1
|
Havlickova K, Kuzelova Kostakova E, Lisnenko M, Hauzerova S, Stuchlik M, Vrchovecka S, Vistejnova L, Molacek J, Lukas D, Prochazkova R, Horakova J, Jakubkova S, Heczkova B, Jencova V. The Impacts of the Sterilization Method and the Electrospinning Conditions of Nanofibrous Biodegradable Layers on Their Degradation and Hemocompatibility Behavior. Polymers (Basel) 2024; 16:1029. [PMID: 38674949 PMCID: PMC11053452 DOI: 10.3390/polym16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.
Collapse
Affiliation(s)
- Kristyna Havlickova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Eva Kuzelova Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Martin Stuchlik
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
| | - Jiri Molacek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - David Lukas
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
- Institute of Clinical Disciplines and Biomedicine, Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic;
| | - Sarka Jakubkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Bohdana Heczkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| |
Collapse
|
2
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
3
|
Chaber P, Tylko G, Włodarczyk J, Nitschke P, Hercog A, Jurczyk S, Rech J, Kubacki J, Adamus G. Surface Modification of PHBV Fibrous Scaffold via Lithium Borohydride Reduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7494. [PMID: 36363086 PMCID: PMC9653721 DOI: 10.3390/ma15217494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Łukasiewicz Research Network, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
| | - Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
4
|
Surface oxidation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via photo-activated chlorine dioxide radical. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Mohandas SP, Balan L, Gopi J, Anoop BS, Mohan P S, Philip R, Cubelio SS, Singh ISB. Biocompatibility of polyhydroxybutyrate-co-hydroxyvalerate films generated from Bacillus cereus MCCB 281 for medical applications. Int J Biol Macromol 2021; 176:244-252. [PMID: 33548322 DOI: 10.1016/j.ijbiomac.2021.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/13/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters produced by microorganisms as a source of intracellular energy reserves. These polymers have been extensively studied for tissue engineering and drug delivery applications due to their desirable material properties. Solvent-cast film of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), produced by Bacillus cereus MCCB 281 was characterized to study the surface morphology, roughness, thermal and mechanical properties. PHBV films were slightly hydrophilic with an average surface roughness of 43.66 nm. In vitro cell viability and proliferation studies on PHBV film surface investigated using L929 fibroblasts showed good cell attachment and proliferation. Hemocompatibility of PHBV evaluated by hemolysis assay, in vitro platelet adhesion and coagulation assays demonstrated good blood compatibility for use as blood contact graft materials. Therefore, PHBV produced from the marine bacterium favoured cellular growth of L929 fibroblasts indicating its potential to be used as a biomaterial substrate for cell adhesion in tissue engineering and medical applications.
Collapse
Affiliation(s)
- Sowmya P Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - Linu Balan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - Jayanath Gopi
- Dept. of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - B S Anoop
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | - Sooraj Mohan P
- Department of Environmental Engineering, National I-Lan University, Taiwan
| | - Rosamma Philip
- Dept. of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
| | | | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India.
