1
|
Chaves LS, Oliveira ACP, Oliveira AP, Lopes ALF, Araujo AKS, Pacheco G, Silva KC, Martins FEC, Gomes IAB, Ramos SVS, Viana HTMC, Batista AVF, Oliveira BC, Nicolau LAD, Ribeiro FOS, Castro AV, de Araujo-Nobre AR, Silva DA, Cordeiro LMC, Góis MB, Medeiros JVR. Cashew gum fractions protect intestinal mucosa against shiga toxin-producing Escherichia coli infection: Characterization and insights into microbiota modulation. Int J Biol Macromol 2025; 311:143916. [PMID: 40324507 DOI: 10.1016/j.ijbiomac.2025.143916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Diarrheal diseases remain a major public health concern, particularly in regions with poor sanitation. Polysaccharides extracted from natural gums have been investigated as functional agents for intestinal health, and their fractionation enables the production of oligosaccharides with potential prebiotic activity. This study aimed to produce cashew gum (CG) fractions through Smith degradation (CGD48) and partial hydrolysis (CGD24) and to evaluate their ability to modulate and protect the intestinal microbiota. Balb/c mice were administered CG (1200 mg/kg), CGD24 (800 mg/kg), or CGD48 (800 mg/kg) for 10 and 26 days, followed by infection with Shiga toxin-producing Escherichia coli (STEC) (5 × 1010 CFU/mL) for three days. Characterization assays confirmed the fragmentation of CG. Both CGD24 and CGD48 promoted the growth of beneficial bacteria with and without infection and reduced STEC colonization. Furthermore, they preserved mucin levels in the cecum and large intestine and maintained baseline levels of superoxide dismutase (SOD), suggesting protection of the intestinal mucosa. These findings indicate that CG fractions exhibit microbiota-modulating and protective effects against STEC, highlighting their therapeutic potential and the need for further studies to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Letícia S Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antonio C P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - André L F Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Andreza K S Araujo
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Katriane C Silva
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Francisco E C Martins
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isaac A B Gomes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Sabrine V S Ramos
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Hémilly T M C Viana
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana V F Batista
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Beatriz C Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucas A D Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio O S Ribeiro
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Auricélia V Castro
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araujo-Nobre
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcelo B Góis
- Post-Graduation Program in Biosciences and Health, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Jand V R Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
2
|
Silva TM, Oliveira ACDJ, Leão AD, Ramos RKLG, Chaves LL, Silva-Filho ECD, Soares MFDLR, Soares-Sobrinho JL. Cashew gum as future multipurpose biomacromolecules. Carbohydr Polym 2025; 347:122749. [PMID: 39486978 DOI: 10.1016/j.carbpol.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The review highlights significant advances in delivery systems, with an emphasis on the use of cashew gum (CG), a natural polysaccharide extracted from Anacardium occidentale L., recognized for its remarkable biodegradability and versatility. CG has a wide range of applications spanning sectors such as food, pharmaceuticals, agriculture, and biotechnology. This study examines research focused on the extraction, purification, and chemical modifications of CG, as well as its combination with other biopolymers to enhance physicochemical and mechanical properties. These strategies aim to optimize the gum's characteristics, allowing for the creation of innovative materials with improved performance, expanding its potential applications. This review aims to provide a comprehensive overview of recent research trends, focusing on the utilization of CG as a polymeric component in the development of biomaterials with diverse applications.
Collapse
Affiliation(s)
- Tarcísio Mendes Silva
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Antônia Carla De Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Amanda Damasceno Leão
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Luise Lopes Chaves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | | | - Monica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - José Lamartine Soares-Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil.
| |
Collapse
|
3
|
Azevedo GA, Heinrichs MC, Moraes ÂM. Cashew tree gum for biomaterials engineering: A versatile raw material in consolidation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gabriel Assis Azevedo
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| | - Maria Carolina Heinrichs
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
4
|
Nanoemulsion of cashew gum and clove essential oil (Ocimum gratissimum Linn) potentiating antioxidant and antimicrobial activity. Int J Biol Macromol 2021; 193:100-108. [PMID: 34627848 DOI: 10.1016/j.ijbiomac.2021.09.195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
In this study, nanoemulsions of essential oil from Ocimumgratissimum (Linn) (EO) were produced using low and high energy techniques using cashew gum (CG) as a co-surfactant. The main constituents of the EO were determined by Gas Chromatography coupled with Mass Spectrometry (GC-MS), and their presence in the EO and in the formulations verified by Fourier Transform Infrared Spectroscopy (FTIR) and UV-visible spectrophotometry was observed the encapsulation efficiency (EE%), with colloidal stability. Nuclear magnetic resonance (NMR) was used to study cashew gum. Dynamic light scattering analysis (DLS) determined the nanoemulsion Z means, polydispersity index and the Zeta potential value, nanoparticle tracking analysis (NTA) were determined. The nanostructured EO showed better antibacterial action against the pathogenic gastroenteritis species Staphylococcus aureus, Escherichia coli and Salmonella enterica when compared to free EO. Atomic Force Microscopy (AFM) was used for morphological analysis of the nanoparticle and study of the action of the nanoemulsion through images of the cellular morphology of S. enterica. The antioxidant activity was evaluated against the ABTS radical (2,2'-azino-bis diazonium salt (3-ethylbenzothiazoline-6-sulfonic acid)). The encapsulation of EO in a nanostructured system improved its antibacterial and antioxidant activity, the low energy synthesis showed greater storage stability, remaining stable for 37 days.
