1
|
Krett JD, Riley C, Zamvil SS, Goldman MD, Newsome SD, Saidha S. Mood Disorder and Multimorbidity Complicating a Multiple Sclerosis Diagnosis: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200376. [PMID: 39933128 PMCID: PMC11820807 DOI: 10.1212/nxi.0000000000200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
A 28-year-old Black woman presented with both typical and atypical features of multiple sclerosis in the setting of multimorbidity including psychiatric history, complicating diagnosis and treatment. This case illustrates the importance of differential diagnosis and longitudinal follow-up before committing to disease-modifying therapy. Individualized treatment decision-making is highlighted.
Collapse
Affiliation(s)
- Jonathan D Krett
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claire Riley
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Scott S Zamvil
- Program in Immunology, University of California San Francisco
- Department of Neurology, University of California San Francisco; and
| | - Myla D Goldman
- Division of Multiple Sclerosis/Neuro-immunology, Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Scott D Newsome
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
2
|
Papp D, Gilbert KM, Cereza G, D'Astous A, Lopez-Rios N, Boudreau M, Couch MJ, Yazdanbakhsh P, Barry RL, Alonso-Ortiz E, Cohen-Adad J. RF shimming in the cervical spinal cord at 7 T. Magn Reson Med 2024; 92:2392-2403. [PMID: 39136249 DOI: 10.1002/mrm.30225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Advancing the development of 7 T MRI for spinal cord imaging is crucial for the enhanced diagnosis and monitoring of various neurodegenerative diseases and traumas. However, a significant challenge at this field strength is the transmit field inhomogeneity. Such inhomogeneity is particularly problematic for imaging the small, deep anatomical structures of the cervical spinal cord, as it can cause uneven signal intensity and elevate the local specific absorption ratio, compromising image quality. This multisite study explores several RF shimming techniques in the cervical spinal cord. METHODS Data were collected from 5 participants between two 7 T sites with a custom 8Tx/20Rx parallel transmission coil. We explored two radiofrequency (RF) shimming approaches from an MRI vendor and four from an open-source toolbox, showcasing their ability to enhance transmit field and signal homogeneity along the cervical spinal cord. RESULTS The circularly polarized (CP), coefficient of variation (CoV), and specific absorption rate (SAR) efficiency shim modes showed the highest B1 + efficiency, and the vendor-based "patient" and "volume" modes showed the lowest B1 + efficiency. The coefficient of variation method produced the highest CSF/spinal cord contrast on T2*-weighted scans (ratio of 1.27 ± 0.03), and the lowest variation of that contrast along the superior-inferior axis. CONCLUSION The study's findings highlight the potential of RF shimming to advance 7 T MRI's clinical utility for central nervous system imaging by enabling more homogenous and efficient spinal cord imaging. Additionally, the research incorporates a reproducible Jupyter Notebook, enhancing the study's transparency and facilitating peer verification.
Collapse
Affiliation(s)
- Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Alexandre D'Astous
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nibardo Lopez-Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Mathieu Boudreau
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Marcus J Couch
- Siemens Healthcare Limited, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedram Yazdanbakhsh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Robert L Barry
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Mila-Quebec AI Institute, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, Kolind S, Krieger S, Laule C, Lincoln JA, Messina S, Oh J, Papinutto N, Smith SA, Traboulsee A. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun 2024; 6:fcae395. [PMID: 39611182 PMCID: PMC11604059 DOI: 10.1093/braincomms/fcae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord disease is important in most people with multiple sclerosis, but assessment remains less emphasized in patient care, basic and clinical research and therapeutic trials. The North American Imaging in Multiple Sclerosis Spinal Cord Interest Group was formed to determine and present the contemporary landscape of multiple sclerosis spinal cord evaluation, further existing and advanced spinal cord imaging techniques, and foster collaborative work. Important themes arose: (i) multiple sclerosis spinal cord lesions (differential diagnosis, association with clinical course); (ii) spinal cord radiological-pathological associations; (iii) 'critical' spinal cord lesions; (iv) multiple sclerosis topographical model; (v) spinal cord atrophy; and (vi) automated and special imaging techniques. Distinguishing multiple sclerosis from other myelopathic aetiology is increasingly refined by imaging and serological studies. Post-mortem spinal cord findings and MRI pathological correlative studies demonstrate MRI's high sensitivity in detecting microstructural demyelination and axonal loss. Spinal leptomeninges include immune inflammatory infiltrates, some in B-cell lymphoid-like structures. 'Critical' demyelinating lesions along spinal cord corticospinal tracts are anatomically consistent with and may be disproportionately associated with motor progression. Multiple sclerosis topographical model implicates the spinal cord as an area where threshold impairment associates with multiple sclerosis disability. Progressive spinal cord atrophy and 'silent' multiple sclerosis progression may be emerging as an important multiple sclerosis prognostic biomarker. Manual atrophy assessment is complicated by rater bias, while automation (e.g. Spinal Cord Toolbox), and artificial intelligence may reduce this. Collaborative research by the North American Imaging in Multiple Sclerosis and similar groups with experts combining distinct strengths is key to advancing assessment and treatment of people with multiple sclerosis spinal cord disease.
