1
|
Pazhamannil RV, Alkhedher M. Advances in additive manufacturing for bone tissue engineering: materials, design strategies, and applications. Biomed Mater 2024; 20:012002. [PMID: 39662052 DOI: 10.1088/1748-605x/ad9dce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
The growing annual demand for bone grafts and artificial implants emphasizes the need for effective solutions to repair or replace injured bones. Additive manufacturing technology offers unique merits for advancing bone tissue engineering (BTE), enabling the creation of scaffolds and implants with customized shapes and designs, interconnected architecture, controlled mechanical properties and compositions, and broadening its range of applications. It overcomes the limitations of traditional manufacturing methods such as electrospinning, salt leaching, freeze drying, solvent casting etc. This review highlights additive manufacturing technologies and their applications in BTE, as well as materials and scaffold architectures to widen the potential of the biomedical sector. The selection of optimal printing methods for BTE requires careful consideration of the advantages and disadvantages against the needs for degradation, strength, and biocompatibility. Material extrusion and powder bed fusion techniques are the most widely used additive manufacturing processes in BTE. The comprehensive review also revealed that parametric designs such as triply periodic minimal surface (TPMS) and Voronoi hold better characteristics for their application in BTE. Voronoi designs exhibit exceptional randomness whereas TPMS structures feature high permeability with continuous surfaces. Topology optimized and gradient models exhibited superior physical and mechanical properties compared to uniform lattices. Future research should focus on the development of novel biomaterials, multi-material printing, assessing long-term impacts, and enhancing 3D printing technologies.
Collapse
Affiliation(s)
- Ribin Varghese Pazhamannil
- Mechanical and Industrial Engineering Department, Abu Dhabi University, PO 59911 Abu Dhabi, United Arab Emirates
| | - Mohammad Alkhedher
- Mechanical and Industrial Engineering Department, Abu Dhabi University, PO 59911 Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Eichholz KF, Pitacco P, Burdis R, Chariyev‐Prinz F, Barceló X, Tornifoglio B, Paetzold R, Garcia O, Kelly DJ. Integrating Melt Electrowriting and Fused Deposition Modeling to Fabricate Hybrid Scaffolds Supportive of Accelerated Bone Regeneration. Adv Healthc Mater 2024; 13:e2302057. [PMID: 37933556 PMCID: PMC11468945 DOI: 10.1002/adhm.202302057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Emerging additive manufacturing (AM) strategies can enable the engineering of hierarchal scaffold structures for guiding tissue regeneration. Here, the advantages of two AM approaches, melt electrowriting (MEW) and fused deposition modelling (FDM), are leveraged and integrated to fabricate hybrid scaffolds for large bone defect healing. MEW is used to fabricate a microfibrous core to guide bone healing, while FDM is used to fabricate a stiff outer shell for mechanical support, with constructs being coated with pro-osteogenic calcium phosphate (CaP) nano-needles. Compared to MEW scaffolds alone, hybrid scaffolds prevent soft tissue collapse into the defect region and support increased vascularization and higher levels of new bone formation 12 weeks post-implantation. In an additional group, hybrid scaffolds are also functionalized with BMP2 via binding to the CaP coating, which further accelerates healing and facilitates the complete bridging of defects after 12 weeks. Histological analyses demonstrate that such scaffolds support the formation of well-defined annular bone, with an open medullary cavity, smooth periosteal surface, and no evidence of abnormal ectopic bone formation. These results demonstrate the potential of integrating different AM approaches for the development of regenerative biomaterials, and in particular, demonstrate the enhanced bone healing outcomes possible with hybrid MEW-FDM constructs.
Collapse
Affiliation(s)
- Kian F. Eichholz
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 CP49Ireland
| | - Pierluca Pitacco
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 CP49Ireland
| | - Farhad Chariyev‐Prinz
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
| | - Xavier Barceló
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 CP49Ireland
| | - Brooke Tornifoglio
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
| | - Ryan Paetzold
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 CP49Ireland
- School of Mechanical and Materials EngineeringUniversity College DublinDublinD04 E4X0Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation and Customer SolutionsJohnson & Johnson Services, Inc.IrvineCA92618USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin152‐160 Pearse StreetDublinD02 R590Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 VH29Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 CP49Ireland
- Department of Anatomy and Regenerative MERoyal College of Surgeons in IrelandDublinD02 YN77Ireland
| |
Collapse
|
3
|
Huang X, Zheng L, Zheng D, Li S, Fan Y, Lin Z, Huang S. Studying trabecular bone samples demonstrates a power law relation between deteriorated structure and mechanical properties - a study combining 3D printing with the finite element method. Front Endocrinol (Lausanne) 2023; 14:1061758. [PMID: 37334285 PMCID: PMC10273262 DOI: 10.3389/fendo.2023.1061758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The bone volume fraction (BV/TV) significantly contributes to the mechanical properties of trabecular bone. However, when studies compare normal trabeculae against osteoporotic trabeculae (in terms of BV/TV decrease), only an "average" mechanical result has been determined because of the limitation that no two trabecular structures are the same and that each unique trabecular structure can be mechanically tested only once. The mathematic relation between individual structural deterioration and mechanical properties during aging or the osteoporosis process has yet to be further clarified. Three-dimensional (3D) printing and micro-CT-based finite element method (μFEM) can assist in overcoming this issue. Methods In this study, we 3D printed structural-identical but BV/TV value-attenuated trabecular bones (scaled up ×20) from the distal femur of healthy and ovariectomized rats and performed compression mechanical tests. Corresponding μFEM models were also established for simulations. The tissue modulus and strength of 3D printed trabecular bones as well as the effective tissue modulus (denoted as Ez) derived from μFEM models were finally corrected by the side-artifact correction factor. Results The results showed that the tissue modulus corrected, strength corrected and Ez corrected exhibited a significant power law function of BV/TV in structural-identical but BV/TV value-attenuated trabecular samples. Discussion Using 3D printed bones, this study confirms the long-known relationship measured in trabecular tissue with varying volume fractions. In the future, 3D printing may help us attain better bone strength evaluations and even personal fracture risk assessments for patients who suffer from osteoporosis.
