1
|
Zivlaei N, Asani DC, Trier NH, Žiogienė D, Gedvilaitė A, Burneikienė RP, Ciplys E, Slibinskas R, Houen G, Frederiksen JL. Virus-specific antibody responses in multiple sclerosis patients treated with Ocrevus. J Neurol Sci 2025; 474:123537. [PMID: 40398376 DOI: 10.1016/j.jns.2025.123537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system. B cell-depleting therapy is highly efficient in treating patients with relapsing-remitting MS (RRMS), although the mechanisms behind reducing disease progression with this type of therapy is unknown. Virus infections are associated with the onset of MS and antibodies to these have previously been suggested to supplement MS diagnostics. Based on this, we aimed to investigate the effect of Ocrevus (OCR) (B cell depletion therapy) on selected virus antibody levels. Blood samples were collected from RRMS patients before (n = 13) and during OCR treatment (n = 29) and from healthy controls (HCs) (n = 15). Serum antibodies to virus antigens from Epstein-Barr virus (EBV), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), Rubella virus, Measles virus, John Cunningham polyomavirus, Mumps virus, Merkel cell polyomavirus, Varicella zoster virus, Influenza A virus, Human herpes virus 6, and Cytomegalovirus were analyzed by enzyme-linked immunosorbent assay. EBV nuclear antigen 1 (EBNA1) IgG levels were elevated in RRMS patients compared to HCs independent of OCR treatment. However, no significant difference in virus antibody levels was observed following OCR treatment. Only SARS-CoV-2 spike protein IgG levels were significantly reduced following OCR treatment. The effect of OCR treatment on antibody levels may correlate with the time of infection. Only EBV EBNA1 IgG levels were significantly elevated RRMS patients at baseline compared to HCs, supporting that EBV infection is involved in the development of MS and confirming the diagnostic value of EBNA1 IgG.
Collapse
Affiliation(s)
- Nadia Zivlaei
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark
| | - Daut Can Asani
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark
| | - Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark.
| | - Danguolė Žiogienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekioave. 7, LT-10257 Vilnius, Lithuania
| | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekioave. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Petraitytė Burneikienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekioave. 7, LT-10257 Vilnius, Lithuania
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekioave. 7, LT-10257 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekioave. 7, LT-10257 Vilnius, Lithuania
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark
| | | |
Collapse
|
2
|
Schneider-Hohendorf T, Wünsch C, Falk S, Raposo C, Rubelt F, Mirebrahim H, Asgharian H, Schlecht U, Mattox D, Zhou W, Dawin E, Pawlitzki M, Lauks S, Jarius S, Wildemann B, Havla J, Kümpfel T, Schrot MC, Ringelstein M, Kraemer M, Schwake C, Schmitter T, Ayzenberg I, Fischer K, Meuth SG, Aktas O, Hümmert MW, Kretschmer JR, Trebst C, Kleffner I, Massey J, Muraro PA, Chen-Harris H, Gross CC, Klotz L, Wiendl H, Schwab N. Broader anti-EBV TCR repertoire in multiple sclerosis: disease specificity and treatment modulation. Brain 2025; 148:933-940. [PMID: 39021292 PMCID: PMC11884754 DOI: 10.1093/brain/awae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). Patients with MS have elevated titres of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g. by approved MS therapies, and whether it is specific for MS. Peripheral blood TRB repertoire samples (n = 1317) of healthy donors (n = 409), patients with MS (n = 710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n = 87), MOG antibody-associated disease (MOGAD) (n = 64) and Susac's syndrome (n = 47) were analysed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous haematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, these data suggest that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to neuromyelitis optica, MOGAD and Susac's syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.
Collapse
Affiliation(s)
- Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Christian Wünsch
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Simon Falk
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | | | | | | | | | | | | | - Wenyu Zhou
- Adaptive Biotechnologies, 98109 Seattle, WA, USA
| | - Eva Dawin
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Marc Pawlitzki
- Department of Neurology, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sarah Lauks
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Klinikum, Ludwig-Maximilians-Universiät München, 80539 München, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Klinikum, Ludwig-Maximilians-Universiät München, 80539 München, Germany
| | - Miriam-Carolina Schrot
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marius Ringelstein
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Neurology, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, 40629 Düsseldorf, Germany
| | - Markus Kraemer
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Neurology, Alfried Krupp Hospital, 45131 Essen, Germany
| | - Carolin Schwake
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Thomas Schmitter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Katinka Fischer
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Corinna Trebst
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Ilka Kleffner
- Department of Neurology, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Jennifer Massey
- Department of Neurology, St Vincent’s Hospital, 2010 Sydney, Australia
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | | | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
3
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Tarlinton R, Tanasescu R, Shannon-Lowe C, Gran B. Ocrelizumab B cell depletion has no effect on HERV RNA expression in PBMC in MS patients. Mult Scler Relat Disord 2024; 86:105597. [PMID: 38598954 DOI: 10.1016/j.msard.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
5
|