Collapse
Affiliation(s)
- B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Imaging, Polytechnique Montreal, Montreal, Canada H3T 1J4
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric C Klawiter
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon Kolind
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Stephen Krieger
- Department of Neurology, Mount Sinai, New York City, NY 10029, USA
| | - Cornelia Laule
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - John A Lincoln
- McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Steven Messina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiwon Oh
- Division of Neurology, University of Toronto, Toronto, Canada M5B 1W8
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Aaron Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| |
Collapse
|
4
|
Aigner CS, Sánchez Alarcon MF, D'Astous A, Alonso-Ortiz E, Cohen-Adad J, Schmitter S. Calibration-free parallel transmission of the cervical, thoracic, and lumbar spinal cord at 7T. Magn Reson Med 2024; 92:1496-1510. [PMID: 38733068 DOI: 10.1002/mrm.30137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To address the limitations of spinal cord imaging at ultra-high field (UHF) due to time-consuming parallel transmit (pTx) adjustments. This study introduces calibration-free offline computed universal shim modes that can be applied seamlessly for different pTx RF coils and spinal cord target regions, substantially enhancing spinal cord imaging efficiency at UHF. METHODS A library of channel-wise relativeB 1 + $$ {B}_1^{+} $$ maps for the cervical spinal cord (six datasets) and thoracic and lumbar spinal cord (nine datasets) was constructed to optimize transmit homogeneity and efficiency for these regions. A tailored B0 shim was optimized for the cervical spine to enhance spatial magnetic field homogeneity further. The performance of the universal shims was validated using absolute saturation basedB 1 + $$ {B}_1^{+} $$ mapping and high-resolution 2D and 3D multi-echo gradient-recalled echo (GRE) data to assess the image quality. RESULTS The proposed universal shims demonstrated a 50% improvement inB 1 + $$ {B}_1^{+} $$ efficiency compared to the default (zero phase) shim mode.B 1 + $$ {B}_1^{+} $$ homogeneity was also improved by 20%. The optimized universal shims achieved performance comparable to subject-specific pTx adjustments, while eliminating the need for lengthy pTx calibration times, saving about 10 min per experiment. CONCLUSION The development of universal shims represents a significant advance by eliminating time-consuming subject-specific pTx adjustments. This approach is expected to make UHF spinal cord imaging more accessible and user-friendly, particularly for non-pTx experts.
Collapse
Affiliation(s)
- Christoph S Aigner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Manuel F Sánchez Alarcon
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandre D'Astous
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Eva Alonso-Ortiz
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada
- Mila-Quebec AI Institute, Montréal, Quebec, Canada
| | - Julien Cohen-Adad
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada
- Mila-Quebec AI Institute, Montréal, Quebec, Canada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Peters S, Neves FB, Huhndorf M, Gärtner F, Stürner K, Jansen O, Salehi Ravesh M. Detection of Spinal Cord Multiple Sclerosis Lesions Using a 3D-PSIR Sequence at 1.5 T. Clin Neuroradiol 2024; 34:403-410. [PMID: 38289376 PMCID: PMC11130041 DOI: 10.1007/s00062-023-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
PURPOSE Multiple sclerosis (MS) is a prevalent autoimmune inflammatory disease. Besides cerebral manifestations, an affection of the spinal cord is typical; however, imaging of the spinal cord is difficult due to its anatomy. The aim of this study was to assess the diagnostic value of a 3D PSIR pulse sequencing at a 1.5 T magnetic field strength for both the cervical and thoracic spinal cord. METHODS Phase sensitive inversion recovery (PSIR), short tau inversion recovery (STIR) and T2-weighted (T2-w) images of the spinal cord of 50 patients were separately evaluated by three radiologists concerning the number and location of MS lesions. Furthermore, lesion to cord contrast ratios were determined for the cervical and thoracic spinal cord. RESULTS Of the lesions 54.81% were located in the cervical spinal cord, 42.26% in the thoracic spinal cord and 2.93% in the conus medullaris. The PSIR images showed a higher sensitivity for lesion detection in the cervical and thoracic spinal cord (77.10% and 72.61%, respectively) compared to the STIR images (58.63% and 59.10%, respectively) and the T2-w images (59.95% and 59.52%, respectively). The average lesion to cord contrast ratio was significantly higher in the PSIR images compared to the STIR images (p < 0.001) and the T2-w images (p < 0.001). CONCLUSION Evaluation of the spinal cord with a 3D PSIR sequence at a magnetic field strength of 1.5 T is feasible with a high sensitivity for the detection of spinal MS lesions for the cervical as well as the thoracic segments. In combination with other pulse sequences it might become a valuable addition in an advanced imaging protocol.