Collapse
Affiliation(s)
- Xiuhong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liqin Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Desheng Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaobin Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yueguang Fan
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Lin
- Department of Orthopedic Trauma, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaohong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zheng L, Huang X, Li C, Li P, Lin Z, Huang S. 3D printed trabeculae conditionally reproduce the mechanical properties of the actual trabeculae - A preliminary study. Heliyon 2022; 8:e12101. [PMID: 36544825 PMCID: PMC9761705 DOI: 10.1016/j.heliyon.2022.e12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing has been used to fabricate synthetic trabeculae models and to test mechanical behavior that cannot be recognized in the actual sample, but the extent to which 3D printed trabeculae replicate the mechanical behavior of the actual trabeculae remains to be quantified. The aim of this study was to evaluate the accuracy of 3D printed trabeculae in reproducing the mechanical properties of the corresponding actual trabeculae. Twelve human trabecular cubes (5 × 5 × 5 mm) were scanned by micro-CT to form the trabecular 3D model. Each trabecular 3D model was scaled ×2-, ×3-, ×4- and ×5-fold and then printed twice at a layer thickness of 60 μm using poly (lactic acid) (PLA). The actual trabecular cubes and the 3D-printed trabecular cubes were first compressed under a loading rate of 1 mm/min; another replicated stack of 3D-printed trabecular cubes was compressed under a strain rate of 0.2/min. The results showed that the stiffness of the printed cubes tended to increase, while the strength tended to converge when the magnification increased under the two loading conditions. The strain rate effect was found in the printed cubes. The correlation coefficient (R2) of the mechanical properties between the printed and actual trabeculae can reach up to 0.94, especially under ×3-, ×4- and ×5-fold magnification. In conclusion, 3D printing could be a potential tool to evaluate the mechanical behavior of actual trabecular tissue in vitro and may help in the future to predict the risk of fracture and even personalize the treatment evaluation for osteoporosis and other trabecular bone pathologies.
Collapse
Affiliation(s)
- Liqin Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuhong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chihung Li
- International College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Li
- Department of Orthopedics, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, China
- Department of Orthopedics, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Ziling Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Plavec R, Horváth V, Hlaváčiková S, Omaníková L, Repiská M, Medlenová E, Feranc J, Kruželák J, Přikryl R, Figalla S, Kontárová S, Baco A, Danišová L, Vanovčanová Z, Alexy P. Influence of Multiple Thermomechanical Processing of 3D Filaments Based on Polylactic Acid and Polyhydroxybutyrate on Their Rheological and Utility Properties. Polymers (Basel) 2022; 14:polym14101947. [PMID: 35631830 PMCID: PMC9143941 DOI: 10.3390/polym14101947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study focused on material recycling of a biodegradable blend based on PLA and PHB for multiple applications of biodegradable polymeric material under real conditions. In this study, we investigated the effect of multiple processing of a biodegradable polymer blend under the trade name NONOILEN®, which was processed under laboratory as well as industrial conditions. In this article, we report on testing the effect of blending and multiple processing on thermomechanical stability, molecular characteristics, as well as thermophysical and mechanical properties of experimental- and industrial-type tested material suitable for FDM 3D technology. The results showed that the studied material degraded during blending and subsequently during multiple processing. Even after partial degradation, which was demonstrated by a decrease in average molecular weight and a decrease in complex viscosity in the process of multiple reprocessing, there was no significant change in the material’s thermophysical properties, either in laboratory or industrial conditions. There was also no negative impact on the strength characteristics of multiple processed samples. The results of this work show that a biodegradable polymer blend based on PLA and PHB is a suitable candidate for material recycling even in industrial processing conditions. In addition, the results suggest that the biodegradable polymeric material NONOILEN® 3D 3056-2 is suitable for multiple uses in FDM technology.
Collapse
Affiliation(s)
- Roderik Plavec
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
- Correspondence:
| | - Vojtech Horváth
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Slávka Hlaváčiková
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Leona Omaníková
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Martina Repiská
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Elena Medlenová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Jozef Feranc
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Ján Kruželák
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (R.P.); (S.F.); (S.K.)
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (R.P.); (S.F.); (S.K.)
| | - Soňa Kontárová
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (R.P.); (S.F.); (S.K.)
| | - Andrej Baco
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Lucia Danišová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Zuzana Vanovčanová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| |
Collapse
|
6
|
Vanaei S, Parizi M, Vanaei S, Salemizadehparizi F, Vanaei H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2020.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Athanasios T, Konstantinos A, Despoina D. Three-dimensional-printed replica models of bone for experimentally decoupling trabecular bone properties contribution to ultrasound propagation parameters. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:296. [PMID: 33514143 DOI: 10.1121/10.0003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A detailed investigation of the relationship between ultrasonic (US) properties and trabecular bone microstructure is difficult because of the great variability in the bone loss process. The aim of this work was twofold. First, to verify by compressive tests that the three-dimensional (3D)-printer is able to produce precisely and repeatedly "bone replica models" of different size and density. Following, replicas of the original specimens with two different polymers and thinned trabeculae models were used to investigate US properties (speed of sound, SOS, and backscatter coefficient), aiming to deconvolute the influence of material properties on ultrasound characteristics. The results revealed that matrix material properties influence only the magnitude of the backscatter coefficient, whereas the characteristic undulated patterns are related to the trabecular structure. Simulation of perforation and thinning of cancellous bone, associated with bone loss, showed that SOS and mechanical properties were reduced perfectly linearly with apparent density when structure deteriorated. The 3D-printed bone replicas have the potential to enable systematic investigations of the influence of structure on both acoustical and mechanical properties and evaluate changes caused by bone loss. The development of replicas from materials with properties close to those of bone will permit quantitative conclusions for trabecular bone.
Collapse
Affiliation(s)
- Tsirigotis Athanasios
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| | - Apostolopoulos Konstantinos
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| | - Deligianni Despoina
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| |
Collapse
|
8
|
H S B, Bonthu D, Prabhakar P, Doddamani M. Three-Dimensional Printed Lightweight Composite Foams. ACS OMEGA 2020; 5:22536-22550. [PMID: 32923813 PMCID: PMC7482239 DOI: 10.1021/acsomega.0c03174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 05/25/2023]
Abstract
The goal of this paper is to enable three-dimensional (3D) printed lightweight composite foams by blending hollow glass microballoons (GMBs) with high density polyethylene (HDPE). To that end, lightweight feedstock for printing syntactic foam composites is developed. The blend for this is prepared by varying the GMB content (20, 40, and 60 volume %) in HDPE for filament extrusion, which is subsequently used for 3D printing. The rheological properties and the melt flow index (MFI) of blends are investigated for identifying suitable printing parameters. It is observed that the storage and loss modulus, as well as complex viscosity, increase with increasing GMB content, whereas MFI decreases. Further, the coefficient of thermal expansion of HDPE and foam filaments decreases with increasing GMB content, thereby lowering the thermal stresses in prints, which promotes the reduction in warpage. The mechanical properties of filaments are determined by subjecting them to tensile tests, whereas 3D printed samples are tested under tensile and flexure tests. The tensile modulus of the filament increases with increasing GMB content (8-47%) as compared to HDPE and exhibit comparable filament strength. 3D printed foams show a higher specific tensile and flexural modulus as compared to neat HDPE, making them suitable candidate materials for weight-sensitive applications. HDPE having 60% by volume GMB exhibited the highest modulus and is 48.02% higher than the printed HDPE. Finally, the property map reveals a higher modulus and comparable strength against injection- and compression-molded foams. Printed foam registered 1.8 times higher modulus than the molded samples. Hence, 3D printed foams have the potential for replacing components processed through conventional manufacturing processes that have limitations on geometrically complex designs, lead time, and associated costs.