Bose A, Khalighinejad F, Hoaglin DC, Hemond CC. Evaluating the Clinical Utility of Epstein-Barr Virus Antibodies as Biomarkers in Multiple Sclerosis: A Systematic Review. Mult Scler Relat Disord 2024; 84:105410. [PMID: 38401201 DOI: 10.1016/j.msard.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND EBV is a necessary but not sufficient factor in the pathophysiology of multiple sclerosis (MS). EBV antibodies to the nuclear antigen (EBNA1) and viral capsid antigen (VCA) rise rapidly prior to MS disease manifestations, and their absence has clinical utility with a high negative predictive value. It remains unclear whether EBV levels act as prognostic, monitoring, or pharmacodynamic/response biomarkers. Substantial literature on this topic exists but has not been systematically reviewed. We hypothesized that EBV levels against EBNA1 and VCA are potential prognostic and monitoring biomarkers in MS, and that patient population, MS clinical phenotype, and EBV assay method may play important roles in explaining variation among study outcomes. METHODS We systematically searched PubMed and EMBASE from inception to April 1, 2022. After removal of duplicates, records were screened by abstract. Remaining full-text articles were reviewed. Clinical and MRI data were extracted from full-text articles for comparison and synthesis. RESULTS Searches yielded 696 unique results; 285 were reviewed in full, and 36 met criteria for data extraction. Heterogeneity in sample population, clinical outcome measures, assay methods and statistical analyses precluded a meta-analysis. EBV levels were not consistently associated with clinical disease markers including conversion from CIS to RRMS, neurological disability, or disease phenotype. Studies using repeated-measures design suggest that EBNA1 levels may temporarily reflect inflammatory disease activity as assessed by gadolinium-enhancing Magnetic Resonance Imaging (MRI) lesions. Limited data also suggest a decrease in EBV levels following initiation of certain disease-modifying therapies. CONCLUSION Heterogeneous methodology limited generalization and meta-analysis. EBV antibody levels are unlikely to represent prognostic biomarkers in MS. The areas of highest ongoing promise relate to diagnostic exclusion and pharmacodynamic/disease response. Use of EBV antibodies as biomarkers in clinical practice remains additionally limited by lack of methodological precision, reliability, and validation.
Collapse
Affiliation(s)
- Abigail Bose
- University of Massachusetts Chan Medical School.
| | | | | | | |
Collapse
|
6
|
Rød BE, Wergeland S, Bjørnevik K, Holmøy T, Ulvestad E, Njølstad G, Myhr KM, Torkildsen Ø. Humoral response to Epstein-Barr virus in patients with multiple sclerosis treated with B cell depletion therapy. Mult Scler Relat Disord 2023; 79:105037. [PMID: 37804765 DOI: 10.1016/j.msard.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND B cell depletion therapy is highly effective in relapsing-remitting multiple sclerosis (RRMS). However, the precise underlying mechanisms of action for its biological effects in MS have still not been clarified. Epstein-Barr virus (EBV) is a known risk factor for MS and seems to be a prerequisite for disease development. EBV resides latently in the memory B cells, and may not only increase the risk of developing MS, but also contribute to disease activity and disability progression. Therefore, the effects of B cell depletion in MS could be associated with the depletion of EBV-infected cells and the altered immune response to the virus. In this study, we investigate the impact of B cell depletion on the humoral immune response specific to EBV in patients with MS. METHODS Newly diagnosed, treatment-naïve patients with RRMS were followed up to 18 months after initiation of B-cell depletion therapy in the Overlord-MS study, a phase III trial (NCT04578639). We analyzed serum sampled before treatment and after 3, 6, 12 and 18 months for immunoglobulin γ (IgG) against Epstein-Barr nuclear antigen 1 (EBNA1) and Epstein-Barr viral capsid antigen (VCA). We analyzed antibodies to cytomegalovirus (CMV) and total IgG in serum, as controls for viral and overall humoral immunity. The risk allele, HLA-DRB1*15:01, and the protective allele, HLA-A*02:01, were determined in all participants. In addition, polymerase chain reaction (PCR) for circulating EBV-DNA was performed in the first 156 samples drawn. The associations between time on B cell-depletion therapy and serum anti-EBV antibody levels were estimated using linear mixed-effects models. RESULTS A total of 290 serum samples from 99 patients were available for analysis. After 6, 12 and 18 months, the EBNA1 IgG levels decreased by 12.7 % (95 % CI -18.8 to -6.60, p < 0.001), 12.1 % (95 % CI -19.8 to -3.7, p = 0.006) and 14.6 % (95 % CI to -25.3 to -2.4, p = 0.02) respectively, compared to baseline level. Carriers of the HLA-DRB1*15:01 allele had higher EBNA1 IgG levels at baseline (p = 0.02). The VCA IgG levels significantly increased by 13.7 % (95 % CI 9.4 to 18.1, p < 0.001) after 3 months, compared to baseline, and persisted at this level throughout the follow-up. CMV IgG levels decreased, but to a lesser extent than the decrease of EBNA1 IgG, and total IgG levels decreased during therapy. Circulating EBV-DNA was found in only three of 156 samples from 64 patients. CONCLUSIONS EBNA1 IgG levels decreased, while VCA IgG levels increased, during B cell depletion therapy. This supports the hypothesis that the mechanism of action for B cell depletion therapy might be mediated by effects on EBV infection, which, in turn, mitigate immune cross-reactivity and disease perpetuation.
Collapse
Affiliation(s)
- Brit Ellen Rød
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Stig Wergeland
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Registry and Biobank, Haukeland University Hospital, Bergen, Norway
| | - Kjetil Bjørnevik
- Departments of Epidemiology and Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elling Ulvestad
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Gro Njølstad
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|