1
|
Knutsson M, Salomonsson T, Durmo F, Johansson ER, Seidemo A, Lätt J, Rydelius A, Kinhult S, Englund E, Bengzon J, van Zijl PCM, Knutsson L, Sundgren PC. Differentiation between glioblastoma and solitary brain metastases using perfusion and amide proton transfer weighted MRI. Front Neurosci 2025; 19:1533799. [PMID: 39975970 PMCID: PMC11836003 DOI: 10.3389/fnins.2025.1533799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Objectives Early diagnostic separation between glioblastoma (GBM) and solitary metastases (MET) is important for patient management but remains challenging when based on imaging only. The objective of this study was to assess whether amide proton transfer weighted (APTw) MRI alone or combined with dynamic susceptibility contrast (DSC) MRI parameters, including cerebral blood volume (CBV), cerebral blood flow (CBF), and leakage parameter (K2) measurements, can differentiate GBM from MET. Methods APTw MRI and DSC-MRI were performed on 18 patients diagnosed with GBM (N = 10) or MET (N = 8). Quantitative parameter maps were calculated, and regions-of-interest (ROIs) were placed in whole tumor, contrast-enhanced tumor (ET), edema, necrosis and normal-appearing white matter (NAWM). The mean and max of the APTw signal, CBF, leakage-corrected CBV and K2 were obtained from each ROI. Except for K2, all were normalized to NAWM (nAPTwmean/max, nCBFmean/max, ncCBVmean/max,). Receiver Operating Characteristic (ROC) curves and area-under-the-curve (AUC) were assessed for different parameter combinations. Statistical analyses were performed using Mann-Whitney U test. Results When comparing GBM to MET, nAPTmax, nCBFmax, ncCBVmax and ncCBVmean were significantly increased (p < 0.05) in ET with AUC being 0.81, 0.83, 0.85, and 0.83, respectively. Combinations of nAPTwmax + ncCBVmax, nAPTwmean + ncCBVmean, nAPTwmax + nCBFmax, nAPTwmax + K2max and nAPTwmax + ncCBVmax + K2max in ET showed significant prediction in differentiating GBM and MET (AUC = 0.92, 0.82, 0.92, 0.85, and 0.92 respectively). Conclusion When assessed in Gd-enhanced tumor areas, nAPTw MRI signal intensity alone or combined with DSC-MRI parameters, was an excellent predictor for differentiating GBM and MET. However, the small cohort warrants future studies.
Collapse
Affiliation(s)
- Malte Knutsson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Tim Salomonsson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Faris Durmo
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Emelie Ryd Johansson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Anina Seidemo
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Anna Rydelius
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Sweden
| | - Sara Kinhult
- Department of Clinical Sciences, Division of Oncology, Lund University, Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences, Division of Pathology, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Mohammadi S, Ghaderi S, Jouzdani AF, Azinkhah I, Alibabaei S, Azami M, Omrani V. Differentiation Between High-Grade Glioma and Brain Metastasis Using Cerebral Perfusion-Related Parameters (Cerebral Blood Volume and Cerebral Blood Flow): A Systematic Review and Meta-Analysis of Perfusion-weighted MRI Techniques. J Magn Reson Imaging 2025; 61:758-768. [PMID: 38899965 DOI: 10.1002/jmri.29473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Distinguishing high-grade gliomas (HGGs) from brain metastases (BMs) using perfusion-weighted imaging (PWI) remains challenging. PWI offers quantitative measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV), but optimal PWI parameters for differentiation are unclear. PURPOSE To compare CBF and CBV derived from PWIs in HGGs and BMs, and to identify the most effective PWI parameters and techniques for differentiation. STUDY TYPE Systematic review and meta-analysis. POPULATION Twenty-four studies compared CBF and CBV between HGGs (n = 704) and BMs (n = 488). FIELD STRENGTH/SEQUENCE Arterial spin labeling (ASL), dynamic susceptibility contrast (DSC), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast-enhanced (DSCE) sequences at 1.5 T and 3.0 T. ASSESSMENT Following the PRISMA guidelines, four major databases were searched from 2000 to 2024 for studies evaluating CBF or CBV using PWI in HGGs and BMs. STATISTICAL TESTS Standardized mean difference (SMD) with 95% CIs was used. Risk of bias (ROB) and publication bias were assessed, and I2 statistic was used to assess statistical heterogeneity. A P-value<0.05 was considered significant. RESULTS HGGs showed a significant modest increase in CBF (SMD = 0.37, 95% CI: 0.05-0.69) and CBV (SMD = 0.26, 95% CI: 0.01-0.51) compared with BMs. Subgroup analysis based on region, sequence, ROB, and field strength for CBF (HGGs: 375 and BMs: 222) and CBV (HGGs: 493 and BMs: 378) values were conducted. ASL showed a considerable moderate increase (50% overlapping CI) in CBF for HGGs compared with BMs. However, no significant difference was found between ASL and DSC (P = 0.08). DATA CONCLUSION ASL-derived CBF may be more useful than DSC-derived CBF in differentiating HGGs from BMs. This suggests that ASL may be used as an alternative to DSC when contrast medium is contraindicated or when intravenous injection is not feasible. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fathi Jouzdani