Collapse
Affiliation(s)
- Bharath H S
- Advanced
Manufacturing Laboratory, Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka 53706, India
| | - Dileep Bonthu
- Advanced
Manufacturing Laboratory, Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka 53706, India
| | - Pavana Prabhakar
- Department
of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mrityunjay Doddamani
- Advanced
Manufacturing Laboratory, Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka 53706, India
| |
Collapse
|
9
|
Schipani R, Nolan DR, Lally C, Kelly DJ. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering. Connect Tissue Res 2020; 61:174-189. [PMID: 31495233 DOI: 10.1080/03008207.2019.1656720] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The suitability of a scaffold for tissue engineering is determined by a number of interrelated factors. The biomaterial should be biocompatible and cell instructive, with a porosity and pore interconnectivity that facilitates cellular migration and the transport of nutrients and waste products into and out of the scaffolds. For the engineering of load bearing tissues, the scaffold may also be required to possess specific mechanical properties and/or ensure the transfer of mechanical stimuli to cells to direct their differentiation. Achieving these design goals is challenging, but could potentially be realised by integrating computational tools such as finite element (FE) modelling with three-dimensional (3D) printing techniques to assess how scaffold architecture and material properties influence the performance of the implant. In this study we first use Fused Deposition Modelling (FDM) to modulate the architecture of polycaprolactone (PCL) scaffolds, exploring the influence of varying fibre diameter, spacing and laydown pattern on the structural and mechanical properties of such scaffolds. We next demonstrate that a simple FE modelling strategy, which captures key aspects of the printed scaffold's actual geometry and material behaviour, can be used to accurately model the mechanical characteristics of such scaffolds. We then show the utility of this strategy by using FE modelling to help design 3D printed scaffolds with mechanical properties mimicking that of articular cartilage. In conclusion, this study demonstrates that a relatively simple FE modelling approach can be used to inform the design of 3D printed scaffolds to ensure their bulk mechanical properties mimic specific target tissues.
Collapse
Affiliation(s)
- Rossana Schipani
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - David R Nolan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitrίona Lally
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J Mech Behav Biomed Mater 2019; 103:103608. [PMID: 32090935 DOI: 10.1016/j.jmbbm.2019.103608] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
Additive manufacturing has significant advantages, in the biomedical field, allowing for customized medical products where complex architectures can be achieved directly. While additive manufacturing can be used to fabricate synthetic bone models, this approach is limited by the printing resolution, at the level of the trabecular bone architecture. Therefore, the aim of this study was to evaluate the possibilities of using fused deposition modeling (FDM) to this end. To better mimic real bone, both in terms of mechanical properties and biodegradability, a composite of degradable polymer, poly(lactic acid) (PLA), and hydroxyapatite (HA) was used as the filament. Three PLA/HA composite formulations with 5-10-15 wt% HA were evaluated, and scaled up human trabecular bone models were printed using these materials. Morphometric and mechanical properties of the printed models were evaluated by micro-computed tomography, compression and screw pull out tests. It was shown that the trabecular architecture could be reproduced with FDM and PLA by applying a scaling factor of 2-4. The incorporation of HA particles reduced the printing accuracy, with respect to morphology, but showed potential for enhancement of the mechanical properties. The scaled-up models displayed comparable, or slightly enhanced, strength compared to the commonly used polymeric foam synthetic bone models (i.e. Sawbones). Reproducing the trabecular morphology by 3D printed PLA/HA composites appears to be a promising strategy for synthetic bone models, when high printed resolution can be achieved.
Collapse
|
11
|
Spoerk M, Holzer C, Gonzalez‐Gutierrez J. Material extrusion‐based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. J Appl Polym Sci 2019. [DOI: 10.1002/app.48545] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Spoerk
- Polymer ProcessingMontanuniversitaet Leoben, Otto Gloeckel‐Straße 2 Leoben 8700 Austria
| | - Clemens Holzer
- Polymer ProcessingMontanuniversitaet Leoben, Otto Gloeckel‐Straße 2 Leoben 8700 Austria
| | | |
Collapse
|
12
|
Masaeli R, Zandsalimi K, Rasoulianboroujeni M, Tayebi L. Challenges in Three-Dimensional Printing of Bone Substitutes. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:387-397. [DOI: 10.1089/ten.teb.2018.0381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Reza Masaeli
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Wood Z, Lynn L, Nguyen JT, Black MA, Patel M, Barak MM. Are we crying Wolff? 3D printed replicas of trabecular bone structure demonstrate higher stiffness and strength during off-axis loading. Bone 2019; 127:635-645. [PMID: 31390534 PMCID: PMC6939675 DOI: 10.1016/j.bone.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/18/2022]
Abstract
Roux's principle of bone functional adaptation postulates that bone tissue, and particularly trabecular bone tissue, responds to mechanical stimuli by adjusting (modeling) its architecture accordingly. Hence, it predicts that the new modeled trabecular structure is mechanically improved (stiffer and stronger) in line with the habitual in vivo loading direction. While previous studies found indirect evidence to support this theory, direct support was so far unattainable. This is attributed to the fact that each trabecular bone is unique, and that trabecular bone tissue tends to be damaged during mechanical testing. Consequently, a unique modeled trabecular structure can be mechanically tested only along one direction and a comparison to other directions for that specific structure is impossible. To address this issue, we have 3D printed 10 replicas of a trabecular structure from a sheep talus cropped along the 3 principal axes of the bone and in line with the principal direction of loading (denoted on-axis model). Next, we have rotated the same cropped trabecular structure in increments of 10° up to 90° to the bone principal direction of loading (denoted off-axis models) and printed 10 replicas of each off-axis model. Finally, all on-axis and off-axis 3D printed replicas were loaded in compression until failure and trabecular structure stiffness and strength were calculated. Contrary to our prediction, and conflicting with Roux's principle of bone functional adaptation, we found that a trabecular structure loaded off-axis tended to have higher stiffness and strength values when compared to the same trabecular structure loaded on-axis. These unexpected results may not disprove Roux's principle of bone functional adaptation, but they do imply that trabecular bone adaptation may serve additional purposes than simply optimizing bone structure to one principal loading scenario and this suggests that we still don't fully understand bone modeling in its entirety.
