1
|
Jiang Z, Shi X, Qiao F, Sun J, Hu Q. Multistimuli-Responsive PNIPAM-Based Double Cross-Linked Conductive Hydrogel with Self-Recovery Ability for Ionic Skin and Smart Sensor. Biomacromolecules 2022; 23:5239-5252. [PMID: 36354756 DOI: 10.1021/acs.biomac.2c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multistimuli-responsive conductive hydrogels have been appealing candidates for multifunctional ionic skin. However, the fabrication of the multistimuli-responsive conductive hydrogels with satisfactory mechanical property to meet the practical applications is still a great challenge. In this study, a novel poly(N-isopropylacrylamide-co-sodium acrylate)/alginate/hectorite clay Laponite XLS (PNIPAM-SA/ALG/XLS) double cross-linked hydrogel with excellent mechanical property, self-recovery ability, temperature/pH-responsive ability, and strain/temperature-sensitive conductivity was fabricated. The PNSAX hydrogel possessed a moderate tensile strength of 290 kPa at a large elongation rate of 1120% and an excellent compression strength of 2.72 MPa at 90%. The hydrogel also possessed excellent mechanical repeatability and self-recovery ability. Thus, the hydrogel could withstand repetitive deformations for long time periods. Additionally, the hydrogel could change its transparency and volume once at a temperature of 44 °C and change its volume at different pHs. Thus, the visual temperature/pH-responsive ability allowed the hydrogel to qualitatively harvest environmental information. Moreover, the hydrogel possessed an excellent conductivity of 0.43 S/m, and the hydrogel could transform large/subtle deformation and temperature information into electrical signal change. Thus, the ultrafast strain/temperature-sensitive conductivity allowed the hydrogel to quantitatively detect large/small-scale human motions as well as environmental temperature. A cytotoxicity test confirmed the good cytocompatibility. Taken together, the hydrogel was suitable for human motion detecting and environmental information harvesting for long time periods. Therefore, the hydrogel has a great application potential as a multifunctional ionic skin and smart sensor.
Collapse
Affiliation(s)
- Zhiqi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xuanyu Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Fenghui Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
2
|
Nagase K, Yamazaki K, Maekawa Y, Kanazawa H. Thermoresponsive bio-affinity interfaces for temperature-modulated selective capture and release of targeted exosomes. Mater Today Bio 2022; 18:100521. [PMID: 36590982 PMCID: PMC9800632 DOI: 10.1016/j.mtbio.2022.100521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The existing methods for exosome isolation, such as ultracentrifugation, size exclusion, and affinity separation, suffer from some limitations. Herein, we aimed to develop temperature-modulated exosome-capturing materials using thermoresponsive polymers and peptides with affinity for exosomes. Poly(2-hydroxyethyl methacrylate-co-propargyl acrylate)-b-poly(N-isopropylacrylamide) (P(HEMA-co-PgA)-b-PNIPAAm) was grafted on silica beads via a two-step process of activator regenerated by electron transfer atom transfer radical polymerization. Peptides with affinity for exosomes were conjugated to the propargyl group of the bottom P(HEMA-co-PgA) segment of the copolymer via a click reaction. The prepared copolymer-grafted beads were characterized by elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, gel permeation chromatography, and the turbidity of the polymer solution. Results indicated that the copolymer and peptide were successfully modified on the silica beads. Exosomes from SK-BR-3 cells, a human breast cancer cell line, were selectively captured on the prepared beads at 37 °C, as the upper PNIPAAm segment shrank and the affinity between the peptide and exosome was enhanced. Upon lowering the temperature to 4 °C, the captured exosomes were released from the copolymer brush because of the extension of the PNIPAAm segment that reduced the affinity between peptides and exosomes. These findings demonstrated that the prepared copolymer brush-grafted silica beads can capture and release targeted exosomes via temperature modulation. Taken together, the developed copolymer brush-grafted silica beads would be useful for the separation of exosomes using simple procedures such as temperature modulation.