- Neuroscience and Artificial Intelligence Research Group (NAIRG), Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iman Azinkhah
- Medical Physics Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Alibabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mobin Azami
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vida Omrani
- School Medical Physics Department, School of paramedical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
Yang C, Hassan HA, Omar NF, Soo TH, Shuib bin Yahaya A, Shi T, Luo Y, Wu M. Effects of amide proton transfer imaging in diagnosis, grading and prognosis prediction of cervical cancer: A systematic review and meta-analysis. Heliyon 2024; 10:e40291. [PMID: 39748993 PMCID: PMC11693897 DOI: 10.1016/j.heliyon.2024.e40291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Purpose To assess the effectiveness of Amide Proton Transfer (APT) imaging in predicting the histopathological characteristics of cervical cancer. Methods A comprehensive literature search was conducted across multiple databases, covering studies until December 27, 2023. The meta-analysis was performed using Stata 15 and Review Manager 5.4 software. Key metrics analyzed included pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and summary receiver operating characteristic curves. The analysis focused on differentiating cervical cancer types, squamous carcinoma differentiation, and lymph node involvement. Meta-regression was employed to investigate heterogeneity. Results Thirteen studies involving 868 patients were included in the meta-analysis. For differentiating adenocarcinoma from squamous carcinoma, the pooled sensitivity was 0.82 (95%CI: 0.71-0.90), specificity was 0.65 (95%CI: 0.48-0.79), and DOR was 9 (95%CI: 1.6-3.5). When distinguishing poorly differentiated from moderately/well-differentiated squamous carcinoma, the sensitivity was 0.74 (95%CI: 0.66-0.81), specificity was 0.83 (95%CI: 0.75-0.89), and DOR was 14 (95%CI: 8-23). For identifying lymph node involvement, the sensitivity was 0.87 (95%CI: 0.78-0.92), specificity was 0.66 (95%CI: 0.59-0.73), and DOR was 13 (95%CI: 7-26). No publication bias was detected. Conclusions APT imaging demonstrates high sensitivity and specificity in distinguishing between cervical cancer types, grading squamous carcinoma, and detecting lymph node involvement. It can be considered a reliable technique for predicting the pathological features of cervical cancer in clinical practice.
Collapse
Affiliation(s)
- Chongshuang Yang
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Radiology, Tongren People's Hospital, Tongren, Guizhou Province, 554300, China
| | - Hasyma Abu Hassan
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nur Farhayu Omar
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Tze Hui Soo
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Shuib bin Yahaya
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Tianliang Shi
- Department of Radiology, Tongren People's Hospital, Tongren, Guizhou Province, 554300, China
| | - Yinbin Luo
- Department of Radiology, Tongren People's Hospital, Tongren, Guizhou Province, 554300, China
| | - Min Wu
- Department of Radiology, Tongren People's Hospital, Tongren, Guizhou Province, 554300, China
| |
Collapse
|
4
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
5
|
Valenzuela-Fuenzalida JJ, Moyano-Valarezo L, Silva-Bravo V, Milos-Brandenberg D, Orellana-Donoso M, Nova-Baeza P, Suazo-Santibáñez A, Rodríguez-Luengo M, Oyanedel-Amaro G, Sanchis-Gimeno J, Gutiérrez Espinoza H. Association between the Anatomical Location of Glioblastoma and Its Evaluation with Clinical Considerations: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:3460. [PMID: 38929990 PMCID: PMC11204640 DOI: 10.3390/jcm13123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Glioblastoma is a primary malignant brain tumor; it is aggressive with a high degree of malignancy and unfavorable prognosis and is the most common type of malignant brain tumor. Glioblastomas can be located in the brain, cerebellum, brainstem, and spinal cord, originating from glial