1
|
Salehiamin M, Ghoraishizadeh S, Habibpour A, Tafreshi S, Abolhasani MM, Shemiranykia Z, Sefat KK, Esmaeili J. Simultaneous usage of sulforaphane nanoemulsion and tannic acid in ternary chitosan/gelatin/PEG hydrogel for knee cartilage tissue engineering: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132692. [PMID: 38806085 DOI: 10.1016/j.ijbiomac.2024.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran
| | | | - Ava Habibpour
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sadaf Tafreshi
- Hygienics Department, Biomedical Engineering, Tehran Medical Sciences Islamic Azad University, Tehran, Iran; Materials Department, Biomedical Engineering, Materials and Energy Research Institute, Karaj, Iran
| | - Mohammad Mahdi Abolhasani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center (MERC), Karaj, Iran
| | | | - Karim Kaveh Sefat
- Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Esmaeili
- Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| |
Collapse
|
2
|
Liu S, Zhang H, Ahlfeld T, Kilian D, Liu Y, Gelinsky M, Hu Q. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThree-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial. Despite their widespread utilization and numerous advantages, the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment, proliferation, and vascularization remains a challenge. Multi-material composite hydrogels present incredible potential in this field. Thus, in this work, a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed, which provides good printability and shape fidelity. In addition, a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate (TPP), genipin (GP), and glutaraldehyde (GTA) were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds. All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering, especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.
Graphic abstract
Collapse
|
3
|
Kim D, Shim YS, An SY, Lee MJ. Role of Zinc-Doped Bioactive Glass Encapsulated with Microspherical Gelatin in Localized Supplementation for Tissue Regeneration: A Contemporary Review. Molecules 2021; 26:molecules26071823. [PMID: 33804968 PMCID: PMC8038022 DOI: 10.3390/molecules26071823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin, a natural polymer, provides excellent tissue compatibility for use in tissue rehabilitation. Bioactive glasses (BAG) offer superior capacity in stimulating a bioactive response but show high variability in uptake and solubility. To tackle these drawbacks, a combination of gelatin with BAG is proposed to form composites, which then offer a synergistic response. The cross-linked gelatin structure's mechanical properties are enhanced by the incorporation of the inorganic BAG, and the rate of BAG ionic supplementation responsible for bioactivity and regenerative potential is better controlled by a protective gelatin layer. Several studies have demonstrated the cellular benefits of these composites in different forms of functional modification such as doping with zinc or incorporation of zinc such as ions directly into the BAG matrix. This review presents a comprehensive perspective on the individual characteristics of BAG and gelatin, including the synthesis and mechanism of action. Further, adaptation of the composite into various applications for bone tissue engineering is discussed and future challenges are highlighted.
Collapse
Affiliation(s)
- Dokyeong Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Youn-Soo Shim
- Department of Dental Hygiene, Sunmoon University, Asan 31460, Korea;
| | - So-Youn An
- Department of Pediatric Dentristry & Wonkwang Bone Regeneration Research Institute, College of Dentistry, Wonkwang University, Iksan-si 5453, Korea;
| | - Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, Cheonan 31065, Korea
- Correspondence: ; Tel.: +82-41-550-2491
| |
Collapse
|
4
|
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E21. [PMID: 33374248 PMCID: PMC7823539 DOI: 10.3390/nano11010021] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
Collapse
Affiliation(s)
- Mina Keshvardoostchokami
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| |
Collapse
|
5
|
Wang J, Huang C, Wang Y, Chen Y, Ding Z, Yang C, Chen L. Exploration of the single-walled carbon nanotubes’ influence for cartilage repair. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Wang S, Li K, Zhou Q. High strength and low swelling composite hydrogels from gelatin and delignified wood. Sci Rep 2020; 10:17842. [PMID: 33082476 PMCID: PMC7576601 DOI: 10.1038/s41598-020-74860-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
A delignified wood template with hydrophilic characteristics and high porosity was obtained by removal of lignin. Gelatin was infiltrated into the delignified wood and further crosslinked with a natural crosslinker genipin to form hydrogels. The composite hydrogels showed high mechanical strength under compression and low swelling in physiological condition. The effect of genipin concentrations (1, 50 and 100 mM) on structure and properties of the composite hydrogels were studied. A porous honeycomb structure with tunable pore size and porosity was observed in the freeze-dried composite hydrogels. High elastic modulus of 11.82 ± 1.51 MPa and high compressive yield stress of 689.3 ± 34.9 kPa were achieved for the composite hydrogel with a water content as high as 81%. The equilibrium water uptake of the freeze-dried hydrogel in phosphate buffered saline at 37 °C was as low as 407.5%. These enables the delignified wood structure an excellent template in composite hydrogel preparation by using infiltration and in-situ synthesis, particularly when high mechanical strength and stiffness are desired.