| |
Collapse
|
6
|
Singh AK, Srivastava JK, Chandel AK, Sharma L, Mallick N, Singh SP. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions. Appl Microbiol Biotechnol 2019; 103:2007-2032. [DOI: 10.1007/s00253-018-09604-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/10/2023]
|
7
|
Zhao Y, Wang Z, Zhang Q, Chen F, Yue Z, Zhang T, Deng H, Huselstein C, Anderson DP, Chang PR, Li Y, Chen Y. Accelerated skin wound healing by soy protein isolate-modified hydroxypropyl chitosan composite films. Int J Biol Macromol 2018; 118:1293-1302. [PMID: 30021397 DOI: 10.1016/j.ijbiomac.2018.06.195] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 06/30/2018] [Indexed: 12/25/2022]
Abstract
In this study, a series of hydroxypropyl chitosan (HPCS)/soy protein isolate (SPI) composite films (HCSFs) with different SPI contents were developed via crosslinking, solution casting, and evaporation process. Effects of the SPI content on the structure and physical properties of the HCSFs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction patterns, scanning electron microscopy, swelling kinetics analysis, and mechanical testing. The HCSFs exhibited a lower swelling ratio with an increase in the SPI content. The tensile strength was in a tunable range from 7.88 ± 3.08 to 40.44 ± 2.31 MPa by adjusting the SPI content. Cytocompatibility and hemocompatibility of the HCSFs were evaluated by a series of in vitro assays, including MTT assay, live/dead assay, cell morphology observation, hemolysis ratio testing, and plasma recalcification time measurement. Results showed that the HCSFs support L929 cells attachment and proliferation without obvious hemolysis, indicating good cytocompatibility and hemocompatibility. The potential of resultant HCSFs as the wound dressings was investigated using a full-thickness skin wound model in rats. Results exhibited that the HCSFs with 50% SPI content had the fastest healing speed and the best skin regeneration efficiency and may be a potential candidate as the wound dressing.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zijian Wang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiang Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Feixiang Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiyi Yue
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiantian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongbing Deng
- Department of School of Environmental Sciences, Resource and Environmental Sciences, Wuhan 430065, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09 Nancy University, Vandœuvre-lès-Nancy, France
| | - Debbie P Anderson
- Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Peter R Chang
- Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Yinping Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immune Related Diseases, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Horakova J, Mikes P, Saman A, Svarcova T, Jencova V, Suchy T, Heczkova B, Jakubkova S, Jirousova J, Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:330-335. [PMID: 29025666 DOI: 10.1016/j.msec.2017.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022]
Abstract
Biodegradable polyesters, namely polycaprolactone (PCL) and copolymer of polylactide and polycaprolactone (PLCL) were electrospun into various fibrous structures and their hemocompatibility was evaluated in vitro. Firstly, hemolytic effect was evaluated upon incubation with diluted whole blood. The results showed that the degree of hemolysis depended on chemical composition and fibrous morphology. Electrospun polycaprolactone induced slight degree of hemolysis depending on its molecular weight and fibrous morphology; copolymer PLCL did not cause detectable hemolysis. The influence of coagulation pathways was examined by measurement of coagulation times. It was showed that intrinsic coagulation pathway assessed by activated partial thromboplastin time (APTT) was moderately accelerated after incubation with PCL and prolonged after incubation with copolymer PLCL. Extrinsic activation of coagulation tested by prothrombin time (PT) was slightly accelerated after incubation with all tested electrospun samples. Thrombogenicity assessment of fibrous samples revealed high thrombogenic properties of fibrous materials that was comparable to high degree of collagen thrombogenicity. The level of platelet activation was dependent on chemical composition and surface morphology of tested materials.
Collapse
Affiliation(s)
- Jana Horakova
- Technical University of Liberec, Faculty of Textile, Department of Nonwovens and Nanofibrous Materials, Studentska 2, 461 17 Liberec, Czech Republic.
| | - Petr Mikes
- Technical University of Liberec, Faculty of Textile, Department of Nonwovens and Nanofibrous Materials, Studentska 2, 461 17 Liberec, Czech Republic.
| | - Ales Saman
- Technical University of Liberec, Faculty of Textile, Department of Nonwovens and Nanofibrous Materials, Studentska 2, 461 17 Liberec, Czech Republic.
| | - Tereza Svarcova
- Technical University of Liberec, Faculty of Textile, Department of Nonwovens and Nanofibrous Materials, Studentska 2, 461 17 Liberec, Czech Republic.
| | - Vera Jencova
- Technical University of Liberec, Faculty of Textile, Department of Nonwovens and Nanofibrous Materials, Studentska 2, 461 17 Liberec, Czech Republic.
| | - Tomas Suchy
- The Czech Academy of Sciences, Institute of Rock Structure and Mechanics, V Holesovickach 94/41, 182 09 Prague, Czech Republic.
| | - Bohdana Heczkova
- Liberec Regional Hospital, Department of Clinical Hematology, Baarova 15, 460 01 Liberec, Czech Republic.
| | - Sarka Jakubkova
- Liberec Regional Hospital, Department of Blood Transfusion, Baarova 15, 460 01 Liberec, Czech Republic.
| | - Jaroslava Jirousova
- Liberec Regional Hospital, Department of Blood Transfusion, Baarova 15, 460 01 Liberec, Czech Republic.