Collapse
Affiliation(s)
- Zach Wood
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Lisa Lynn
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Jack T Nguyen
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Margaret A Black
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Meha Patel
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Meir M Barak
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA.
| |
Collapse
|
14
|
Yang Y, Wang G, Liang H, Gao C, Peng S, Shen L, Shuai C. Additive manufacturing of bone scaffolds. Int J Bioprint 2018; 5:148. [PMID: 32596528 PMCID: PMC7294697 DOI: 10.18063/ijb.v5i1.148] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Additive manufacturing (AM) can obtain not only customized external shape but also porous internal structure for scaffolds, both of which are of great importance for repairing large segmental bone defects. The scaffold fabrication process generally involves scaffold design, AM, and post-treatments. Thus, this article firstly reviews the state-of-the-art of scaffold design, including computer-aided design, reverse modeling, topology optimization, and mathematical modeling. In addition, the current characteristics of several typical AM techniques, including selective laser sintering, fused deposition modeling (FDM), and electron beam melting (EBM), especially their advantages and limitations are presented. In particular, selective laser sintering is able to obtain scaffolds with nanoscale grains, due to its high heating rate and a short holding time. However, this character usually results in insufficient densification. FDM can fabricate scaffolds with a relative high accuracy of pore structure but with a relative low mechanical strength. EBM with a high beam-material coupling efficiency can process high melting point metals, but it exhibits a low-resolution and poor surface quality. Furthermore, the common post-treatments, with main focus on heat and surface treatments, which are applied to improve the comprehensive performance are also discussed. Finally, this review also discusses the future directions for AM scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Youwen Yang
- Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Guoyong Wang
- Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Huixin Liang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, China
| |
Collapse
|
15
|
Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Schnettler R, Barbeck M. Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation. Int J Mol Sci 2018; 19:E3308. [PMID: 30355988 PMCID: PMC6274711 DOI: 10.3390/ijms19113308] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) printing has become an important tool in the field of tissue engineering and its further development will lead to completely new clinical possibilities. The ability to create tissue scaffolds with controllable characteristics, such as internal architecture, porosity, and interconnectivity make it highly desirable in comparison to conventional techniques, which lack a defined structure and repeatability between scaffolds. Furthermore, 3D printing allows for the production of scaffolds with patient-specific dimensions using computer-aided design. The availability of commercially available 3D printed permanent implants is on the rise; however, there are yet to be any commercially available biodegradable/bioresorbable devices. This review will compare the main 3D printing techniques of: stereolithography; selective laser sintering; powder bed inkjet printing and extrusion printing; for the fabrication of biodegradable/bioresorbable bone tissue scaffolds; and, discuss their potential for dental applications, specifically augmentation of the alveolar ridge.
Collapse
Affiliation(s)
- Patrick Rider
- Botiss Biomaterials GmbH, Hauptstr. 28, 15806 Zossen, Germany.
| | - Željka Perić Kačarević
- Department of Anatomy, Histology and Embryology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia.
| | - Said Alkildani
- Department of Biomedical Engineering, Faculty of Applied Medical Sciences, German-Jordanian University, Amman 11180, Jordan.
| | - Sujith Retnasingh
- Institutes for Environmental Toxicology, Martin-Luther-Universität, Halle-Wittenberg and Faculty of Biomedical Engineering, Anhalt University of Applied Science, 06366 Köthen, Germany.
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, Tayebi L. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep 2018; 8:14889. [PMID: 30291271 PMCID: PMC6173780 DOI: 10.1038/s41598-018-33245-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, WI, USA.
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Nasim Kiaie
- Department of Tissue Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Kimia Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. BURNS & TRAUMA 2018; 6:19. [PMID: 29988731 PMCID: PMC6029169 DOI: 10.1186/s41038-018-0121-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Material extrusion additive manufacturing has rapidly grown in use for tissue engineering research since its adoption in the year 2000. It has enabled researchers to produce scaffolds with intricate porous geometries that were not feasible with traditional manufacturing processes. Researchers can control the structural geometry through a wide range of customisable printing parameters and design choices including material, print path, temperature, and many other process parameters. Currently, the impact of these choices is not fully understood. This review focuses on how the position and orientation of extruded filaments, which sometimes referred to as the print path, lay-down pattern, or simply “scaffold design”, affect scaffold properties and biological performance. By analysing trends across multiple studies, new understanding was developed on how filament position affects mechanical properties. Biological performance was also found to be affected by filament position, but a lack of consensus between studies indicates a need for further research and understanding. In most research studies, scaffold design was dictated by capabilities of additive manufacturing software rather than free-form design of structural geometry optimised for biological requirements. There is scope for much greater application of engineering innovation to additive manufacture novel geometries. To achieve this, better understanding of biological requirements is needed to enable the effective specification of ideal scaffold geometries.
Collapse
Affiliation(s)
- Andrew Gleadall
- 1Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Dafydd Visscher
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jing Yang
- 3Faculty of Science, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Daniel Thomas
- 3Dynamic Systems, Heol Ty Gwyn Industrial Estate, Bridgend, CF34 0BQ UK
| | - Joel Segal
- 5Advanced Manufacturing Technology Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
18
|
Szivek JA, Gonzales DA, Wojtanowski AM, Martinez MA, Smith JL. Mesenchymal stem cell seeded, biomimetic 3D printed scaffolds induce complete bridging of femoral critical sized defects. J Biomed Mater Res B Appl Biomater 2018; 107:242-252. [PMID: 29569331 DOI: 10.1002/jbm.b.34115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/26/2018] [Accepted: 02/26/2018] [Indexed: 01/08/2023]
Abstract
No current clinical treatments provide an ideal long-term solution for repair of long bone segment defects. Incomplete healing prevents patients from returning to preinjury activity and ultimately requires additional surgery to induce healing. Obtaining autologous graft material is costly, incurs morbidity, requires surgical time, and quality material is finite. In this pilot study, 3D printed biomimetic scaffolds were used to facilitate rapid bone bridging in critical sized defects in a sheep model. An inverse trabecular pattern based on micro-CT scans of sheep trabecular bone was printed in polybutylene terephthalate. Scaffolds were coated with micron-sized tricalcium phosphate particles to induce osteoconductivity. Mesenchymal stem cells (MSCs) were isolated from sheep inguinal and tail fat, in one group of sheep and scaffolds were infiltrated with MSCs in a bioreactor. Controls did not undergo surgery for cell extraction. Scaffolds were implanted into two experimental and two control adult sheep, and followed for either 3 or 6 months. Monthly radiographs and post explant micro-CT scanning demonstrated bone formation on the lateral, anterior, medial, and posterior-medial aspects along the entire length of the defect. Bone formation was absent on the posterior-lateral aspect where a muscle is generally attached to the bone. The 3-month time point showed 15.5% more cortical bone deposition around the scaffold circumference while the 6-month time point showed 40.9% more bone deposition within scaffold pores. Control sheep failed to unite. Serum collagen type-1C-terminus telopeptides (CTX-1) showed time-dependent levels of bone resorption, and calcein labeling demonstrated an increase in bone formation rate in treated animals compared with controls. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 242-252, 2019.