Collapse
Affiliation(s)
- Sönke Peters
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - Fernando Bueno Neves
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Monika Huhndorf
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Friederike Gärtner
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Klarissa Stürner
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Mona Salehi Ravesh
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| |
Collapse
|
6
|
Kreiter D, Postma AA, Hupperts R, Gerlach O. Hallmarks of spinal cord pathology in multiple sclerosis. J Neurol Sci 2024; 456:122846. [PMID: 38142540 DOI: 10.1016/j.jns.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
A disparity exists between spinal cord and brain involvement in multiple sclerosis (MS), each independently contributing to disability. Underlying differences between brain and cord are not just anatomical in nature (volume, white/grey matter organization, vascularization), but also in barrier functions (differences in function and composition of the blood-spinal cord barrier compared to blood-brain barrier) and possibly in repair mechanisms. Also, immunological phenotypes seem to influence localization of inflammatory activity. Whereas the brain has gained a lot of attention in MS research, the spinal cord lags behind. Advanced imaging techniques and biomarkers are improving and providing us with tools to uncover the mechanisms of spinal cord pathology in MS. In the present review, we elaborate on the underlying anatomical and physiological factors driving differences between brain and cord involvement in MS and review current literature on pathophysiology of spinal cord involvement in MS and the observed differences to brain involvement.
Collapse
Affiliation(s)
- Daniel Kreiter
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Raymond Hupperts
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
7
|
Testud B, Fabiani N, Demortière S, Mchinda S, Medina NL, Pelletier J, Guye M, Audoin B, Stellmann JP, Callot V. Contribution of the MP2RAGE 7T Sequence in MS Lesions of the Cervical Spinal Cord. AJNR Am J Neuroradiol 2023; 44:1101-1107. [PMID: 37562829 PMCID: PMC10494945 DOI: 10.3174/ajnr.a7964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND PURPOSE The detection of spinal cord lesions in patients with MS is challenging. Recently, the 3D MP2RAGE sequence demonstrated its usefulness at 3T. Benefiting from the high spatial resolution provided by ultra-high-field MR imaging systems, we aimed to evaluate the contribution of the 3D MP2RAGE sequence acquired at 7T for the detection of MS lesions in the cervical spine. MATERIALS AND METHODS Seventeen patients with MS participated in this study. They were examined at both 3T and 7T. The MR imaging examination included a Magnetic Imaging in MS (MAGNIMS) protocol with an axial T2*-WI gradient recalled-echo sequence ("optimized MAGNIMS protocol") and a 0.9-mm isotropic 3D MP2RAGE sequence at 3T, as well as a 0.7-mm isotropic and 0.3-mm in-plane-resolution anisotropic 3D MP2RAGE sequences at 7T. Each data set was read by a consensus of radiologists, neurologists, and neuroscientists. The number of lesions and their topography, as well as the visibility of the lesions from one set to another, were carefully analyzed. RESULTS A total of 55 lesions were detected. The absolute number of visible lesions differed among the 4 sequences (linear mixed effect ANOVA, P = .020). The highest detection was observed for the two 7T sequences with 51 lesions each (92.7% of the total). The optimized 3T MAGNIMS protocol and the 3T MP2RAGE isotropic sequence detected 41 (74.5%) and 35 lesions (63.6%), respectively. CONCLUSIONS The 7T MP2RAGE sequences detected more lesions than the 3T sets. Isotropic and anisotropic acquisitions performed comparably. Ultra-high-resolution sequences obtained at 7T improve the identification and delineation of lesions of the cervical spinal cord in MS.
Collapse
Affiliation(s)
- B Testud
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - N Fabiani
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - S Demortière
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
- Department of Neurology (S.D., J.P., B.A.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - S Mchinda
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - N L Medina
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - J Pelletier
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
- Department of Neurology (S.D., J.P., B.A.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - M Guye
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - B Audoin
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
- Department of Neurology (S.D., J.P., B.A.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - J P Stellmann
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - V Callot
- From the Center for Magnetic Resonance in Biology and Medicine (B.T., N.F., S.D., S.M., N.L.M., J.P., M.G., B.A., J.P.S., V.C.), Aix-Marseille University, Centre national de la recherche scientifique, Marseille, France
- Assistance Publique-Hopitaux de Marseille (B.T., N.F., S.D., S.M., N.L.M., J,P., M.G., B.A., J.P.S., V.C.), Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
8
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
9
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|