| | - Renata Prochazkova
- Liberec Regional Hospital, Department of Blood Transfusion, Baarova 15, 460 01 Liberec, Czech Republic; Technical University of Liberec, Faculty of Health Studies, Studentska 2, 461 17 Liberec, Czech Republic.
| |
Collapse
|
9
|
Wang X, Hu L, Li C, Gan L, He M, He X, Tian W, Li M, Xu L, Li Y, Chen Y. Improvement in physical and biological properties of chitosan/soy protein films by surface grafted heparin. Int J Biol Macromol 2016; 83:19-29. [DOI: 10.1016/j.ijbiomac.2015.11.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022]
|
10
|
Zhao J, Chen Y, Yang S, Wu S, Zeng R, Wu H, Zhang J, Zha Z, Tu M. Improving blood-compatibility via surface heparin-immobilization based on a liquid crystalline matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:133-41. [DOI: 10.1016/j.msec.2015.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|
11
|
Zhang E, Shen F. Blood compatibility of a ferulic acid (FA)-eluting PHBHHx system for biodegradable magnesium stent application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:37-45. [DOI: 10.1016/j.msec.2015.03.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/04/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
|
12
|
Zhang E, Shen F. A ferulic acid (FA)-eluting system for biodegradable magnesium stent: Cells response of HUVECs. J Biomed Mater Res A 2015; 103:2758-69. [DOI: 10.1002/jbm.a.35410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/02/2014] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China; Northeastern University; Shenyang 110819 China
| | - Feng Shen
- Shenzhen Salubris Biomedical Engineering Co., LTD; Shenzhen 518102 China
- School of Materials Sciences and Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
13
|
He Y, Hu Z, Ren M, Ding C, Chen P, Gu Q, Wu Q. Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:561-571. [PMID: 24178983 DOI: 10.1007/s10856-013-5073-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
Two types of fibers were prepared by using bio-based materials: a mono-filament made from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a multi-filament made from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) blend. The two fibers were evaluated for mechanical properties, biocompatibility and degradability for the potential application as medical sutures. The PHBHHx fiber showed remarkable biocompatibility by H.E. Stainning, with very little impact to the surrounding tissues. The degradation of the fiber was observed by SEM after implantation for 36 weeks, and the major degradation product was detected after 96 weeks. Consistently, the PHBHHx fiber maintained more than half of the mechanical properties after 96 weeks. The other fiber was prepared by twisting PHBV/PLA blend strands to a bunch, and showed high biocompatibility and relatively high degradability. The bunched structure loosed after 36 weeks of implantation. These low-cost and easily prepared fibers have great potential in medical applications, since they could avoid the formation of fibrous capsule, reduce the size of scar, and degrade into non-toxic and even beneficial products.
Collapse
Affiliation(s)
- Yu He
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Hao N, Wang YB, Zhang SP, Shi SQ, Nakashima K, Gong YK. Surface reconstruction and hemocompatibility improvement of a phosphorylcholine end-capped poly(butylene succinate) coating. J Biomed Mater Res A 2013; 102:2972-81. [DOI: 10.1002/jbm.a.34967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Ni Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Yan-Bing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Shi-Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Su-Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | | | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| |
Collapse
|
15
|
Li Z, Zhao X, Ye L, Coates P, Caton-Rose F, Martyn M. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. J Biomater Appl 2013; 28:978-89. [DOI: 10.1177/0885328213490047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation.
Collapse
Affiliation(s)
- Zhengqiu Li
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Phil Coates
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| | - Fin Caton-Rose
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| | - Michasel Martyn
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| |
Collapse
|
16
|
Zhang Q, Chen L, Dong Y, Lu S. Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1616-22. [DOI: 10.1016/j.msec.2012.12.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/28/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
17
|
García-García JM, Quijada-Garrido I, López L, París R, Núñez-López MT, de la Peña Zarzuelo E, Garrido L. The surface modification of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers to improve the attachment of urothelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:362-9. [DOI: 10.1016/j.msec.2012.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/03/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
|
18
|
Lu X, Wang L, Yang Z, Lu H. Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/nerve tissue engineering. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.46097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Improved thrombogenicity on oxygen etched Ti6Al4V surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|