Collapse
Affiliation(s)
- John A Szivek
- Orthopaedic Research Laboratory, Orthopaedic Surgery Department and Arizona Arthritis Center, University of Arizona, Arizona
| | - David A Gonzales
- Orthopaedic Research Laboratory, Orthopaedic Surgery Department and Arizona Arthritis Center, University of Arizona, Arizona
| | - Andrew M Wojtanowski
- Orthopaedic Research Laboratory, Orthopaedic Surgery Department and Arizona Arthritis Center, University of Arizona, Arizona
| | - Michael A Martinez
- Orthopaedic Research Laboratory, Orthopaedic Surgery Department and Arizona Arthritis Center, University of Arizona, Arizona
| | - Jordan L Smith
- Orthopaedic Research Laboratory, Orthopaedic Surgery Department and Arizona Arthritis Center, University of Arizona, Arizona
| |
Collapse
|
19
|
Barak MM, Black MA. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J Mech Behav Biomed Mater 2018; 78:455-464. [PMID: 29241149 PMCID: PMC5758409 DOI: 10.1016/j.jmbbm.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption.
Collapse
Affiliation(s)
- Meir Max Barak
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA.
| | | |
Collapse
|
20
|
Little H, Themistou E, Clarke SA, Cunningham E, Buchanan F. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 29:14. [PMID: 29285611 DOI: 10.1007/s10856-017-6019-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Process-induced degradation of clinically relevant resorbable polymers was investigated for two thermal techniques, filament extrusion followed by fused deposition modelling (FDM). The aim was to develop a clear understanding of the relationship between temperature, processing time and resultant process-induced degradation. This acts to address the current knowledge gap in studies involving thermal processing of resorbable polymers. Poly(DL-lactide-co-glycolide) (PDLGA) was chosen for its clinically relevant resorption properties. Furthermore, a comparative study of controlled thermal exposure was conducted through compression moulding PDLGA at a selected range of temperatures (150-225 °C) and times (0.5-20 min). Differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterise thermally induced degradation behaviour. DSC proved insensitive to degradation effects, whereas GPC demonstrated distinct reductions in molecular weight allowing for the quantification of degradation. A near-exponential pattern of degradation was identified. Through the application of statistical chain scission equations, a predictive plot of theoretical degradation was created. Thermal degradation was found to have a significant effect on the molecular weight with a reduction of up to 96% experienced in the controlled processing study. The proposed empirical model may assist prediction of changes in molecular weight, however, accuracy limitations are highlighted for twin-screw extrusion, accredited to high-shear mixing. The results from this study highlight the process sensitivity of PDLGA and proposes a methodology for quantification and prediction, which contributes to efforts in understanding the influence of manufacture on performance of degradable medical implants.
Collapse
Affiliation(s)
- H Little
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Ashby Building, Stranmillis Road, BT9 5AH, Belfast, UK
| | | | - S A Clarke
- School of Nursing and Midwifery, Queens University Belfast, Belfast, BT7 1NN, UK
| | - E Cunningham
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Ashby Building, Stranmillis Road, BT9 5AH, Belfast, UK
| | - F Buchanan
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Ashby Building, Stranmillis Road, BT9 5AH, Belfast, UK.
| |
Collapse
|
21
|
Yu J, Xu Y, Li S, Seifert GV, Becker ML. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules 2017; 18:4171-4183. [PMID: 29020441 DOI: 10.1021/acs.biomac.7b01222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer-bioceramic composites incorporate the desirable properties of each material while mitigating the limiting characteristics of each component. 1,6-Hexanediol l-phenylalanine-based poly(ester urea) (PEU) blended with hydroxyapatite (HA) nanocrystals were three-dimensional (3D) printed into porous scaffolds (75% porosity) via fused deposition modeling and seeded with MC3T3-E1 preosteoblast cells in vitro to examine their bioactivity. The resulting 3D printed scaffolds exhibited a compressive modulus of ∼50 MPa after a 1-week incubation in PBS at 37 °C, cell viability >95%, and a composition-dependent enhancement of radio-contrast. The influence of HA on MC3T3-E1 proliferation and differentiation was measured using quantitative real-time polymerase chain reaction, immunohistochemistry and biochemical assays. After 4 weeks, alkaline phosphatase activity increased significantly for the 30% HA composite with values reaching 2.5-fold greater than the control. Bone sialoprotein showed approximately 880-fold higher expression and 15-fold higher expression of osteocalcin on the 30% HA composite compared to those of the control. Calcium quantification results demonstrated a 185-fold increase of calcium concentration in mineralized extracellular matrix deposition after 4 weeks of cell culture in samples with higher HA content. 3D printed HA-containing PEU composites promote bone regeneration and have the potential to be used in orthopedic applications.
