1
|
Norouzi MR, Ghasemi-Mobarakeh L, Itel F, Schoeller J, Fashandi H, Fortunato G, Rossi RM. Dual Functional Antibacterial-Antioxidant Core/Shell Alginate/Poly(ε-caprolactone) Nanofiber Membrane: A Potential Wound Dressing. ACS OMEGA 2024; 9:25124-25134. [PMID: 38882148 PMCID: PMC11170714 DOI: 10.1021/acsomega.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Core/shell nanofibers offer the advantage of encapsulating multiple drugs with different hydrophilicity in the core and shell, thus allowing for the controlled release of pharmaceutic agents. Specifically, the burst release of hydrophilic drugs from such fiber membranes causes an instantaneous high drug concentration, whereas a long and steady release is usually desired. Herein, we tackle the problem of the initial burst release by the generation of core/shell nanofibers with the hydrophilic antibiotic drug gentamycin loaded within a hydrophilic alginate core surrounded by a hydrophobic shell of poly(ε-caprolactone). Emulsion electrospinning was used as the nanofibrous mesh generation procedure. This process also allows for the loading of a hydrophobic compound, where we selected a natural antioxidant molecule, betulin (BTL), to detoxify the radicals. The resulting nanofibers exhibited a cylindrical shape with a core/shell structure. In vitro tests showed a controlled release of gentamicin from nanofibers via diffusion. The drug reached 93% release in an alginate hydrogel film but only 50% release in the nanofibers, suggesting its potential to minimize the initial burst release. Antibacterial tests revealed significant activity against both Gram-negative and Gram-positive bacteria. The antioxidant property of betulin was confirmed through the DPPH assay, where the incorporation of 20% BTL revealed 37.3% DPPH scavenging. The nanofibers also exhibited favorable biocompatibility in cell culture studies, and no harmful effects on cell viability were observed. Overall, this research offers a promising approach to producing core/shell nanofibrous mats with antibacterial and antioxidant properties, which could effectively address the requirements of wound dressings, including infection prevention and wound healing acceleration.
Collapse
Affiliation(s)
- Mohammad-Reza Norouzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
2
|
Karaca MA, Kancagi DD, Ozbek U, Ovali E, Gok O. Betulin Stimulates Osteogenic Differentiation of Human Osteoblasts-Loaded Alginate-Gelatin Microbeads. Bioengineering (Basel) 2024; 11:553. [PMID: 38927789 PMCID: PMC11201098 DOI: 10.3390/bioengineering11060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts. However, stem cell therapy has been shown to increase bone regeneration and decrease osteoporotic bone formation. Stem cell therapy combined with betulin (BET) supplementation might be adequate for bone remodeling and new bone tissue generation. In this study, the effect of BET on the viability and osteogenic differentiation of hFOB 1.19 cells was investigated. The cells were encapsulated in alginate-gelatin (AlGel) microbeads. In vitro tests were conducted during the 12 d of incubation. While BET showed cytotoxic activity (>1 µM) toward non-encapsulated hFOB 1.19 cells, encapsulated cells retained their functionality for up to 12 days, even at 5 µM BET. Moreover, the expression of osteogenic markers indicates an enhanced osteo-inductive effect of betulin on encapsulated hFOB 1.19, compared to the non-encapsulated cell culture. The 3D micro-environment of the AlGel microcapsules successfully protects the hFOB 1.19 cells against BET cytotoxicity, allowing BET to improve the mineralization and differentiation of osteoblast cells.