Collapse
|
3
|
Huang G, Tang Z, Peng S, Zhang P, Sun T, Wei W, Zeng L, Guo H, Guo H, Meng G. Modification of Hydrophobic Hydrogels into a Strongly Adhesive and Tough Hydrogel by Electrostatic Interaction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guang Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhuofu Tang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Shuaiwei Peng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ping Zhang
- Faculty of Science and Technology, University of Macau, E11, Avenida da Universidade, Taipa, Macau 999078, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Wentao Wei
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Liangpeng Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Honglei Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Guozhe Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
4
|
Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E, Daei Farshchi A, Soleimanifar F, Mansouri V. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO J 2020; 66:966-973. [PMID: 32740360 DOI: 10.1097/mat.0000000000001094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Today, composite scaffolds fabricated by natural and synthetic polymers have attracted a lot of attention among researchers in the field of tissue engineering, and given their combined properties that can play a very useful role in repairing damaged tissues. In the current study, aloe vera-derived gel-blended poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibrous scaffold was fabricated by electrospinning, and then, PHBV and PHBV gel fabricated scaffolds characterized by scanning electron microscope, protein adsorption, cell attachment, tensile and cell's viability tests. After that, osteogenic supportive property of the scaffolds was studied by culturing of human-induced pluripotent stem cells on the scaffolds under osteogenic medium and evaluating of the common bone-related markers. The results showed that biocompatibility of the PHBV nanofibrous scaffold significantly improved when combined with the aloe vera gel. In addition, higher amounts of alkaline phosphatase activity, mineralization, and bone-related gene and protein expression were detected in stem cells when grown on PHBV-gel scaffold in comparison with those stem cells grown on the PHBV and culture plate. Taken together, it can be concluded that aloe vera gel-blended PHBV scaffold has a great promising osteoinductive potential that can be used as a suitable bioimplant for bone tissue engineering applications to accelerate bone regeneration and also degraded completely along with tissue regeneration.
Collapse
Affiliation(s)
- Aylin Tahmasebi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Shapouri Moghadam
- Department of Immunogenetics, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohamad Kaabi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Daei Farshchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Thermo-sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of asprin. J Mech Behav Biomed Mater 2019; 92:179-187. [PMID: 30735979 DOI: 10.1016/j.jmbbm.2019.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
Smart mechanical strong hydrogels have gained increasing attention in the last decade. A novel tough robust biocompatible and dual pH- and temperature- responsive poly (N-isopropylacrylamide)/clay (Laponite XLS)/gold nanoparticles (Au-S-S NPs)/caboxymethyl chitosan (CMCTs) nanocomposite hydrogel was synthesized by a facile one-pot in situ free radical polymerization, using clay and Au-S-S NPs as the cross-linkers instead of toxic organic molecules. By tuning the crucial factors, concentration of Au-S-S NPs, CMCTs and clay, the obtained hydrogels exhibited the highest tensile stress of 535.5 kPa at the breaking deformation of 1579.5%. Furthermore, these synthesized hydrogels were tough enough and simultaneously owned a fast recoverability after unloaded in 15 min at room temperature. Moreover, effects of the above factors on swelling and swelling-shrinking behaviors of the prepared hydrogels were investigated in detail. In addition, these designed hydrogels also possessed a controlled drug release property of asprin by adjusting their inner crosslink density. Owing to this property, they could be used as the potential drug delivery carriers in future.
Collapse
|
7
|
Chen Y, Song G, Yu J, Wang Y, Zhu J, Hu Z. Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin. J Mech Behav Biomed Mater 2018; 82:61-69. [DOI: 10.1016/j.jmbbm.2018.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022]
|
8
|
Nanocomposite hydrogel with varying number of repeating oxyethylene units: Adjustable pore structure and thermo-responsibility. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Motealleh A, Kehr NS. Nanocomposite Hydrogels and Their Applications in Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 27900856 DOI: 10.1002/adhm.201600938] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Indexed: 01/21/2023]
Abstract
Nanocomposite (NC) hydrogels, organic-inorganic hybrid materials, are of great interest as artificial three-dimensional (3D) biomaterials for biomedical applications. NC hydrogels are prepared in water by chemically or physically cross-linking organic polymers with nanomaterials (NMs). The incorporation of hard inorganic NMs into the soft organic polymer matrix enhances the physical, chemical, and biological properties of NC hydrogels. Therefore, NC hydrogels are excellent candidates for artificial 3D biomaterials, particularly in tissue engineering applications, where they can mimic the chemical, mechanical, electrical, and biological properties of native tissues. A wide range of functional NMs and synthetic or natural organic polymers have been used to design new NC hydrogels with novel properties and tailored functionalities for biomedical uses. Each of these approaches can improve the development of NC hydrogels and, thus, provide advanced 3D biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| |
Collapse
|
10
|
Djonlagic J, Lancuski A, Nikolic MS, Rogan J, Ostojic S, Petrovic Z. Hydrogels reinforced with nanoclays with improved response rate. J Appl Polym Sci 2016. [DOI: 10.1002/app.44535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jasna Djonlagic
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Belgrade 11000 Serbia
| | - Anica Lancuski
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Belgrade 11000 Serbia
| | - Marija S. Nikolic
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Belgrade 11000 Serbia
| | - Jelena Rogan
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Belgrade 11000 Serbia
| | - Sanja Ostojic
- Institute of General and Physical Chemistry, University of Belgrade; Studentski trg 12-16 Belgrade Serbia
| | - Zoran Petrovic
- Kansas Polymer Research Center Pittsburg State University; Pittsburg Kansas 66762
| |
Collapse
|
11
|
Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ. Zwitterionic nanocomposite hydrogels as effective wound dressings. J Mater Chem B 2016; 4:4206-4215. [DOI: 10.1039/c6tb00302h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Zwitterionic poly(sulfobetaine acrylamide) (pSBAA) nanocomposite hydrogels were synthesized and implemented as effective chronic wound dressings.