Collapse
|
5
|
de Andrades EO, da Costa JMAR, de Lima Neto FEM, de Araujo AR, de Oliveira Silva Ribeiro F, Vasconcelos AG, de Jesus Oliveira AC, Sobrinho JLS, de Almeida MP, Carvalho AP, Dias JN, Silva IGM, Albuquerque P, Pereira IS, do Amaral Rabello D, das Graças Nascimento Amorim A, de Souza de Almeida Leite JR, da Silva DA. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int J Biol Macromol 2021; 191:1026-1037. [PMID: 34563578 DOI: 10.1016/j.ijbiomac.2021.09.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles. The antioxidant activity was determinated and cell viability was evaluated in the human breast cancer cells (MCF-7) and human keratinocytes (HaCaT) by MTT assay. The toxic effect was evaluated by hemolysis test and by Galleria mellonella model. NFGa showed higher stability than NGa, having a size of 162.10 ± 3.21 nm, polydispersity of 0.348 ± 0.019, zeta potential -30.70 ± 0.53 mV, concentration of 6.4 × 109 nanoparticles/mL and 60% LEG encapsulation. Microscopic analysis revealed a spherical and smooth shape of NFGa. NFGa showed antioxidant capacity by ABTS method and ORAC assay. The NFGa presented significant cytotoxicity against MCF-7 from the lowest concentration tested (6.25-200 μg/mL) and did not affect the cell viability of the HaCaT. NFGa showed non-toxic effect in the in vitro and in vivo models. Therefore, NFGa may have a promising application in LEG stabilization for antioxidant and antitumor purposes.
Collapse
Affiliation(s)
- Eryka Oliveira de Andrades
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | | | - Alyne Rodrigues de Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Fabio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Antônia Carla de Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ana P Carvalho
- LAQV/REQUIMTE-GRAQ, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal; Centro de Biotecnologia e Química Fina, CBQF, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Jhones Nascimento Dias
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - Patrícia Albuquerque
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Ildinete Silva Pereira
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Doralina do Amaral Rabello
- Laboratório de Patologia Molecular do Câncer, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil; Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Durcilene Alves da Silva
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil.
| |
Collapse
|
6
|
Melo AMA, Furtado RF, de Fatima Borges M, Biswas A, Cheng HN, Alves CR. Performance of an amperometric immunosensor assembled on carboxymethylated cashew gum for Salmonella detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
The Potential Role of Polyelectrolyte Complex Nanoparticles Based on Cashew Gum, Tripolyphosphate and Chitosan for the Loading of Insulin. ACTA ACUST UNITED AC 2021. [DOI: 10.3390/diabetology2020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyelectrolytic complexation has stood out due to its application in the development of drug delivery systems using biopolymers as raw materials. The formation of complexes between cashew gum and chitosan can be intermediated by cross-links, mediated by the action of the sodium tripolyphosphate crosslinking agent. These polymers have been used in the nanotechnological development of formulations to protect peptide drugs, such as insulin, allowing their oral administration. In this work, we describe the development of polyelectrolytic complexes from cashew gum and chitosan as biopolymers for oral administration of insulin. The obtained complexes showed a mean particle size of 234 nm and polydispersity index of 0.2. The complexes were 234 nm in size, PDI 0.2, zeta potential −4.5 mV and 22% trapping. The obtained complexes demonstrated considerable and promising characteristics for use as oral insulin delivery systems.