Collapse
Affiliation(s)
- Jiayi Yu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yanyi Xu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Shan Li
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Gabrielle V Seifert
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
22
|
Shivalkar S, Singh S. Solid Freeform Techniques Application in Bone Tissue Engineering for Scaffold Fabrication. Tissue Eng Regen Med 2017; 14:187-200. [PMID: 30603476 PMCID: PMC6171596 DOI: 10.1007/s13770-016-0002-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/31/2016] [Accepted: 04/24/2016] [Indexed: 01/29/2023] Open
Abstract
Solid freeform techniques are revolutionising technology with great potential to fabricate highly organized biodegradable scaffolds for damaged tissues and organs. Scaffolds fabricated via Solid freeform (SFF) techniques have more pronounced effect in bone tissue engineering. SFF techniques produce various types of scaffolds from different biomaterials with specific pore size, geometries, orientation, interconnectivity and anatomical shapes. Scaffolds needs to be designed from such biomaterials which can attach directly to natural tissues and mimic its properties, so ideally mechanical properties of scaffolds should be same as that of regenerating tissues for best results. The scaffolds designed without optimized mechanical properties would lead to the reduced nutrition diffusion within tissue engineered constructs (TECs) causing tissue necrosis. These scaffolds are mainly processed from ceramics and polymers like calcium phosphate, polydioxane, €-polycaprolactone, polylactic and polyglycolic acids etc. While, hydrogel scaffolds provide bridge for encapsulated cells and tissues to integrate with natural ECM. Likewise, 2D images from radiography were not sufficient for the prediction of the brain structure, cranial nerves, vessel and architecture of base of the skull and bones, which became possible using the 3D prototyping technologies. Any misrepresentation can lead to fatal outcomes. Biomodelling from these techniques for spinal surgery and preoperative planning are making its way toward successful treatment of several spinal deformities and spinal tumor. In this review we explored laser based and printing SFF techniques following its methodologies, principles and most recent areas of application with its achievements and possible challenges faced during its applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Science, Indian Institute of Information Technology (IIIT), Allahabad, Devghat, Jhalwa, Allahabad, 211 012 India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology (IIIT), Allahabad, Devghat, Jhalwa, Allahabad, 211 012 India
| |
Collapse
|
23
|
Parwani R, Curto M, Kao AP, Rowley PJ, Pani M, Tozzi G, Barber AH. Morphological and Mechanical Biomimetic Bone Structures. ACS Biomater Sci Eng 2017; 3:2761-2767. [DOI: 10.1021/acsbiomaterials.6b00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Parwani
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - M. Curto
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - A. P. Kao
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - P. J. Rowley
- School
of Earth and Environmental Sciences, Burnaby Building, Burnaby Road, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| | - M. Pani
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - G. Tozzi
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - A. H. Barber
- School
of Engineering, Anglesea
Building, Anglesea Road, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| |
Collapse
|
24
|
Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater Sci Eng 2017; 3:1175-1194. [PMID: 33440508 DOI: 10.1021/acsbiomaterials.6b00370] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in bioprinting technology have been used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. Organ printing and biofabrication provides great potential for the freeform fabrication of 3D living organs using cellular spheroids, biocomposite nanofibers, or bioinks as building blocks for regenerative therapy. Vascularization is often identified as a main technological barrier for building 3D organs in tissue engineering. 3D printing of living tissues starts with potential support of biomaterials to maintain structural integrity and degradation of certain time periods after printing of the scaffolds. Biofabrication is the production of complex living and nonliving biological products from raw materials such as cells, molecules, ECM, and biomaterials. Generally, two basic methods are used for the fabrication of scaffolds such as conventional/traditional fabrication processes and advance fabrication processes for engineering organs. A wide range of polymers and biomaterials are used for the fabrication of scaffolds in tissue engineering applications. 3D additive manufacturing is advancing day-by-day; however, there are various critical challenging factors used for fabricating 3D scaffolds. This review is aimed at understanding the various scaffold fabrication techniques, types of polymers and biomaterials used for the fabrication processes, various fields of applications, and different challenges faced in their fabrication of scaffolds in regenerative therapy.
Collapse
Affiliation(s)
- Greeshma Ratheesh
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Amutha Chinappan
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hariharan Ezhilarasu
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Asif Sadiq
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Marrella A, Cavo M, Scaglione S. Rapid Prototyping for the Engineering of Osteochondral Tissues. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Abstract
Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.
Collapse
Affiliation(s)
- Murat Guvendiren
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Joseph Molde
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rosane M.D. Soares
- Laboratório de Biomateriais Poliméricos (Poli-Bio), Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçaves, 9500, 91501-970 Porto Alegre, Brazil
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
27
|
Szivek JA, Ruth JT, Heden GJ, Martinez MA, Diggins NH, Wenger KH. Determination of joint loads using new sensate scaffolds for regenerating large cartilage defects in the knee. J Biomed Mater Res B Appl Biomater 2016; 105:1409-1421. [DOI: 10.1002/jbm.b.33677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/14/2016] [Accepted: 03/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- John A. Szivek
- Orthopaedic Research Lab; University of Arizona; Tucson Arizona
| | - John T. Ruth
- Orthopaedic Research Lab; University of Arizona; Tucson Arizona
| | - Greg J. Heden
- Orthopaedic Research Lab; University of Arizona; Tucson Arizona
| | | | | | | |
Collapse
|
28
|
Ikejimba L, Lo JY, Chen Y, Oberhofer N, Kiarashi N, Samei E. A quantitative metrology for performance characterization of five breast tomosynthesis systems based on an anthropomorphic phantom. Med Phys 2016; 43:1627. [DOI: 10.1118/1.4943373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Xu N, Ye X, Wei D, Zhong J, Chen Y, Xu G, He D. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14952-14963. [PMID: 25133309 DOI: 10.1021/am502716t] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University , Shanghai 200003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:567-77. [PMID: 24673688 DOI: 10.1089/ten.teb.2013.0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone diseases and injuries are highly incapacitating and result in a high demand for tissue substitutes with specific biomechanical and structural features. Tissue engineering has already proven to be effective in regenerating bone tissue, but has not yet been able to become an economically viable solution due to the complexity of the tissue, which is very difficult to be replicated, eventually requiring the utilization of highly labor-intensive processes. Process automation is seen as the solution for mass production of cellularized bone tissue substitutes at an affordable cost by being able to reduce human intervention as well as reducing product variability. The combination of tools such as medical imaging, computer-aided fabrication, and bioreactor technologies, which are currently used in tissue engineering, shows the potential to generate automated production ecosystems, which will, in turn, enable the generation of commercially available products with widespread clinical application.
Collapse
Affiliation(s)
- Pedro F Costa
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
31
|
Zamarioli A, Maranho DA, Butezloff MM, Moura PA, Volpon JB, Shimano AC. Anatomic changes in the macroscopic morphology and microarchitecture of denervated long bone tissue after spinal cord injury in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:853159. [PMID: 25136632 PMCID: PMC4127270 DOI: 10.1155/2014/853159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
To study the effects of mechanical loading on bones after SCI, we assessed macro- and microscopic anatomy in rats submitted to passive standing (PS) and electrical stimulation (ES). The study design was based on two main groups of juvenile male Wistar rats with SCI: one was followed for 33 days with therapies starting at day 3 and the other was followed for 63 days with therapies starting at day 33. Both groups were composed of four subgroups (n = 10/group): (1) Sham, (2) SCI, (3) SCI + PS, and (4) SCI + ES. Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days. The animals were sequentially weighed and euthanized. The femur and tibia were assessed macroscopically and microscopically by scanning electronic microscopy (SEM). The SCI rats gained less weight than Sham-operated animals. Significant reduction of bone mass and periosteal radii was observed in the SCI rats, whereas PS and ES efficiently improved the macroscopic parameters. The SEM images showed less and thin trabecular bone in SCI rats. PS and ES efficiently ameliorated the bone microarchitecture deterioration by thickening and increasing the trabeculae. Based on the detrimental changes in bone tissue following SCI, the mechanical loading through weight bearing and muscle contraction may decrease the bone loss and restore the macro- and microanatomy.