Collapse
Affiliation(s)
- Shennan Wang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Kai Li
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
7
|
Fang Y, Zhang T, Song Y, Sun W. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering. Biomed Mater 2020; 15:045003. [PMID: 31530754 DOI: 10.1088/1748-605x/ab452d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Suitable material for scaffolds that support cell attachment, proliferation, vascularization and contraction has always been a challenge in myocardial tissue engineering. Much research effort has been focused on natural polymers including collagen, gelatin, chitosan, fibrin, alginate, etc. Among them, a collagen/chitosan composite scaffold was widely used for myocardial tissue engineering. Due to the non-proliferative and contractile characteristics of cardiomyocytes, the biocompatibility and mechanical properties of the scaffolds are extremely important for supporting intercellular connection and tissue function for myocardial tissue engineering. To the best of our knowledge, the three crosslinking agents (glutaraldehyde (GTA), genipin (GP), tripolyphosphate (TPP)) have not yet been comparatively studied in myocardial tissue engineering. Thus, the aim of this study is to compare and identify the crosslinking effect of GTA, GP and TPP for myocardial tissue engineering. The collagen/chitosan scaffolds prepared with various crosslinking agents were fabricated and evaluated for physical characteristics, biocompatibility and contractile performance. All the groups of scaffolds exhibited high porosity (>65%) and good swelling ratio suitable for myocardial tissue engineering. TPP crosslinked scaffolds showed excellent mechanical properties, with their elastic modulus (81.0 ± 8.1 kPa) in the physiological range of native myocardium (20∼100 kPa). Moreover, GP and TPP crosslinked scaffolds exhibited better biocompatibility than GTA crosslinked scaffolds, as demonstrated by the live/dead staining and proliferation assay. In addition, cardiomyocytes within TPP crosslinked scaffolds showed the highest expression of cardiac-specific marker protein and the best contractile performance. To conclude, of the three crosslinking agents, TPP was recommended as the most suitable crosslinking agent for collagen/chitosan scaffold in myocardial tissue engineering.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China. 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Characterization and enhancement of the electrical performance of radiation modified poly (vinyl) alcohol/gelatin copolymer films doped with carotene. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Thomas A, Bera J. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:561-579. [DOI: 10.1080/09205063.2019.1587697] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ashley Thomas
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Japes Bera
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
10
|
Teimouri S, Morrish C, Panyoyai N, Small DM, Kasapis S. Diffusion and relaxation contributions in the release of vitamin B6 from a moving boundary of genipin crosslinked gelatin matrices. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
12
|
Baldino L, Cardea S, Reverchon E. Nanostructured chitosan-gelatin hybrid aerogels produced by supercritical gel drying. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lucia Baldino
- Department of Industrial Engineering; University of Salerno; Fisciano SA 84084 Italy
| | - Stefano Cardea
- Department of Industrial Engineering; University of Salerno; Fisciano SA 84084 Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering; University of Salerno; Fisciano SA 84084 Italy
| |
Collapse
|
13
|
Agheb M, Dinari M, Rafienia M, Salehi H. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:240-251. [DOI: 10.1016/j.msec.2016.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 02/07/2023]
|
14
|
Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep 2016; 6:32884. [PMID: 27616161 PMCID: PMC5018723 DOI: 10.1038/srep32884] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering.
Collapse
|
15
|
Sartuqui J, Gravina AN, Rial R, Benedini LA, Yahia L, Ruso JM, Messina PV. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities. Colloids Surf B Biointerfaces 2016; 145:382-391. [PMID: 27220014 DOI: 10.1016/j.colsurfb.2016.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 12/01/2022]
Abstract
Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology.
Collapse
Affiliation(s)
- Javier Sartuqui
- Department of Chemistry,Universidad Nacional del Sur, INQUISUR - CONICET, 8000 Bahía Blanca, Argentina
| | - A Noel Gravina
- Department of Chemistry,Universidad Nacional del Sur, INQUISUR - CONICET, 8000 Bahía Blanca, Argentina
| | - Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Luciano A Benedini
- Department of Chemistry,Universidad Nacional del Sur, INQUISUR - CONICET, 8000 Bahía Blanca, Argentina
| | - L'Hocine Yahia
- Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique de Montréal, C.P. 5079, Succursale Centre-Ville Montréal, Quebec H3C 3A7, Canada
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Paula V Messina
- Department of Chemistry,Universidad Nacional del Sur, INQUISUR - CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
16
|
Siimon K, Siimon H, Järvekülg M. Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5375. [PMID: 25578715 DOI: 10.1007/s10856-014-5375-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
Nanofibrous gelatin scaffolds were prepared by electrospinning from aqueous acetic acid and cross-linked thermally by glucose. The effect of the amount of glucose used as cross-linking agent on the mechanical properties of gelatin fibres was studied in this paper. The elastic modulus of gelatin fibres cross-linked by glucose was determined by modelling the behaviour of the meshes during tensile test. The model draws connections between the elastic moduli of a fibrous mesh and the fibre material and allows evaluation of elastic modulus of the fibre material. It was found that cross-linking by glucose increases the elastic modulus of gelatin fibres from 0.3 GPa at 0 % glucose content to 1.1 GPa at 15 % glucose content. This makes fibrous gelatin scaffolds cross-linked by glucose a promising material for biomedical applications.
