University of California, San Diego, California, USA
| | - Soo Hyun Shin
- Department of Radiology, University of California, San Diego, California, USA
| | | | - James Lo
- Department of Radiology, University of California, San Diego, California, USA
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hyungseok Jang
- Department of Radiology, University of California, Davis, California, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
3
|
Egger N, Nagelstraßer S, Wildenberg S, Bitz A, Ruck L, Herrler J, Meixner CR, Kimmlingen R, Lanz T, Schmitter S, Uder M, Nagel AM. Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and robust parallel transmit pulse design for heart and prostate imaging at 7 T. Magn Reson Med 2024; 92:1933-1951. [PMID: 38888143 DOI: 10.1002/mrm.30185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To investigate the impact of reduced k-space sampling onB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS Channel-wise 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With theseB 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity andB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based onB 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV),B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS For both organs, the universal phase shims showed significantly higherB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION AcceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity,B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.
Collapse
Affiliation(s)
- Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophia Nagelstraßer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Saskia Wildenberg
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Andreas Bitz
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Shen X, Caverzasi E, Yang Y, Liu X, Green A, Henry RG, Emir U, Larson PEZ. 3D balanced SSFP UTE MRI for multiple contrasts whole brain imaging. Magn Reson Med 2024; 92:702-714. [PMID: 38525680 DOI: 10.1002/mrm.30093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.
Collapse
Affiliation(s)
- Xin Shen
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Eduardo Caverzasi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Yang Yang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Ari Green
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Roland G Henry
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Uzay Emir
- School of Health Science, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peder E Z Larson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Baadsvik EL, Weiger M, Froidevaux R, Schildknecht CM, Ineichen BV, Pruessmann KP. Myelin bilayer mapping in the human brain in vivo. Magn Reson Med 2024; 91:2332-2344. [PMID: 38171541 DOI: 10.1002/mrm.29998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To quantitatively map the myelin lipid-protein bilayer in the live human brain. METHODS This goal was pursued by integrating a multi-TE acquisition approach targeting ultrashort T2 signals with voxel-wise fitting to a three-component signal model. Imaging was performed at 3 T in two healthy volunteers using high-performance RF and gradient hardware and the HYFI sequence. The design of a suitable imaging protocol faced substantial constraints concerning SNR, imaging volume, scan time, and RF power deposition. Model fitting to data acquired using the proposed protocol was made feasible through simulation-based optimization, and filtering was used to condition noise presentation and overall depiction fidelity. RESULTS A multi-TE protocol (11 TEs of 20-780 μs) for in vivo brain imaging was developed in adherence with applicable safety regulations and practical scan time limits. Data acquired using this protocol produced accurate model fitting results, validating the suitability of the protocol for this purpose. Structured, grainy texture of myelin bilayer maps was observed and determined to be a manifestation of correlated image noise resulting from the employed acquisition strategy. Map quality was significantly improved by filtering to uniformize the k-space noise distribution and simultaneously extending the k-space support. The final myelin bilayer maps provided selective depiction of myelin, reconciling competitive resolution (1.4 mm) with adequate SNR and benign noise texture. CONCLUSION Using the proposed technique, quantitative maps of the myelin bilayer can be obtained in vivo. These maps offer unique information content with potential applications in basic research, diagnosis, disease monitoring, and drug development.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Wilferth T, Mennecke A, Huhn K, Uder M, Doerfler A, Schmidt M, Nagel AM. Influence of Residual Quadrupolar Interaction on Quantitative Sodium Brain Magnetic Resonance Imaging of Patients With Multiple Sclerosis. Invest Radiol 2023; 58:730-739. [PMID: 37185832 DOI: 10.1097/rli.