cells, particularly astrocytes. Methods: The databases MEDLINE, Scopus, Web of Science, Google Scholar, and CINAHL were researched up to January 2024. Two authors independently performed the search, study selection, and data extraction. Methodological quality was evaluated with an assurance tool for anatomical studies (AQUA). The statistical mean, standard deviation, and difference of means calculated with the Student's t-test for presence between hemispheres and presence in the frontal and temporal lobes were analyzed. Results: A total of 123 studies met the established selection criteria, with a total of 6224 patients. In relation to the mean, GBM between hemispheres had a mean of 33.36 (SD 58.00) in the right hemisphere and a mean of 34.70 (SD 65.07) in the left hemisphere, due to the difference in averages between hemispheres. There were no statistically significant differences, p = 0.35. For the comparison between the presence of GBM in the frontal lobe and the temporal lobe, there was a mean in the frontal lobe of 23.23 (SD 40.03), while in the temporal lobe, the mean was 22.05 (SD 43.50), and for the difference in means between the frontal lobe and the temporal lobe, there was no statistically significant difference for the presence of GBM, p = 0.178. Conclusions: We believe that before a treatment, it will always be correct to know where the GBM is located and how it behaves clinically, in order to generate correct conservative or surgical treatment guidelines for each patient. We believe that more detailed studies are also needed to show why GBM is associated more with some regions than others, despite the brain structure being homologous to other regions in which GMB occurs less frequently, which is why knowing its predominant presence in brain regions is very important.
Collapse
Affiliation(s)
- Juan Jose Valenzuela-Fuenzalida
- Departamento de Ciencias Química y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8320000, Chile;
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Laura Moyano-Valarezo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Vicente Silva-Bravo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Daniel Milos-Brandenberg
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
- Escuela de Medicina, Facultad Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Mathias Orellana-Donoso
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
- Department of Morphological Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 8420524, Chile
| | - Pablo Nova-Baeza
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | | | - Macarena Rodríguez-Luengo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Gustavo Oyanedel-Amaro
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juan Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, Faculty of Medicine, University of Valencia, 46001 Valencia, Spain;
| | | |
Collapse
|
6
|
Bayraktar ES, Duygulu G, Çetinoğlu YK, Gelal MF, Apaydın M, Ellidokuz H. Comparison of ASL and DSC perfusion methods in the evaluation of response to treatment in patients with a history of treatment for malignant brain tumor. BMC Med Imaging 2024; 24:70. [PMID: 38519901 PMCID: PMC10958956 DOI: 10.1186/s12880-024-01249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE Perfusion MRI is of great benefit in the post-treatment evaluation of brain tumors. Interestingly, dynamic susceptibility contrast-enhanced (DSC) perfusion has taken its place in routine examination for this purpose. The use of arterial spin labeling (ASL), a perfusion technique that does not require exogenous contrast material injection, has gained popularity in recent years. The aim of the study was to compare two different perfusion techniques, ASL and DSC, using qualitative and quantitative measurements and to investigate the diagnostic effectiveness of both. The fact that the number of patients is higher than in studies conducted with 3D pseudo-continious ASL (pCASL), the study group is heterogeneous as it consists of patients with both metastases and glial tumors, the use of 3D Turbo Gradient Spin Echo (TGSE), and the inclusion of visual (qualitative) assessment make our study unique. METHODS Ninety patients, who were treated for malignant brain tumor, were enrolled in the retrospective study. DSC Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF) and ASL CBF maps of each case were obtained. In qualitative analysis, the lesions of the cases were visually classified as treatment-related changes (TRC) and relapse/residual mass (RRT). In the quantitative analysis, three regions of interest (ROI) measurements were taken from each case. The average of these measurements was compared with the ROI taken from the contralateral white