Collapse
Affiliation(s)
- Mehmet Ali Karaca
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Derya Dilek Kancagi
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ugur Ozbek
- Medical Genetics Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ozgul Gok
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
3
|
Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023; 13:1105. [PMID: 37509141 PMCID: PMC10377123 DOI: 10.3390/biom13071105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Erguang Li
- Medical School, Nanjing University, Nanjing, 22 Hankou Road, Nanjing 210093, China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
4
|
Ma Z, Chen Y, Zuo W, Zhu M. Synthesis and Fabrication of a Betulin-Containing Polyolefin Electrospun Fibrous Mat for Antibacterial Applications. ACS Biomater Sci Eng 2022; 8:5110-5118. [PMID: 36378953 DOI: 10.1021/acsbiomaterials.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompounds play a significant role in the area of renewable polymers in terms of sustainability, as they can be employed or converted into monomers for polymerization in a manner similar to many petroleum-derived monomers. In this work, betulin, a plant-derived triterpene with antibacterial and antiviral properties, was converted to two kinds of α,ω-diene derivatives with different methylene spacer lengths between the olefin and the ester group via an esterification reaction. Polyolefins were subsequently made by acyclic diene metathesis (ADMET) polymerization of betulin-based α,ω-diene. The polymer consists of rigid betulin and flexible unsaturated aliphatic segments, which was confirmed by NMR spectroscopy and gel permeation chromatography (GPC). The influence of different parameters including temperature, catalysts, and catalyst loading on ADMET polymerization was investigated. These polyolefins with high molar mass (up to 20.0 kg/mol) were obtained in an elevated yield (≥95%). Thermal analysis of these (co)polymers showed excellent thermal stability (up to 360 °C) and tunable glass transition temperatures depending on the nature of betulin and alkene segments. To evaluate the antimicrobial potential of betulin-containing polymers, the fabrication of polyolefin fibrous mats (ca. 400 nm diameter) via the electrospinning technique was successfully achieved. Their morphology and hydrophobicity were studied by scanning electron microscopy (SEM) and water contact angle analyses. The fibrous mats possessed broad-spectrum antibacterial property, providing a feasible strategy to design betulin-based polymeric fibers for many applications in the biomedical field.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yuwen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
5
|
Zhang J, Zhou B, Sun J, Chen H, Yang Z. Betulin ameliorates 7,12-dimethylbenz(a)anthracene-induced rat mammary cancer by modulating MAPK and AhR/Nrf-2 signaling pathway. J Biochem Mol Toxicol 2021; 35:e22779. [PMID: 33759307 DOI: 10.1002/jbt.22779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The aim of the present study is to explore the preventive efficacy of betulin (BE) in 7,12-dimethylbenz(a)anthracene (DMBA)-administered mammary cancer by modulating Ahr/Nrf2 signaling in experimental models. The mammary cancer was stimulated by the addition of DMBA (25 mg/kg/b.Wt) mixed in 1 ml of vehicle solution (sunflower oil and saline 1:1) through subcutaneous injection. The DMBA-exposed mammary tumor models showed low bodyweight, elevated quantities of lipid peroxidation molecules (TBARS and LOOH), and low enzymatic (GPx, SOD, and CAT), and nonenzymatic (GSH, vitamin C, and vitamin E) antioxidant activities in plasma and mammary tissues. Moreover, histopathological studies confirmed that invasive ductal carcinoma was observed in DMBA-induced mammary tissue of the experimental model. Dietary oral supplementation of BE prevents the loss of bodyweight, overproduces lipid peroxidation, and restores the antioxidant activities in DMBA-exposed experimental animals. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial antioxidant protein that involves preventing numerous cancers. Therefore, Nrf2-associated signaling concern is a significant target for preventing mammary cancer. This study observed an increased expression of MAPKs, Keap1, ARNT, AhR, and CYP1A1, whereas decreased expression of HO-1 and Nrf2 in DMBA-induced cancer-bearing experimental animals. The oral supplementation of BE effectively modulates the expression of MAPKs, AhR/Nrf2-associated protein expressions in DMBA-exposed experimental animals. This current study concluded that BE is a strong antioxidant, which triggers the MAPKs-mediated oxidative stress and inhibits proliferative markers by restoring the activity of Nrf2 signaling.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Bingjuan Zhou