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The purpose of this work was to evaluate the influence of residual quadrupolar interaction on the determination of human brain apparent tissue sodium concentrations (aTSCs) using quantitative sodium magnetic resonance imaging ( 23 Na MRI) in healthy controls (HCs) and patients with multiple sclerosis (MS). Especially, it was investigated if the more detailed examination of residual quadrupolar interaction effects enables further analysis of the observed 23 Na MRI signal increase in MS patients. MATERIALS AND METHODS 23 Na MRI with a 7 T MR system was performed on 21 HC and 50 MS patients covering all MS subtypes (25 patients with relapsing-remitting MS, 14 patients with secondary progressive MS, and 11 patients with primary progressive MS) using 2 different 23 Na pulse sequences for quantification: a commonly used standard sequence (aTSC Std ) as well as a sequence with shorter excitation pulse length and lower flip angle for minimizing signal loss resulting from residual quadrupolar interactions (aTSC SP ). Apparent tissue sodium concentration was determined using the same postprocessing pipeline including correction of the receive profile of the radiofrequency coil, partial volume correction, and relaxation correction. Spin dynamic simulations of spin-3/2 nuclei were performed to aid in the understanding of the measurement results and to get deeper insight in the underlying mechanisms. RESULTS In normal-appearing white matter (NAWM) of HC and all MS subtypes, the aTSC SP values were approximately 20% higher than the aTSC Std values ( P < 0.001). In addition, the ratio aTSC SP /aTSC Std was significantly higher in NAWM than in normal-appearing gray matter (NAGM) for all subject cohorts ( P < 0.002). In NAWM, aTSC Std values were significantly higher in primary progressive MS compared with HC ( P = 0.01) as well as relapsing-remitting MS ( P = 0.03). However, in contrast, no significant differences between the subject cohorts were found for aTSC SP . Spin simulations assuming the occurrence of residual quadrupolar interaction in NAWM were in good accordance with the measurement results, in particular, the ratio aTSC SP /aTSC Std in NAWM and NAGM. CONCLUSIONS Our results showed that residual quadrupolar interactions in white matter regions of the human brain have an influence on aTSC quantification and therefore must be considered, especially in pathologies with expected microstructural changes such as loss of myelin in MS. Furthermore, the more detailed examination of residual quadrupolar interactions may lead to a better understanding of the pathologies themselves.
Collapse
Affiliation(s)
| | | | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | | | | | | | | |
Collapse
|
7
|
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP. Quantitative magnetic resonance mapping of the myelin bilayer reflects pathology in multiple sclerosis brain tissue. SCIENCE ADVANCES 2023; 9:eadi0611. [PMID: 37566661 PMCID: PMC10421026 DOI: 10.1126/sciadv.adi0611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by loss of myelin (demyelination) and, to a certain extent, subsequent myelin repair (remyelination). To better understand the pathomechanisms underlying de- and remyelination and to monitor the efficacy of treatments aimed at regenerating myelin, techniques offering noninvasive visualizations of myelin are warranted. Magnetic resonance (MR) imaging has long been at the forefront of efforts to visualize myelin, but it has only recently become feasible to access the rapidly decaying resonance signals stemming from the myelin lipid-protein bilayer itself. Here, we show that direct MR mapping of the bilayer yields highly specific myelin maps in brain tissue from patients with MS. Furthermore, examination of the bilayer signal behavior is found to reveal pathological alterations in normal-appearing white and gray matter. These results indicate promise for in vivo implementations of the myelin bilayer mapping technique, with prospective applications in basic research, diagnostics, disease monitoring, and drug development.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Institut Curie, Immunity and Cancer Unit 932, Paris, France
| | - Benjamin V. Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Zhou Z, Li Q, Liao C, Cao X, Liang H, Chen Q, Pu R, Ye H, Tong Q, He H, Zhong J. Optimized three-dimensional ultrashort echo time: Magnetic resonance fingerprinting for myelin tissue fraction mapping. Hum Brain Mapp 2023; 44:2209-2223. [PMID: 36629336 PMCID: PMC10028641 DOI: 10.1002/hbm.26203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Quantitative assessment of brain myelination has gained attention for both research and diagnosis of neurological diseases. However, conventional pulse sequences cannot directly acquire the myelin-proton signals due to its extremely short T2 and T2* values. To obtain the myelin-proton signals, dedicated short T2 acquisition techniques, such as ultrashort echo time (UTE) imaging, have been introduced. However, it remains challenging to isolate the myelin-proton signals from tissues with longer T2. In this article, we extended our previous two-dimensional ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) with dual-echo acquisition to three dimensional (3D). Given a relatively low proton density (PD) of myelin-proton, we utilized Cramér-Rao Lower Bound to encode myelin-proton with the maximal SNR efficiency for optimizing the MR fingerprinting design, in order to improve the sensitivity of the sequence to myelin-proton. In addition, with a second echo of approximately 3 ms, myelin-water component can be also captured. A myelin-tissue (myelin-proton and myelin-water) fraction mapping can be thus calculated. The optimized 3D UTE-MRF with dual-echo acquisition is tested in simulations, physical phantom and in vivo studies of both healthy subjects and multiple sclerosis patients. The results suggest that the rapidly decayed myelin-proton and myelin-water signal can be depicted with UTE signals of our method at clinically relevant resolution (1.8 mm isotropic) in 15 min. With its good sensitivity to myelin loss in multiple sclerosis patients demonstrated, our method for the whole brain myelin-tissue fraction mapping in clinical friendly scan time has the potential for routine clinical imaging.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Li