Collapse
Affiliation(s)
- Ariane Zamarioli
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
- Laboratory of Bioengineering, School of Medicine of Ribeirão Preto, University of São Paulo, Pedreira de Freitas, Casa 1, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Daniel A. Maranho
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Mariana M. Butezloff
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Patrícia A. Moura
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - José Batista Volpon
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Antônio C. Shimano
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
32
|
Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014; 3:61-102. [PMID: 26798575 PMCID: PMC4709372 DOI: 10.1007/s40204-014-0026-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).
Collapse
Affiliation(s)
| | - Nattapon Chantarapanich
- Department of Mechanical Engineering, Faculty of Engineering at Si Racha, Kasetsart University, 199 Sukhumvit Road, Si Racha, Chonburi 20230 Thailand
| | - Kriskrai Sitthiseripratip
- National Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120 Thailand
| | - George A. Thouas
- Department of Materials Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Qizhi Chen
- Department of Materials Engineering, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
33
|
Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 2014; 10:580-94. [PMID: 24184176 DOI: 10.1016/j.actbio.2013.10.024] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 02/07/2023]
Abstract
Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties.
Collapse
Affiliation(s)
- S M Giannitelli
- Tissue Engineering Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - D Accoto
- Biomedical Robotics and Biomicrosystems Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - M Trombetta
- Tissue Engineering Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - A Rainer
- Tissue Engineering Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy.
| |
Collapse
|
34
|
Giannitelli SM, Rainer A, Accoto D, De Porcellinis S, De-Juan-Pardo EM, Guglielmelli E, Trombetta M. Optimization Approaches for the Design of Additively Manufactured Scaffolds. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-007-7073-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
35
|
Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-5890-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Abdelaal OAM, Darwish SMH. Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication. ADVANCED STRUCTURED MATERIALS 2013. [DOI: 10.1007/978-3-642-31470-4_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores. J Biomech 2012; 45:2866-75. [DOI: 10.1016/j.jbiomech.2012.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
|
38
|
An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent Mater 2012; 28:1221-31. [PMID: 23018082 DOI: 10.1016/j.dental.2012.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Highly porous apatite-based bioceramic scaffolds have been widely investigated as three-dimensional (3D) templates for cell adhesion, proliferation, and differentiation promoting the bone regeneration. Their fragility, however, limits their clinical application especially for a large bone defect. METHODS To address the hypothesis that using a ZrO(2)/hydroxyapatite (HAp) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO(2)/HAp composite scaffolds with different ZrO(2)/HAp ratios, and evaluated their characteristics. In addition, porous ZrO(2)/HAp scaffolds containing bone marrow derived stromal cells (BMSCs) were implanted into critical-size bone defects for 6 weeks in order to evaluate the bone tissue reconstruction with this material. RESULTS The porosity of a ZrO(2)/HAp scaffold can be adjusted from 72% to 91%, and the compressive strength of the scaffold increased from 2.5 to 13.8MPa when the ZrO(2) content increased from 50 to 100wt%. The cell adhesion and proliferation in the ZrO(2)/HAp scaffold was greatly improved when compared to the scaffold made with ZrO(2) alone. Moreover, in vivo study showed that a BMSCs-loaded ZrO(2)/HAp scaffold provided a suitable 3D environment for BMSC survival and enhanced bone regeneration around the implanted material. SIGNIFICANCE We thus showed that a porous ZrO(2)/HAp composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed in the treatment of large bone defects.
Collapse
Affiliation(s)
- Sang-Hyun An
- Department of Biomaterials Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Castro NJ, Hacking SA, Zhang LG. Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects. Ann Biomed Eng 2012; 40:1628-40. [DOI: 10.1007/s10439-012-0605-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/25/2012] [Indexed: 01/02/2023]
|
40
|
Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean DD, Sylvia VL, Elgendy H, Ong J, Hollinger JO. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 2012; 4:025003. [DOI: 10.1088/1758-5082/4/2/025003] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Rainer A, Giannitelli SM, Accoto D, De Porcellinis S, Guglielmelli E, Trombetta M. Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties. Ann Biomed Eng 2011; 40:966-75. [DOI: 10.1007/s10439-011-0465-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
|
42
|
HE JIANKANG, LI DICHEN, LIU YAXIONG, LI XIAO, XU SHANGLONG, LU BINGHENG. COMPUTATIONAL FLUID DYNAMICS FOR TISSUE ENGINEERING APPLICATIONS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519411004046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrodynamic cellular environment plays an important role in translating engineered tissue constructs into clinically useful grafts. However, the cellular fluid dynamic environment inside bioreactor systems is highly complex and it is normally impractical to experimentally characterize the local flow patterns at the cellular scale. Computational fluid dynamics (CFD) has been recognized as an invaluable and reliable alternative to investigate the complex relationship between hydrodynamic environments and the regeneration of engineered tissues at both the macroscopic and microscopic scales. This review describes the applications of CFD simulations to probe the hydrodynamic environment parameters (e.g., flow rate, shear stress, etc.) and the corresponding experimental validations. We highlight the use of CFD to optimize bioreactor design and scaffold architectures for improved ex-vivo hydrodynamic environments. It is envisioned that CFD could be used to customize specific hydrodynamic cellular environments to meet the unique requirements of different cell types in combination with advanced manufacturing techniques and finally facilitate the maturation of tissue-engineered constructs.
Collapse
Affiliation(s)
- JIANKANG HE
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - DICHEN LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - YAXIONG LIU
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - XIAO LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - SHANGLONG XU
- Department of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - BINGHENG LU
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
43
|
GARZÓN-ALVARADO DIEGOA, VELASCO MARCOA, NARVÁEZ-TOVAR CARLOSA. SELF-ASSEMBLED SCAFFOLDS USING REACTION–DIFFUSION SYSTEMS: A HYPOTHESIS FOR BONE REGENERATION. J MECH MED BIOL 2011. [DOI: 10.1142/s021951941100396x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One area of tissue engineering concerns research into alternatives for new bone formation and replacing its function. Scaffolds have been developed to meet this requirement, allowing cell migration, bone tissue growth, transport of growth factors and nutrients, and the improvement of the mechanical properties of bone. Scaffolds are made from different biomaterials and manufactured using several techniques that, in some cases, do not allow full control over the size and orientation of the pores characterizing the scaffold. A novel hypothesis that a reaction–diffusion (RD) system can be used for designing the geometrical specifications of the bone matrix is thus presented here. The hypothesis was evaluated by making simulations in two- and three-dimensional RD systems in conjunction with the biomaterial scaffold. The results showed the methodology's effectiveness in controlling features such as the percentage of porosity, size, orientation, and interconnectivity of pores in an injectable bone matrix produced by the proposed hypothesis.