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Hong Chen
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Buko V, Zavodnik I, Palecz B, Stepniak A, Kirko S, Shlyahtun A, Misiuk W, Belonovskaya E, Lukivskaya O, Naruta E, Kuzmitskaya I, Ilyich T, Erdenebayar B, Rakhmadieva S. Betulin/2-hydroxypropyl-β-cyclodextrin inclusion complex: Physicochemical characterization and hepatoprotective activity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Efficacy of Bletilla striata polysaccharide on hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1448-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Krukiewicz K, Cichy M, Ruszkowski P, Turczyn R, Jarosz T, Zak JK, Lapkowski M, Bednarczyk-Cwynar B. Betulin-loaded PEDOT films for regional chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:611-615. [DOI: 10.1016/j.msec.2016.12.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
9
|
Effect of Different Pretreatment Methods on Birch Outer Bark: New Biorefinery Routes. Molecules 2016; 21:427. [PMID: 27043513 PMCID: PMC6272873 DOI: 10.3390/molecules21040427] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/26/2022] Open
Abstract
A comparative study among different pretreatment methods used for the fractionation of the birch outer bark components, including steam explosion, hydrothermal and organosolv treatments based on the use of ethanol/water media, is reported. The residual solid fractions have been characterized by ATR-FTIR, 13C-solid-state NMR and morphological alterations after pretreatment were detected by scanning electron microscopy. The general chemical composition of the untreated and treated bark including determination of extractives, suberin, lignin and monosaccharides was also studied. Composition of the residual solid fraction and relative proportions of different components, as a function of the processing conditions, could be established. Organosolv treatment produces a suberin-rich solid fraction, while during hydrothermal and steam explosion treatment cleavage of polysaccharide bonds occurs. This work will provide a deeper fundamental knowledge of the bark chemical composition, thus increasing the utilization efficiency of birch outer bark and may create possibilities to up-scale the fractionation processes.
Collapse
|
10
|
Şoica CM, Dehelean CA, Peev C, Aluas M, Zupkó I, Kása P, Alexa E. Physico-chemical comparison of betulinic acid, betulin and birch bark extract andin vitroinvestigation of their cytotoxic effects towards skin epidermoid carcinoma (A431), breast carcinoma (MCF7) and cervix adenocarcinoma (HeLa) cell lines. Nat Prod Res 2012; 26:968-74. [DOI: 10.1080/14786419.2010.545352] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Shikov AN, Djachuk GI, Sergeev DV, Pozharitskaya ON, Esaulenko EV, Kosman VM, Makarov VG. Birch bark extract as therapy for chronic hepatitis C--a pilot study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:807-810. [PMID: 21377854 DOI: 10.1016/j.phymed.2011.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/10/2010] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
The hepatoprotective effect of birch bark extract (BBE) in patients with chronic hepatitis C (CHC) was studied. Forty-two patients with serologically confirmed chronic hepatitis C were treated for 12 weeks with 160 mg standardized BBE per day. The primary outcome parameter measured was the rate of alanine aminotransferase (ALT) normalization after 12 weeks. Secondary parameters included the course of ALT, aspartate aminotransferase (AST) levels, quantitative HCV RNA levels, subjective symptoms associated with CHC (fatigue, abdominal discomfort, depression, and dyspepsia), safety and compliance. The qualitative-quantitative analysis of BBE was made using high performance liquid chromatography to confirm the presence of 75% betulin and 3.5% betulinic acid. Significant differences in the mean ALT and HCV RNA levels were observed after 12 weeks of treatment. The level of ALT was decreased in 54.0% and normalized (p=0.046). HCV RNA was reduced in 43.2% (p=0.016). After 12 weeks of treatment, reports of fatigue and abdominal discomfort were reduced by 6-fold (p=0.028) and 3-fold (p=0.05), respectively. Dyspepsia was no longer reported (p=0.042) and the effect was significantly different from baseline. Because this study lacks a control group clinical relevance of the data can only be estimated in future by following controlled clinical trials.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint Petersburg State Medical Academy named after I.I. Mechnikov, 47, Piskarevsky pr., 195067 Saint Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|