matter and normalized values (n) were obtained. These normalized values were compared across events. RESULTS Uncorrected DSC normalized CBV (nCBV), DSC normalized CBF (nCBF) and ASL nCBF values of RRT cases were higher than those of TRC cases (p < 0.001). DSC nCBV values were correlated with DSC nCBF (r: 0.94, p < 0.001) and correlated with ASL nCBF (r: 0.75, p < 0.001). Similarly, ASL nCBF was positively correlated with DSC nCBF (r: 0.79 p < 0.01). When the ROC curve parameters were evaluated, the cut-off values were determined as 1.211 for DSC nCBV (AUC: 0.95, 93% sensitivity, 82% specificity), 0.896 for DSC nCBF (AUC; 0.95, 93% sensitivity, 82% specificity), and 0.829 for ASL nCBF (AUC: 0.84, 78% sensitivity, 75% specificity). For qualitative evaluation (visual evaluation), inter-observer agreement was found to be good for ASL CBF (0.714), good for DSC CBF (0.790), and excellent for DSC CBV (0.822). Intra-observer agreement was also evaluated. For the first observer, good agreement was found in ASL CBF (0.626, 70% sensitive, 93% specific), in DSC CBF (0.713, 76% sensitive, 95% specific), and in DSC CBV (0.755, 87% sensitive - 88% specific). In the second observer, moderate agreement was found in ASL CBF (0.584, 61% sensitive, 97% specific) and DSC CBF (0.649, 65% sensitive, 100% specific), and excellent agreement in DSC CBV (0.800, 89% sensitive, 90% specific). CONCLUSION It was observed that uncorrected DSC nCBV, DSC nCBF and ASL nCBF values were well correlated with each other. In qualitative evaluation, inter-observer and intra-observer agreement was higher in DSC CBV than DSC CBF and ASL CBF. In addition, DSC CBV is found more sensitive, ASL CBF and DSC CBF are found more specific for both observers. From a diagnostic perspective, all three parameters DSC CBV, DSC CBF and ASL CBF can be used, but it was observed that the highest rate belonged to DSC CBV.
Collapse
Affiliation(s)
- Ezgi Suat Bayraktar
- Department of Radiology, University of Izmir Katip Çelebi, Atatürk Training and Research Hospital, Izmir, 35360, Türkiye
| | - Gokhan Duygulu
- Department of Radiology, University of Izmir Katip Çelebi, Atatürk Training and Research Hospital, Izmir, 35360, Türkiye.
| | | | - Mustafa Fazıl Gelal
- Department of Radiology, University of Izmir Katip Çelebi, Atatürk Training and Research Hospital, Izmir, 35360, Türkiye
| | - Melda Apaydın
- Department of Radiology, University of Izmir Katip Çelebi, Atatürk Training and Research Hospital, Izmir, 35360, Türkiye
| | - Hülya Ellidokuz
- Department of Biostatistics and Medical Informatics, University of Dokuz Eylül, İzmir, 35340, Türkiye
| |
Collapse
|
7
|
Teng M, Wang M, He F, Liang W, Zhang G. Arterial Spin Labeling and Amide Proton Transfer Imaging can Differentiate Glioblastoma from Brain Metastasis: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:e702-e711. [PMID: 38072160 DOI: 10.1016/j.wneu.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Currently, arterial spin labeling (ASL) and amide proton transfer (APT) imaging have shown potential for distinguishing glioblastoma from brain metastases. Thus, a meta-analysis was conducted to investigate this further. METHODS An extensive and comprehensive search was conducted in 6 English and Chinese databases according to predefined inclusion and exclusion criteria, encompassing data up to July 2023. Data from eligible literature were extracted, and bivariate models were employed to calculate pooled sensitivities, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic curve. RESULTS The meta-analysis included 11 articles. For ASL, the pooled sensitivity was 0.77 (95% confidence interval [CI], 0.63-0.87), and the pooled specificity was 0.87 (95% CI, 0.77-0.93). The pooled PLR was 5.89 (95% CI, 2.97-11.69), the pooled NLR was 0.26 (95% CI, 0.15-0.47), the pooled DOR was 22.33 (95% CI, 6.89-72.34), and AUC was 0.90 (95% CI, 0.87-0.92). For APT imaging, the pooled sensitivity was 0.78 (95% CI, 0.70-0.85), and the pooled specificity was 0.86 (95% CI, 0.77-0.92). The pooled PLR was 5.51 (95% CI, 3.24-9.37), the pooled NLR was 0.25 (95% CI, 0.17-0.37), the pooled DOR was 21.99 (95% CI, 10.28-47.03), and the AUC was 0.90 (95% CI, 0.87-0.92). CONCLUSIONS This meta-analysis suggest that both ASL and APT imaging exhibit high accuracy in distinguishing between glioblastoma and brain metastasis.
Collapse
Affiliation(s)
- Minghao Teng
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Minshu Wang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Feng He
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Wu Liang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Guisheng Zhang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China.
| |
Collapse
|