Collapse
|
8
|
Silva SCCC, Araujo Braz EMD, Amorim Carvalho FAD, Sousa Brito CARD, Brito LM, Barreto HM, Silva Filho ECD, Silva DAD. Antibacterial and cytotoxic properties from esterified Sterculia gum. Int J Biol Macromol 2020; 164:606-615. [PMID: 32652149 DOI: 10.1016/j.ijbiomac.2020.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/15/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023]
Abstract
Sterculia gums, as karaya and chicha gum, are complex branched and polydisperse heteropolysaccharides which can have their applications extended by improving their characteristics through chemical modifications. The objective of this work was to increase the antimicrobial activity of karaya and chicha gum through chemical modification with maleic anhydride. The incorporation of anhydride in the gum structure was confirmed by the characterization techniques. The derived biopolymers were synthesized and characterized by FTIR, X-ray diffraction, Thermogravimetric analysis and elemental analysis. Antimicrobial activity was evaluated against the Staphylococcus aureus strain (ATCC 25923). Mammalian cytotoxicity assays were also performed by MTT and hemolysis tests. The derivatives showed excellent antibacterial action inhibiting almost 100% of bacterial growth and did not present significant cytotoxicity in mammalian cells. The results showed that the derivatives are promising for biomedical applications aiming the control of infectious diseases caused by S. aureus.
Collapse
Affiliation(s)
- Solranny Carla Cavalcante Costa Silva
- State University of Piauí, São Raimundo Nonato, PI CEP: 64770-000, Brazil; Interdisciplinary Laboratory of Advanced Materials, Federal University of Piauí Teresina, PI CEP 64049-550, Brazil.
| | - Elton Marks de Araujo Braz
- Interdisciplinary Laboratory of Advanced Materials, Federal University of Piauí Teresina, PI CEP 64049-550, Brazil.
| | | | | | - Lucas Moreira Brito
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI CEP 64049-550, Brazil
| | | | | | - Durcilene Alves da Silva
- Biotechnology and Biodiversity Center Research, Federal University of the Parnaíba Delta, Parnaíba, PI 64202-020, Brazil.
| |
Collapse
|
9
|
Evaluation of antitumor potential of cashew gum extracted from Anacardium occidentale Linn. Int J Biol Macromol 2020; 154:319-328. [DOI: 10.1016/j.ijbiomac.2020.03.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
|
10
|
Melo AMA, Oliveira MRF, Furtado RF, de Fatima Borges M, Biswas A, Cheng HN, Alves CR. Preparation and characterization of carboxymethyl cashew gum grafted with immobilized antibody for potential biosensor application. Carbohydr Polym 2020; 228:115408. [PMID: 31635742 DOI: 10.1016/j.carbpol.2019.115408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 11/27/2022]
Abstract
This report details the design of carboxymethylated cashew gum (CG) as a platform for antibody (Ab) immobilization, which can then be used as a biosensor for bacteria detection. The CG was isolated and characterized, followed by conversion to carboxymethyl cashew gum (CMCG). The CMCG film was a viable support for antibody immobilization; it was electrodeposited on gold surface using the cyclic voltammetry technique, applying a potential sweep from -1.0 V to 1.3 V with a scan rate of 50 mV s-1 and 10 scans. The COOH groups on the surface of the film were critical in promoting Ab bonding. The immobilization of the Ab was mediated by protein A (PrA) for recognition of the antigen. Voltammetry studies were used to monitor the antibody immobilization. Finally, the analytical response of the CMCG-PrA-Ab system was evaluated with the chronoamperometry technique and was found to detect Salmonella Typhimurium bacteria rapidly and efficiently.
Collapse
Affiliation(s)
- Airis Maria Araújo Melo
- Department of Chemistry, State University of Ceara, 1700 Dr. Silas Munguba Avenue, Fortaleza, CE 60740-903, Brazil
| | - Maria Roniele Felix Oliveira
- Department of Chemistry, State University of Ceara, 1700 Dr. Silas Munguba Avenue, Fortaleza, CE 60740-903, Brazil
| | - Roselayne Ferro Furtado
- Embrapa Tropical Agroindustry, 2270 Sara Mesquita Alves Street, Fortaleza, CE 60511-110, Brazil.