Collapse
Affiliation(s)
- DIEGO A. GARZÓN-ALVARADO
- Engineering Modeling and Numerical Methods Group National University of Colombia Cra 30 No. 45-03, Bogotá, Colombia
| | - MARCO A. VELASCO
- Mechanical Engineering Applications and Research Group, Santo Tomás University, Cra 9 No. 51-11, Bogotá, Colombia
| | - CARLOS A. NARVÁEZ-TOVAR
- Mechanical Engineering Applications and Research Group, Santo Tomás University, Cra 9 No. 51-11, Bogotá, Colombia
- Engineering Modeling and Numerical Methods Group, National University of Colombia, Cra 30 No. 45-03, Bogotá, Colombia
| |
Collapse
|
44
|
Geffre CP, Finkbone PR, Bliss CL, Margolis DS, Szivek JA. Load Measurement Accuracy from Sensate Scaffolds with and without a Cartilage Surface. J INVEST SURG 2010; 23:156-62. [DOI: 10.3109/08941939.2010.481006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Detsch R, Dieser I, Deisinger U, Uhl F, Hamisch S, Ziegler G, Lipps G. Biofunctionalization of dispense-plotted hydroxyapatite scaffolds with peptides: quantification and cellular response. J Biomed Mater Res A 2010; 92:493-503. [PMID: 19213057 DOI: 10.1002/jbm.a.32386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hydroxyapatite (HA) ceramic is a widely used synthetic bone substitute material for the regeneration of bone defects. We manufactured HA scaffolds with adjustable pore sizes and pore geometry by dispense-plotting. In addition, we attached peptides covalently onto the HA surface and are able to simultaneously quantify the amount of covalently attached and adsorbed peptide down to the picomolar range with a novel fluorescence-based detection method. In cell culture assays with stromal bone marrow cells, we observed a positive effect of biofunctionalization on cell differentiation after 21 days of culture when comparing the scaffold functionalized with the RGD motif containing adhesion peptide to an unmodified scaffold.
Collapse
Affiliation(s)
- Rainer Detsch
- BioCer Entwicklungs-GmbH, Ludwig-Thoma-Str. 36 c, 95447 Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Geffre CP, Margolis DS, Ruth JT, DeYoung DW, Tellis BC, Szivek JA. A novel biomimetic polymer scaffold design enhances bone ingrowth. J Biomed Mater Res A 2009; 91:795-805. [PMID: 19051300 PMCID: PMC2767470 DOI: 10.1002/jbm.a.32251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There has been recent interest in treating large bone defects with polymer scaffolds because current modalities such as autographs and allographs have limitations. Additionally, polymer scaffolds are utilized in tissue engineering applications to implant and anchor tissues in place, promoting integration with surrounding native tissue. In both applications, rapid and increased bone growth is crucial to the success of the implant. Recent studies have shown that mimicking native bone tissue morphology leads to increased osteoblastic phenotype and more rapid mineralization. The purpose of this study was to compare bone ingrowth into polymer scaffolds created with a biomimetic porous architecture to those with a simple porous design. The biomimetic architecture was designed from the inverse structure of native trabecular bone and manufactured using solid free form fabrication. Histology and muCT analysis demonstrated a 500-600% increase in bone growth into and adjacent to the biomimetic scaffold at five months post-op. This is in agreement with previous studies in which biomimetic approaches accelerated bone formation. It also supports the applicability of polymer scaffolds for the treatment of large tissue defects when implanting tissue-engineering constructs. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009.
Collapse
Affiliation(s)
- Chris P Geffre
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratory, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Design of Bone Scaffolds Structures for Rapid Prototyping with Increased Strength and Osteoconductivity. ACTA ACUST UNITED AC 2009. [DOI: 10.4028/www.scientific.net/amr.83-86.914] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometry of bone scaffolds plays a crucial role in bone tissue regeneration. This architecture, especially pore size and shape, determines the mechanical strength of the scaffold. A number of previous workers have indicated the parameters which are believed to be the main stimulus in the adaptive bone remodelling process. An ideal bone manufacturing system would deliver bone morphogenetic proteins (BMP) and provide adequate mechanical properties. The aim of this study was to design a highly osteoconductive and mechanically strong bone regeneration scaffold which can be successfully manufactured. Three porous architectures of scaffold were designed using Solid EdgeTM 3D solid modelling software. The equivalent trabecular structure model consisted of repeatable unit cells arranged in layers to fill the chosen scaffold volume. The three different unit cell structures examined include cubic, triangular, and hexagonal polyhedral. Designed scaffold’s pores were varied in this study to 120, 340 and 600µm. This range was selected to meet one of the requirements of the scaffold design – the macropores must be at least 100µm in diameter, so the cells can penetrate and proliferate within the structure. The strengths of each scaffold were determined using ANSYSTM finite element software. Trabecular scaffold designs were analysed independently and in connection with simulated cortical bone in order to investigate their stress-strain response. As well as providing useful information on strengths developed from these topologies, the models developed indicated geometric constraints in order to tailor scaffolds to specific patient needs.
Collapse
|
48
|
Szivek J, Nandakumar V, Geffre C, Townsend C. A handheld computer as part of a portable in vivo knee joint load monitoring system. J Med Device 2008; 2:350011-350019. [PMID: 19789715 DOI: 10.1115/1.2952815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In vivo measurement of loads and pressures acting on articular cartilage in the knee joint during various activities and rehabilitative therapies following focal defect repair will provide a means of designing activities that encourage faster and more complete healing of focal defects.It was the goal of this study to develop a totally portable monitoring system that could be used during various activities and allow continuous monitoring of forces acting on the knee. In order to make the monitoring system portable, a handheld computer with custom software, a USB powered miniature wireless receiver and a battery-powered coil were developed to replace a currently used computer, AC powered bench top receiver and power supply.A Dell handheld running Windows Mobile operating system(OS) programmed using Labview was used to collect strain measurements. Measurements collected by the handheld based system connected to the miniature wireless receiver were compared with the measurements collected by a hardwired system and a computer based system during bench top testing and in vivo testing. The newly developed handheld based system had a maximum accuracy of 99% when compared to the computer based system.
Collapse
Affiliation(s)
- Ja Szivek
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Arizona, Tucson, AZ
| | | | | | | |
Collapse
|
49
|
Bliss CL, Szivek JA, Tellis BC, Margolis DS, Schnepp AB, Ruth JT. Sensate scaffolds can reliably detect joint loading. J Biomed Mater Res B Appl Biomater 2007; 81:30-9. [PMID: 16941586 PMCID: PMC2396224 DOI: 10.1002/jbm.b.30632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30 degrees, 50 degrees, and 70 degrees of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage.
Collapse
Affiliation(s)
- C L Bliss
- Orthopedic Research Laboratory, Department of Surgery, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | |
Collapse
|