Collapse
Affiliation(s)
- Kang-Ting Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
| | - Yun-Lung Fang
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
- Division of Plastic and Reconstructive Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taipei
| | - Chun-Chang Li
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taipei
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taipei
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
- Department of Chemical & Materials Engineering
| |
Collapse
|
12
|
Tan S, Lu Z, Zhao J, Zhang J, Wu M, Wu Q, Yang J. Synthesis and multi-responsiveness of poly(N-vinylcaprolactam-co-acrylic acid) core–shell microgels via miniemulsion polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00544f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a facile and large fabrication of multi-responsive poly(N-vinylcaprolactam-co-acrylic acid) microgels with a core–shell structure via seed miniemulsion polymerization. The multi-responsive microgels can reversibly swell and shrink in response to pH and temperature variation.
Collapse
Affiliation(s)
- Shen Tan
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| | - Zhengquan Lu
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| | - Jing Zhao
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| | - Jianan Zhang
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| | - Mingyuan Wu
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| | - Qingyun Wu
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| | - Jianjun Yang
- School of Chemistry and Chemical Engineering
- Anhui University and Anhui Province Key Laboratory of Environment-friendly Polymer Materials
- Hefei 230601
- P. R. China
| |
Collapse
|
13
|
Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. J Colloid Interface Sci 2015; 450:26-33. [PMID: 25797395 DOI: 10.1016/j.jcis.2015.02.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
|
14
|
Ibarra LE, Tarres L, Bongiovanni S, Barbero CA, Kogan MJ, Rivarola VA, Bertuzzi ML, Yslas EI. Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:84-92. [PMID: 25617831 DOI: 10.1016/j.ecoenv.2015.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
With the rapid growth of nanotechnology and the applications of nanoparticles, environmental exposure to these particles is increasing. However, their impact in human and environmental health is not well studied. Anurans, with life stage comprising embryos, tadpoles and adults, have an extremely permeable skin which makes them excellent indicators of environmental health. This study evaluated the acute toxicity effects of polyaniline nanoparticles (PANI-Np) in different dispersant on embryos and larvae of Rhinella arenarum. The results showed that LC50 of PANI-Np dispersed in polyvinylpyrrolidone (PVP) were 1,500 mg/L, while LC50 by PANI-Np dispersed in PVP+PNIPAM (polyN-isopropylacrilamide) showed a highest toxicity (1,170 mg/L). The embryo teratogenicity increased with increasing exposure concentration in both kinds of PANI-Np although in PANI-Np1, there is an increased teratogenic effect associated with the polymer stabilizer PVP.
Collapse
Affiliation(s)
- Luis E Ibarra
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Lucrecia Tarres
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Silvestre Bongiovanni
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - César A Barbero
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Marcelo J Kogan
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Viviana A Rivarola
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Mabel L Bertuzzi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Edith I Yslas
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina.
| |
Collapse
|
15
|
Shi L, Yang N, Zhang H, Chen L, Tao L, Wei Y, Liu H, Luo Y. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:533-40. [DOI: 10.1016/j.msec.2014.12.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/05/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022]
|
16
|
Wei QB, Fu F, Zhang YQ, Tang L. Synthesis and characterization of pH-responsive carboxymethyl chitosan-g-polyacrylic acid hydrogels. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0662-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kehr NS, Atay S, Ergün B. Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromol Biosci 2014; 15:445-63. [DOI: 10.1002/mabi.201400363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Seda Atay
- Department of Nanotechnology and Nanomedicine; Hacettepe University; 06800 Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| |
Collapse
|