| | - Maria de Fatima Borges
- Embrapa Tropical Agroindustry, 2270 Sara Mesquita Alves Street, Fortaleza, CE 60511-110, Brazil
| | - Atanu Biswas
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL, 61604, USA
| | - Huai N Cheng
- USDA Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA
| | - Carlucio Roberto Alves
- Department of Chemistry, State University of Ceara, 1700 Dr. Silas Munguba Avenue, Fortaleza, CE 60740-903, Brazil
| |
Collapse
|
11
|
Cashew gum, a biopolymer, topically protects oesophageal mucosa in non erosive reflux disease: A promising translational study. Carbohydr Polym 2019; 226:115205. [DOI: 10.1016/j.carbpol.2019.115205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
|
12
|
Ferreira-Fernandes H, Barros MAL, Souza Filho MD, Medeiros JVR, Vasconcelos DFP, Silva DA, Leódido ACM, Silva FRP, França LFC, Di Lenardo D, Yoshioka FKN, Rey JA, Burbano RR, Pinto GR. Topical application of cashew gum or chlorhexidine gel reduces overexpression of proinflammatory genes in experimental periodontitis. Int J Biol Macromol 2019; 128:934-940. [DOI: 10.1016/j.ijbiomac.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
13
|
Lima MR, Paula HC, Abreu FO, da Silva RB, Sombra FM, de Paula RC. Hydrophobization of cashew gum by acetylation mechanism and amphotericin B encapsulation. Int J Biol Macromol 2018; 108:523-530. [DOI: 10.1016/j.ijbiomac.2017.12.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
|
14
|
Souza Filho MD, Medeiros JV, Vasconcelos DF, Silva DA, Leódido AC, Fernandes HF, Silva FR, França LF, Lenardo D, Pinto GR. Orabase formulation with cashew gum polysaccharide decreases inflammatory and bone loss hallmarks in experimental periodontitis. Int J Biol Macromol 2018; 107:1093-1101. [DOI: 10.1016/j.ijbiomac.2017.09.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
|
15
|
Antibacterial activity of novel peptide derived from Cry1Ab16 toxin and development of LbL films for foodborne pathogens control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:503-509. [DOI: 10.1016/j.msec.2017.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 01/20/2023]
|
16
|
Dias SFL, Nogueira SS, de França Dourado F, Guimarães MA, de Oliveira Pitombeira NA, Gobbo GG, Primo FL, de Paula RCM, Feitosa JPA, Tedesco AC, Nunes LCC, Leite JRSA, da Silva DA. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym 2016; 143:254-61. [DOI: 10.1016/j.carbpol.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
17
|
Plácido A, de Oliveira Farias EA, Marani MM, Vasconcelos AG, Mafud AC, Mascarenhas YP, Eiras C, Leite JR, Delerue-Matos C. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:832-41. [DOI: 10.1016/j.msec.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
|
18
|
Ribeiro AJ, de Souza FRL, Bezerra JMNA, Oliveira C, Nadvorny D, de La Roca Soares MF, Nunes LCC, Silva-Filho EC, Veiga F, Soares Sobrinho JL. Gums' based delivery systems: Review on cashew gum and its derivatives. Carbohydr Polym 2016; 147:188-200. [PMID: 27178924 DOI: 10.1016/j.carbpol.2016.02.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/06/2016] [Accepted: 02/14/2016] [Indexed: 11/28/2022]
Abstract
The development of delivery systems using natural polymers such as gums offers distinct advantages, such as, biocompatibility, biodegradability, and cost effectiveness. Cashew gum (CG) has rheological and mucoadhesive properties that can find many applications, among which the design of delivery systems for drugs and other actives such as larvicide compounds. In this review CG is characterized from its source through to the process of purification and chemical modification highlighting its physicochemical properties and discussing its potential either for micro and nanoparticulate delivery systems. Chemical modifications of CG increase its reactivity towards the design of delivery systems, which provide a sustained release effect for larvicide compounds. The purification and, the consequent characterization of CG either original or modified are of utmost importance and is still a continuing challenge when selecting the suitable CG derivative for the delivery of larvicide compounds.