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- MR Collaborations, Siemens Healthineers Ltd, Shanghai, China
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Chen
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Run Pu
- Neusoft Medical Systems, Shanghai, China
| | - Huihui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
9
|
Sedaghat S, Jang H, Athertya JS, Groezinger M, Corey-Bloom J, Du J. The signal intensity variation of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) as a potential biomarker for patients' disability: A feasibility study. Front Neurosci 2023; 17:1145251. [PMID: 36992852 PMCID: PMC10040653 DOI: 10.3389/fnins.2023.1145251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Although many lesion-based MRI biomarkers in multiple sclerosis (MS) patients were investigated, none of the previous studies dealt with the signal intensity variations (SIVs) of MS lesions. In this study, the SIVs of MS lesions on direct myelin imaging and standard clinical sequences as possible MRI biomarkers for disability in MS patients were assessed. Methods Twenty seven MS patients were included in this prospective study. IR-UTE, FLAIR, and MPRAGE sequences were employed on a 3T scanner. Regions of interest (ROIs) were manually drawn within the MS lesions, and the cerebrospinal fluid (CSF) and signal intensity ratios (SIR) were calculated from the derived values. Variations coefficients were determined from the standard deviations (Coeff 1) and the absolute differences (Coeff 2) of the SIRs. Disability grade was assessed by the expanded disability status scale (EDSS). Cortical/gray matter, subcortical, infratentorial, and spinal lesions were excluded. Results The mean diameter of the lesions was 7.8 ± 1.97 mm, while the mean EDSS score was 4.5 ± 1.73. We found moderate correlations between the EDSS and Coeff 1 and 2 on IR-UTE and MPRAGE images. Accordingly, Pearson's correlations on IR-UTE were R = 0.51 (p = 0.007) and R = 0.49 (p = 0.01) for Coeff 1 and 2, respectively. For MPRAGE, Pearson's correlations were R = 0.5 (p = 0.008) and R = 0.48 (p = 0.012) for Coeff 1 and 2, respectively. For FLAIR, only poor correlations could be found. Conclusion The SIVs of MS lesions on IR-UTE and MPRAGE images, assessed by Coeff 1 and 2, could be used as novel potential MRI biomarkers for patients' disability.
Collapse
Affiliation(s)
- Sam Sedaghat
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- University Hospital Heidelberg, Heidelberg, Germany
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Jiyo S. Athertya
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
10
|
Shen X, Özen AC, Sunjar A, Ilbey S, Sawiak S, Shi R, Chiew M, Emir U. Ultra-short T 2 components imaging of the whole brain using 3D dual-echo UTE MRI with rosette k-space pattern. Magn Reson Med 2023; 89:508-521. [PMID: 36161728 PMCID: PMC9712161 DOI: 10.1002/mrm.29451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aimed to develop a new 3D dual-echo rosette k-space trajectory, specifically designed for UTE MRI applications. The imaging of the ultra-short transverse relaxation time (uT2 ) of brain was acquired to test the performance of the proposed UTE sequence. THEORY AND METHODS The rosette trajectory was developed based on rotations of a "petal-like" pattern in the kx -ky plane, with oscillated extensions in the kz -direction for 3D coverage. Five healthy volunteers underwent 10 dual-echo 3D rosette UTE scans with various TEs. Dual-exponential complex model fitting was performed on the magnitude data to separate uT2 signals, with the output of uT2 fraction, uT2 value, and long-T2 value. RESULTS The 3D rosette dual-echo UTE sequence showed better performance than a 3D radial UTE acquisition. More significant signal intensity decay in white matter than gray matter was observed along with the TEs. The white matter regions had higher uT2 fraction values than gray matter (10.9% ± 1.9% vs. 5.7% ± 2.4%). The uT2 value was approximately 0.10 ms in white matter . CONCLUSION The higher uT2 fraction value in white matter compared to gray matter demonstrated the ability of the proposed sequence to capture rapidly decaying signals.
Collapse
Affiliation(s)
- Xin Shen
- Weldon School of Biomedical Engineering, Purdue University
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Antonia Sunjar
- Weldon School of Biomedical Engineering, Purdue University
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Stephen Sawiak
- Department of Clinical Neurosciences, University of Cambridge, UK,Department of Psychology, University of Cambridge, UK
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University,College of Veterinary Medicine, Purdue University
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Uzay Emir
- Weldon School of Biomedical Engineering, Purdue University,Health Science Department, Purdue University
| |
Collapse
|