Collapse
Affiliation(s)
- Kaido Siimon
- Institute of Physics, University of Tartu, Ravila 14c, 50411, Tartu, Estonia,
| | | | | |
Collapse
|
17
|
Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:538-45. [DOI: 10.1016/j.msec.2014.05.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
|
18
|
Kirchmajer DM, Panhuis MIH. Robust biopolymer based ionic–covalent entanglement hydrogels with reversible mechanical behaviour. J Mater Chem B 2014; 2:4694-4702. [DOI: 10.1039/c4tb00258j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A robust ionic–covalent entanglement hydrogel from gum and gelatin with reversible mechanical characteristics is reported.
Collapse
Affiliation(s)
- Damian M. Kirchmajer
- Soft Materials Group
- School of Chemistry and Intelligent Polymer Research Institute
- ARC Centre of Excellence for Electromaterials Science
- AIIM Facility
- University of Wollongong
| | - Marc in het Panhuis
- Soft Materials Group
- School of Chemistry and Intelligent Polymer Research Institute
- ARC Centre of Excellence for Electromaterials Science
- AIIM Facility
- University of Wollongong
| |
Collapse
|
19
|
Kiziltay A, Marcos-Fernandez A, San Roman J, Sousa RA, Reis RL, Hasirci V, Hasirci N. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells. J Tissue Eng Regen Med 2013; 9:930-42. [DOI: 10.1002/term.1848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/13/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Aysel Kiziltay
- BIOMATEN-Centre of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara Turkey
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara Turkey
- Central Laboratory; Middle East Technical University (METU); Ankara Turkey
| | | | - Julio San Roman
- Instituto de Ciencia y Tecnología de Polímeros (CSIC); Madrid Spain
| | - Rui A. Sousa
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3Bs PT Government Associated Laboratory; Braga Guimarães Portugal
| | - Rui L. Reis
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3Bs PT Government Associated Laboratory; Braga Guimarães Portugal
| | - Vasif Hasirci
- BIOMATEN-Centre of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara Turkey
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara Turkey
- Department of Biological Sciences; Middle East Technical University (METU); Ankara Turkey
| | - Nesrin Hasirci
- BIOMATEN-Centre of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara Turkey
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara Turkey
- Department of Chemistry; Middle East Technical University (METU); Ankara Turkey
| |
Collapse
|
20
|
Gelatin-modified polyurethanes for soft tissue scaffold. ScientificWorldJournal 2013; 2013:450132. [PMID: 24363617 PMCID: PMC3856153 DOI: 10.1155/2013/450132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/26/2013] [Indexed: 01/18/2023] Open
Abstract
Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility.
Collapse
|
21
|
Fernandes-Silva S, Moreira-Silva J, Silva TH, Perez-Martin RI, Sotelo CG, Mano JF, Duarte ARC, Reis RL. Porous Hydrogels From Shark Skin Collagen Crosslinked Under Dense Carbon Dioxide Atmosphere. Macromol Biosci 2013; 13:1621-31. [DOI: 10.1002/mabi.201300228] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/26/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Susana Fernandes-Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark; 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães; Portugal
| | - Joana Moreira-Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark; 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães; Portugal
| | - Tiago H. Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark; 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães; Portugal
| | | | | | - João F. Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark; 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães; Portugal
| | - Ana Rita C. Duarte
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark; 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães; Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark; 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães; Portugal
| |
Collapse
|
22
|
Abstract
Highly porous 45S5 Bioglass® scaffolds were fabricated by the foam replica method and successfully coated with a well attached gelatin layer by dipping and pipetting methods. Depending on macropore size of the scaffold and gelatin concentration, mechanically enhanced scaffolds with improved compressive strength in comparison to uncoated scaffolds could be obtained while preserving the high and interconnected porosity that is required for bone in-growth. Moreover, the scaffolds bioactivity by immersion in simulated body fluid (SBF) was investigated showing that gelatin coating preserves the intrinsic bioactivity of the Bioglass® scaffold. It was also shown that the gelatin layer can be loaded with tetracycline hydrochloride for developing scaffolds with drug delivery capability.
Collapse
|
23
|
Srisuwan Y, Kotseang N, Namtaku K, Simchuer W, Butiman C, Srihanam P. Preparation of Eri silk fibroin and gelatin blend film loaded chlorhexidine using as model for hydrophilic drug release. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ns.2012.47061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|