Collapse
Affiliation(s)
- António J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Genetics of Cognitive Dysfunction, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | - Flávia R Lucena de Souza
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Janira M N A Bezerra
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Claudia Oliveira
- Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Genetics of Cognitive Dysfunction, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Daniela Nadvorny
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Monica F de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Lívio C C Nunes
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Centro de Ciências da Natureza-CCN, Universidade Federal do Piauí-UFPI, Brazil
| | - Edson C Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Centro de Ciências da Natureza-CCN, Universidade Federal do Piauí-UFPI, Brazil
| | - Francisco Veiga
- CNC.IBILI, Universidade de Coimbra, 3000-548 Coimbra, Portugal; Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal
| | - José L Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| |
Collapse
|
19
|
Bittencourt CR, de Oliveira Farias EA, Bezerra KC, Véras LMC, Silva VC, Costa CHN, Bemquerer MP, Silva LP, Souza de Almeida Leite JRD, Eiras C. Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:549-555. [DOI: 10.1016/j.msec.2015.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
20
|
A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:927-34. [DOI: 10.1016/j.msec.2015.09.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
|
21
|
Carvalho NS, Silva MM, Silva RO, Nicolau LAD, Sousa FBM, Damasceno SRB, Silva DA, Barbosa ALR, Leite JRSA, Medeiros JVR. Gastroprotective properties of cashew gum, a complex heteropolysaccharide of Anacardium occidentale, in naproxen-induced gastrointestinal damage in rats. Drug Dev Res 2015; 76:143-51. [PMID: 25959135 DOI: 10.1002/ddr.21250] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 11/10/2022]
Abstract
Long-term use nonsteroidal anti-inflammatory drug is associated with gastrointestinal (GI) lesion formation. The aim of this study was to investigate the protective activity of cashew gum (CG), a complex heteropolysaccharide extracted from Anacardium occidentale on naproxen (NAP)-induced GI damage. Male Wistar rats were pretreated with vehicle or CG (1, 3, 10, and 30 mg/kg, p.o.) twice daily for 2 days; after 1 h, NAP (80 mg/kg, p.o.) was administered. The rats were euthanized on the 2nd day of treatment, 4 h after NAP administration. Stomach lesions were measured using digital calipers. The medial small intestine was used for the evaluation of macroscopic lesion scores. Samples of the stomach and the intestine were used for histological evaluation, and assays for glutathione (GSH), malonyldialdehyde (MDA), and myeloperoxidase (MPO). Additional rats were used to measure gastric mucus and secretion. Pretreatment with CG reduced the macroscopic and microscopic damage induced by NAP. CG significantly attenuated NAP-induced alterations in MPO, GSH, and MDA levels. Furthermore, CG returned adherent mucus levels to normal values. These results suggest that CG has a protective effect against GI damage via mechanisms that involve the inhibition of inflammation and increasing the amount of adherent mucus in mucosa.
Collapse
Affiliation(s)
- Nathalia S Carvalho
- Post-Graduation Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | - Mônica M Silva
- Post-Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, 64204-260, Parnaíba, PI, Brazil
| | - Renan O Silva
- Post-Graduation Program in Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lucas A D Nicolau
- Post-Graduation Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | - Francisca Beatriz M Sousa
- Post-Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, 64204-260, Parnaíba, PI, Brazil
| | - Samara R B Damasceno
- Post-Graduation Program in Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Durcilene A Silva
- Post-Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, 64204-260, Parnaíba, PI, Brazil
| | - André L R Barbosa
- Post-Graduation Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil.,Post-Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, 64204-260, Parnaíba, PI, Brazil
| | - José Roberto S A Leite
- Post-Graduation Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil.,Post-Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, 64204-260, Parnaíba, PI, Brazil
| | - Jand Venes R Medeiros
- Post-Graduation Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil.,Post-Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, 64204-260, Parnaíba, PI, Brazil
| |
Collapse
|
22
|
Nagel A, Mix K, Kuebler S, Bogner H, Kienzle S, Elstner P, Carle R, Neidhart S. The arabinogalactan of dried mango exudate and its co-extraction during pectin recovery from mango peel. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Pauli GEN, Araruna FB, Eiras C, Leite JRSA, Chaves OS, Brito Filho SG, de Souza MDFV, Chavero LN, Sartorelli ML, Bechtold IH. Nanostructured layer-by-layer films containing phaeophytin-b: electrochemical characterization for sensing purposes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 47:339-44. [PMID: 25492205 DOI: 10.1016/j.msec.2014.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/27/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Abstract
This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV-Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H2O2) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H2O2. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H2O2.
Collapse
Affiliation(s)
- Gisele Elias Nunes Pauli
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Felipe B Araruna
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, Brazil
| | - Carla Eiras
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, Brazil; Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, Brazil
| | - Otemberg Souza Chaves
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | - Severino Gonçalves Brito Filho
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | - Maria de Fátima Vanderlei de Souza
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | - Lucas Natálio Chavero
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Maria Luisa Sartorelli
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Ivan H Bechtold
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil.
| |
Collapse
|
24
|
Ghostine RA, Markarian MZ, Schlenoff JB. Asymmetric Growth in Polyelectrolyte Multilayers. J Am Chem Soc 2013; 135:7636-46. [DOI: 10.1021/ja401318m] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ramy A. Ghostine
- Department of Chemistry
and Biochemistry, The Florida State University, Tallahassee, Florida
32306-4390, United States
| | - Marie Z. Markarian
- Department of Chemistry
and Biochemistry, The Florida State University, Tallahassee, Florida
32306-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry
and Biochemistry, The Florida State University, Tallahassee, Florida
32306-4390, United States
| |
Collapse
|